Next Article in Journal
Staphylococcus aureus and MRSA Growth and Biofilm Formation after Treatment with Antibiotics and SeNPs
Next Article in Special Issue
Abnormal Paraplegin Expression in Swollen Neurites, τ- and α-Synuclein Pathology in a Case of Hereditary Spastic Paraplegia SPG7 with an Ala510Val Mutation
Previous Article in Journal
Structural Analysis of Crystalline R(+)-α-Lipoic Acid-α-cyclodextrin Complex Based on Microscopic and Spectroscopic Studies
Previous Article in Special Issue
Mutational Spectrum Analysis of Neurodegenerative Diseases and Its Pathogenic Implication
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Genetics Underlying Atypical Parkinsonism and Related Neurodegenerative Disorders

1
Neurodegenerative Diseases Research Unit, Laboratory of Neurogenetics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA
2
Department of Neurology, Johns Hopkins University School of Medicine, 1800 Orleans Street, Baltimore, MD 21287, USA
3
Department of Molecular Neuroscience, University College London, Institute of Neurology, Queen Square House, London WC1N 3BG, UK
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2015, 16(10), 24629-24655; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms161024629
Submission received: 16 September 2015 / Revised: 1 October 2015 / Accepted: 9 October 2015 / Published: 16 October 2015
(This article belongs to the Special Issue Mechanisms of Neurodegeneration)

Abstract

:
Atypical parkinsonism syndromes, such as dementia with Lewy bodies, multiple system atrophy, progressive supranuclear palsy and corticobasal degeneration, are neurodegenerative diseases with complex clinical and pathological features. Heterogeneity in clinical presentations, possible secondary determinants as well as mimic syndromes pose a major challenge to accurately diagnose patients suffering from these devastating conditions. Over the last two decades, significant advancements in genomic technologies have provided us with increasing insights into the molecular pathogenesis of atypical parkinsonism and their intriguing relationships to related neurodegenerative diseases, fueling new hopes to incorporate molecular knowledge into our diagnostic, prognostic and therapeutic approaches towards managing these conditions. In this review article, we summarize the current understanding of genetic mechanisms implicated in atypical parkinsonism syndromes. We further highlight mimic syndromes relevant to differential considerations and possible future directions.

1. Introduction

The term atypical parkinsonism refers to a heterogeneous group of neurological disorders characterized by the presence of parkinsonism plus additional “atypical” features for Parkinson disease (PD), such as early cognitive impairment, autonomic dysfunction, early falls, ataxia, apraxia, dystonia, myoclonus, amyotrophy, gaze palsy, cortical sensory loss, alien limb phenomenon or failure to respond to dopaminergic treatment. This group of conditions used to be referred to as Parkinson-Plus syndromes due to the presence of additional characteristics, though this term has fallen out of favor. The accurate clinical diagnosis of atypical parkinsonism syndromes is challenging due to phenotypic variability, overlapping clinical features between neurodegenerative disorders and a lack of disease-specific diagnostic tests. The net result of this is that the correct diagnosis is often only established at autopsy.
The last two decades have seen tremendous progress in our understanding of the genetic etiology of neurological disease. In large part, this is due to advances in genomic technologies that have allowed us to systematically unravel the genetic architecture of disease. In neurodegenerative diseases research, increasing genetic evidence demonstrates overlapping risk loci between atypical parkinsonism syndromes, suggesting that these syndromes are pathogenetically related. Ultimately, this knowledge has and continues to identify new targets for therapeutic development, and the long-term hope is that it will ultimately lead to effective treatments for patients devastated with these disorders.
In this review article, we provide an overview of the current state of genetic knowledge in atypical parkinsonism. We focus on the sporadic forms of atypical parkinsonism, such dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and multiple system atrophy (MSA). Unusual presentations of common neurodegenerative diseases that may mimic atypical parkinsonism syndromes will also be discussed. Finally, we will highlight future directions and implications for therapeutic interventions.

