Supplementary Information

Strain/Plasmid	Characteristics	Source/Reference
Strain		
E cel: DU5 -	F-φ80d lacZΔM15Δ(lacZYA-argF) U169 endA1 recA1	TransGen,
Ε. <i>соп DH</i> 5α	hsdR17 (r_k^{-} , m_k^{+}) supE44 λ -thi-1 gyrA96 relA1 phoA	Beijing, PRC
P gubtilig WI 001	wild type isolated from soil	isolated by our
B. Sublitts W LOOT	while type, isolated from som	research group
4 fumigatus WI 002	wild type isolated from soil	isolated by our
A. jumigutus W1002	while type, isolated from som	research group
I routori XC1	Host strain isolated from chick gut	isolated by our
L. remeri XC1	Tost strain isolated from enter gut	research group
L. reuteri pLEM 4156	Carrying plasmid pLEM4156	this work
L. reuteri pLEM 4157(cel)	Carrying plasmid pLEM4157 (cel)	this work
L. reuteri pLEM 4158 (phy)	Carrying plasmid pLEM4158 (phy)	his work
L. reuteri pLEM 4159-cel/phy	Carrying plasmid pLEM4159-cel/phy	this work
Plasmid		
pLEM415	Amp ^r , Em ^r ; <i>E. coli–L. reuteri</i> shuttle vector; 6.3 kb	[1]
nI EM4155	the fusion fragment of IdhL promoter, Usp45 signal	this work
pLEM4135	peptide and enhancer cloned into pLEM415; 6.6 kb	
	the PCR fragment containing the ribosome binding site	
pLEM4156	(<i>rbs</i>) fusing to Usp45 gene signal peptide (SPusp45)	this work
	and enhancer (LEISS) cloned into pLEM4156; 6.7 kb	
$\pi I E M 4157$ (asl)	<i>B. subtilis</i> WL001 endoglucanase gene <i>cel15</i> cloned	
pLEW14157 (cer)	into pLEM4155; 8.1 kb	UNIS WORK
nLEM4159 (nbv)	A. <i>fumigatus</i> WL002 phytase gene mature peptide	
pLEM4138 (pny)	phyWM cloned into pLEM4155; 7.9 kb	UIIS WOIK
pLEM4159-cel/phy	phyWM and celW cloned into pLEM4156; 9.6 kb	this work

Table S1. Bacterial strains and plasmids used in this study.

Table S2. Primers used in the work.

Name	Sequence(5'-3') ^{a,b}
G1	TGC <u>TCTAGA</u> GAAAGGATGATATCACCATGCAATCAAGTTTAAAGAAAT (<i>Xba</i> I)
G2	TTT <u>GCGGCCGC</u> AGCATCACATGTTGATGAGATTTC (NotI)
C1	CGG <u>ACTAGT</u> ATGAAACGGTCAATCTCGATTTT (SpeI)
C2	TGC <u>TCTAGA</u> CTAATTTGGTTCTGTTCCCCAAATCA (XbaI)
P1	CGG <u>ACTAGT</u> TCCAAGTCCTGCGATACGGTAGACCTC (SpeI)
P2	TGC <u>TCTAGA</u> TCAACTAAAGCACTCTCCCCAGTTGCC (XbaI)
P3	TTT <u>GCGGCCGC</u> GTCCAAGTCCTGCGATACGGTAGACCTC (NotI)
P4	TCC <u>CCGCGG</u> TCAACTAAAGCACTCTCCCCAGTTGCC (SacII)

^a The nucleotide sequence underlined was restriction site; and ^b The nucleotide sequence in bold was ribosome binding site *rbs*.

	Days 1–21		Days 21–42	
Parameter	Positive Control	Negative Control	Positive Control	Negative Control
Composition (%)				
Barley	39.06	38.22	41.00	40.00
Wheat	30.00	30.00	31.00	28.78
Soybean meal	18.00	20.00	12.54	17.05
Fish meal	6.54	5.20	6.87	4.00
Soybean oil	3.39	3.54	5.29	5.76
Limestone	1.09	1.46	1.60	1.85
Dicalcium phosphate	0.55	0.17	0.20	0.10
Salt	0.16	0.19	0.28	0.21
Choline-Cl, 50%	0.10	0.10	0.10	0.10
Methionine	0.10	_	0.03	0.05
Lysine	-	0.01	0.10	0.10
1% Premix ¹	1.00	1.00	1.00	1.00
Nutrient level				
Metabolizable Energy (kcal/kg)	2900	2900	3041	3041
Crude Protein (%)	21.00	21.00	19.00	19.00
Calcium (%)	0.90	0.90	1.00	0.96
Total Phosphorus (%)	0.65	0.56	0.58	0.50
Available Phosphorus (%)	0.45	0.35	0.40	0.30