2. Multiple System Atrophy

Multiple system atrophy (MSA) is an adult-onset, progressive neurodegenerative disorder that presents with variable combinations of parkinsonism, cerebellar ataxia, autonomic failure and pyramidal signs. MSA affects men and women equally with a mean age at onset of 56 years and a median survival of 10 years [1,2]. The incidence of MSA is about 3 per 100,000 per year (age range: 50 years or older) and the prevalence is 4.4 per 100,000 [3,4]. Clinical presentation is influenced by ethnic background, with parkinsonism more commonly seen in Caucasians and cerebellar features more frequently observed in the Japanese population [5,6].
Histopathologically, MSA patients have characteristic oligodendroglial cytoplasmic inclusions (GCIs) made up of misfolded, hyperphosphorylated α-synuclein filaments [7,8]. This neuropathological hallmark classifies MSA under the rubric of synucleinopathies, a diverse group of neurodegenerative diseases characterized by abnormal deposition of misfolded α-synuclein [9]. GCI formation, neuronal loss, reactive astrocytic gliosis and microglia activation mainly affect the central autonomic, olivopontocerebellar and striatonigral structures, explaining the variable clinical presentations of patients suffering from this fatal condition [10]. There is increasing evidence suggesting that α-synuclein deposition occurs in a step-wide fashion [11]. Myelin-to-cytoplasm relocalization of p25α, a microtubule stabilizing protein, is one of the first events [12]; oligodendroglial swelling, α-synuclein oligomerization and fibrillogenesis follow this initial process [13]. Biochemical analyses suggest that some misfolded synuclein species are toxic and propagate to associated neurological pathways using a prion-like mechanism, which results in characteristic multi-system involvement [14]. A recent, controversial study even concluded that MSA is a prion disease [15]. This study was based on the observation that cells and mouse models carrying a pathogenic synuclein mutation can form synuclein aggregates when treated with brain homogenate from MSA patients. The main critique regarding this study is that no transmission from an affected individual to a healthy recipient was demonstrated, and such transmissibility is generally considered a defining feature of prion diseases. Furthermore, there are also no epidemiologic data suggesting that MSA is a prion disease. It is curious though that cells carrying pathogenic synuclein mutations were prone to develop aggregates, which could indicate that a genetic predisposition could play a role in the etiopathogenesis, perhaps by establishing a cellular milieu that facilitates aggregation. The exact process by which aggregated synuclein subsequently leads to neurodegeneration, however, is incompletely understood.
Rare pathology-proven MSA families following either autosomal recessive or autosomal dominant patterns have been described, indicating a genetic contribution to at least a subset of patients [16,17,18,19,20]. Interestingly, parkinsonism is more common in relatives of MSA patients. This observation also supports the hypothesis of a genetic predisposition to the pathogenesis of MSA [21,22].
Recessive mutations in COQ2 were recently reported in Japanese multiplex MSA families and heterozygosity for the common V393A polymorphism in the same gene was nominated as a susceptibility variant for sporadic cases [17]. Nevertheless, the role of COQ2 variants in the pathogenesis of MSA is a topic of debate in the field as independent replications in Caucasians and South Korean cohorts failed to demonstrate association with disease [23,24,25,26]. Furthermore, loss-of-function mutations in COQ2 had been previously shown to cause primary co-enzyme Q10 deficiency, a severe multisystem infantile syndrome characterized by variable presentations of encephalopathy, epilepsy, psychomotor regression, retinopathy, myopathy and nephropathy [27]. It remains possible that the described variants in the original families represent spurious associations.
The neuropathological characteristics in MSA have led to an intense search for mutations in the SNCA gene, which codes for α-synuclein. Further impetus to this search came from the observation that missense mutations, triplications and duplications in SNCA are a known, rare cause of autosomal dominant PD that occasionally presents with clinical and pathological features similar to MSA [28,29,30]. Candidate gene sequencing, expression and copy number studies in autopsy-confirmed MSA cases, however, have not demonstrated any mutations, expression level or copy number changes in SNCA [31,32,33,34,35,36].
Following a genome-wide association study in PD demonstrating significant association at the SNCA locus, we examined the most significant variants of this study in a large MSA cohort and matched controls [37,38]. Significant associations of SNCA variants with risk for developing MSA were found and these results were subsequently replicated in Caucasian cohorts [39,40]. Similar associations were not detected in Asian populations [41,42,43]. These data support the notion that common variability at the SNCA locus is a risk factor for sporadic MSA in Caucasians, but population-dependent heterogeneity likely explains that lack of association in Asian populations. From a practical perspective, consideration for SNCA screening in patients with a clinical diagnosis of MSA should only be given if a strong, autosomal dominant family history of PD, DLB or MSA is present.
Numerous additional candidate genes, most notably MAPT, PRNP, genes linked to spinocerebellar ataxias (SCA), genes linked to PD or DLB, and genes involved in neuroinflammation have been explored, with mixed results [44]. The APOE ε4 allele, which is a known significant risk factor for Alzheimer dementia (AD) and for DLB, is not associated with MSA [45]. Positive results indicating association with disease were reported for the following genes: GBA, LRRK2, MAPT, SCA3, SLC1A4, SQST1, EIF4EBP, IL-1a, IL-1b, TNF, IL-8, ICAM1, ACT, ADH1C, SHC2 [46,47,48,49,50,51,52,53,54,55,56,57]. However, many of the studies were based on small sample sizes, yielded conflicting results in replication attempts or lack independent replications, raising the concern of false positive results. These reports should therefore be interpreted with caution until additional replication studies are performed.
A major challenge in the search for genes underlying MSA is the difficulty in establishing an accurate clinical diagnosis. A wide range of diseases can clinically mimic the MSA phenotype (Table 1) [28,30,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102], and neuropathological series have shown that the accuracy of a clinical MSA diagnosis can vary widely (from 25% to 86%) [103,104,105]. Thus, there is still a critical need for identifying biomarkers, such as genetics, molecular signatures or distinct neuroimaging modalities, which will improve the clinical diagnostic accuracy. This is particularly true for the cerebellar MSA variant that can be indistinguishable from spinocerebellar ataxia syndromes, especially in an early disease stage [61,62,64,65,66,106]. Further, patients with coding or copy number mutations in SNCA or patients carrying a GBA mutation can occasionally present with an MSA-like phenotype [28,30,72,76,77]. Patients with pathologic hexanucleotide repeat expansions in C9orf72, a gene linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), can rarely demonstrate clinical and neuroimaging features indistinguishable from MSA [58]. Ideally, a detailed family history should point the clinician towards a hereditary condition. However, lack of family history cannot be taken as definite proof against a genetic predisposition/causation, given various potential genetic events, such as reduced penetrance, the occurrence of spontaneous mutations, phenotype variability, death of relatives prior to symptom onset or non-paternity.
Aside from hereditary disorders that can present with MSA-like features, consideration should also be given to secondary, potentially treatable causes of atypical parkinsonism, such as exposure to neuroleptic medications, cerebrovascular insults, endocrine dysfunction (e.g., hypothyroidism, hyperparathyroidism), infectious diseases (e.g., Lyme disease), autoimmune conditions (e.g., Hashimoto disease, celiac disease), toxic syndromes (e.g., manganism, superficial siderosis), neoplastic processes (e.g., gliomatosis cerebri) or paraneoplastic syndromes (e.g., anti-Ma2 antibody) (Figure 1) [107,108,109,110,111,112,113].
Figure 1. Schematic illustration of parkinsonism syndromes. Gene names are shown in italic font. Solid arrows indicate major classification groups; dashed arrow points out a possible interplay between primary and secondary parkinsonism. Abbreviations: PD, Parkinson disease; ALS/FTD, amytrophic lateral sclerosis/frontotemporal dementia; HIV, human immunodefiency virus; CO, carbon monoxide; MPTP, 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine.