¹ The premix provided per kilogram of diets: iron, 100 mg; zinc, 100 mg; copper, 8 mg; manganese, 120 mg; iodine, 0.7 mg; and selenium, 0.3 mg; vitamin A, 8000 IU; vitamin D3, 1000 IU; vitamin E, 20 IU; menadione, 0.5 mg; thiamine, 2.0 mg; flavin, 8.0 mg; niacin, 35 mg; pyridoxine, 3.5 mg; vitamin B12, 0.01 mg; pantothenic acid, 10.0 mg; folic acid, 0.55 mg; biotin, 0.18 mg; antioxidant, 0.4 g in the phase of 1–21 days, and iron, 60 mg; zinc, 80 mg; copper, 8 mg; manganese, 60 mg; iodine, 0.6 mg; and selenium, 0.3 mg; vitamin A, 6000 IU; vitamin D3, 500 IU; vitamin E, 30 IU; menadione, 0.5 mg; thiamine, 2.0 mg; flavin, 5.0 mg; niacin, 30 mg; pyridoxine, 3.0 mg; vitamin B12, 0.01 mg; pantothenic acid, 10.0 mg; folic acid, 0.55 mg; biotin, 0.15 mg; antioxidant, 0.5 g in the phases of 22–42 days.

Table S4. Real-time PCR primers.

Species	Primers	Sequence (5'-3')	Amplicon Length (bp)	Reference
Escherichia coli	F col	GTTAATACCTTTGCTCATTGA	240	[2]
	R col	ACCAGGGTATCTAATCCTGTT	540	
Bifidobacterium genus	F bif	GGGTGGTAATGCCGGATG	1.10	[2]
	R bif	TAAGCCATGGACTTTCACACC	442	[3]
Bacteroides vulgatus	R bac	AAGGGAGCGTAGATGGATGTTTA	193	[4]
	F bac	CGAGCCTCAATGTCAGTTGC		
Veillonella spp.	F vei	AYCAACCTGCCCTTCAGA	343	[3]
	R vei	CGTCCCGATTAACAGAGCTT		
Clostridium IV	F clo	TTACTGGGTGTAAAGGG	594	[3]
	R clo	TAGAGTGCTCTTGCGTA	384	
Lactobacillus spp.	F lac	AGCAGTAGGGAATCTTCCA	241	[5]
	R lac	CACCGCTACACATGGAG	341	
Enterococcus faecalis	F ent	AACCTACCCATCAGAGGG	257	[6]
	R ent	GACGTTCAGTTACTAACG	357	

Table S3. Composition of the experimental diet.

Species	Standard Curve	R^2	<i>E%</i>
Escherichia coli	Y = -3.150X + 33.605	0.996	107.7
Bifidobacterium genus	Y = -3.251X + 32.545	0.996	103.0
Bacteroides vulgatus	Y = -3.109X + 33.103	0.996	109.7
Veillonella spp.	Y = -3.355X + 34.021	0.997	98.6
Clostridium XIV	Y = -3.632X + 36.06	1.000	88.5
Lactobacillus spp.	Y = -2.784X + 31.451	0.985	110.7
Enterococcus faecalis	Y = -3.142X + 34.182	0.995	108.1

Table S5. The standard curve, PCR efficiency (E%) and linear correlation coefficient (R^2).

References

- 1. Ref. [1] is the mentioned in the main text and the order is ref. [56].
- Malinen, E.; Kassinen, A.; Rinttilä, T.; Palva, A. Comparison of real-time PCR with SYBR Green I or 5'-nuclease assays and dot-blot hybridization with rDNA-targeted oligonucleotide probes in quantification of selected faecal bacteria. *Microbiology* 2003, 149, 269–277.
- 3. Wise, M.G.; Siragusa, G.R. Quantitative analysis of the intestinal bacterial community in one-to three-week-old commercially reared broiler chickens fed conventional or antibiotic-free vegetable-based diets. *J. Appl. Microbiol.* **2007**, *102*, 1138–1149.
- Huijsdens, X.W.; Linskens, R.K.; Mak, M.; Meuwissen, S.G.; Vandenbroucke-Grauls, C.M.; Savelkoul, P.H. Quantification of bacteria adherent to gastrointestinal mucosa by real-time PCR. *J. Clin. Microbiol.* 2002, 40, 4423–4427.
- Štšepetova, J.; Sepp, E.; Kolk, H.; Loivukene, K.; Songisepp, E.; Mikelsaar, M. Diversity and metabolic impact of intestinal *Lactobacillus* species in healthy adults and the elderly. *Br. J. Nutr.* 2011, 105, 1235–1244.
- Bartosch, S.; Fite, A.; Macfarlane, G.T.; McMurdo, M.E. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. *Appl. Environ. Microbiol.* 2004, 70, 3575–3581.