Figure 1. Schematic illustration of parkinsonism syndromes. Gene names are shown in italic font. Solid arrows indicate major classification groups; dashed arrow points out a possible interplay between primary and secondary parkinsonism. Abbreviations: PD, Parkinson disease; ALS/FTD, amytrophic lateral sclerosis/frontotemporal dementia; HIV, human immunodefiency virus; CO, carbon monoxide; MPTP, 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine.
Ijms 16 24629 g001
Table 1. Heredodegenerative disorders that can clinically mimic sporadic atypical parkinsonism syndromes.
Table 1. Heredodegenerative disorders that can clinically mimic sporadic atypical parkinsonism syndromes.
Typical PresentationGeneChr.InheritanceMutation TypeMimic Syndrome(s)Ref.
ALS-FTDC9orf729p21.2ADRepeat ExpansionMSA, PSP, CBS[58,59]
FAFXN9q21.11ARRepeat ExpansionMSA[60]
SCA 2ATXN212q24.1ADRepeat ExpansionMSA[62]
SCA 3ATXN314q21ADRepeat ExpansionMSA[61]
SCA 6CACNA1A19p13ADRepeat ExpansionMSA[60]
SCA 7ATXN73p21.1-p12ADRepeat ExpansionMSA[106]
SCA 8ATXN813q21ADRepeat ExpansionMSA, CBS[64]
SCA 17TBP6q27ADRepeat ExpansionMSA, PSP[65]
SCA 23PDYN20p13ADSequence MutationMSA[66]
FXTASFMR1Xq27.3XRRepeat ExpansionMSA[67]
ALDABCD1Xq28XRSequence Mutation, DeletionMSA[102]
PDSNCA4q21ADSequence Mutation, Triplication/DuplicationMSA, DLB[28,30,68,69]
PDLRRK212q12ADSequence MutationPSP, CBS[73,74]
Gaucher disease/PDGBA1q21AR/ADSequence Mutation, Deletion, InsertionPSP, CBS, LBD[76,77]
Perry syndromeDCTN12p13ADSequence MutationMSA, CBS, PSP[78,79]
CTXCYP27A12q35ARSequence Mutation, Deletion, DuplicationMSA, PSP, CBS[80,81]
MitochondriopathyPOLG115q25AR/ADSequence MutationMSA[82]
ADPSEN114q24.3ADSequence Mutation, DeletionDLB, CBS[83,84]
ADPSEN21q42.13ADSequence MutationDLB[85]
ADAPP21q21.3ADSequence Mutation, DuplicationDLB[86]
KRSATP13A21p36ARSequence MutationPSP[87]
FTDGRN17q21.32ADSequence MutationPSP, CBS[88,89,90]
FTDTARDBP1p36.22ADSequence MutationPSP, CBS[91]
FTDFUS16p11.2ADSequence MutationPSP, CBS[92]
CADASILNOTCH319p13.2-p13.1ADSequence MutationPSP[94]
NPCNPC1; NPC218q11.2; 14q24.3ARSequence MutationPSP[95,96]
FTDMAPT17q21.1ADSequence MutationPSP, CBS[97,98]
Familial prion diseasePRNP20p13ADSequence MutationPSP, CBS[99,100]
HDLSCSF1R5q32ADSequence MutationCBS[101]
Abbreviations: ABCD1, encoding ATP-binding cassette subfamily D member 1; AD, Alzheimer dementia or autosomal dominant; ALD, adrenoleukodystrophy; ALS-FTD, amyotrophic lateral sclerosis/frontotemporal dementia; APP, encoding amyloid beta precursor protein; AR, autosomal recessive; ATP13A2, encoding ATPase type 13A2; ATXN2, encoding ataxin 2; ATXN3, encoding ataxin 3; ATXN7, encoding ataxin 7; ATXN8, encoding ataxin 8; CACNA1A, encoding voltage-dependent calcium channel alpha 1A subunit; CADASIL, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukencephalopathy; CBS, corticobasal syndrome; Chr., chromosome; CSF1R, encoding colony stimulation factor 1 receptor; CTX, cerebrotendinous xanthomatosis; CYP27A1, encoding cytochrome P450 family 27 subfamily A polypeptide 1; C9orf72, encoding chromosome 9 open reading frame 72; DCTN1, encoding dynactin 1; FA, Friedreich ataxia; FMR1, encoding fragile X mental retardation 1; FTD, frontotemporal dementia; FUS, encoding FUS RNA binding protein; FXN, encoding frataxin; FXTAS, fragile X tremor ataxia syndrome; GBA, encoding glucocerebrosidase β; GRN, encoding granulin; HDLS, hereditary diffuse leukencephalopathy with spheroids; KRS, Kufor Rakeb syndrome; DLB, dementia with Lewy bodies; LRRK2, encoding leucine-rich repeat kinase 2; MAPT, encoding microtubule-associated protein tau; MSA, multiple system atrophy; NOTCH3, encoding notch 3; NPC, Niemann-Pick type C; NPC1, encoding Niemann-Pick type C1; NPC2, encoding Niemann-Pick type C2; PD, Parkinson disease; PDYN, encoding prodynorphin; POLG1, encoding polymerase γ; PRNP, encoding prion protein; PSEN1, encoding presenilin 1; PSEN2, encoding presenilin 2; PSP, progressive supranuclear palsy; Ref., references; SCA, spinocerebellar ataxia; SNCA, encoding α-synuclein; TARDBP, encoding TAR DNA binding protein; TBP, encoding TATA box binding protein; XR, X-linked recessive.

3. Dementia with Lewy Bodies

DLB is the second most common neurodegenerative dementia in the elderly population, accounting for about 20% of all dementias in autopsy series [114]. The condition is characterized by variable combinations of progressive cognitive decline, parkinsonism, fluctuating mental status, neuroleptic sensitivity and visual hallucinations [115]. The term Lewy body dementia is used as an umbrella term to embrace two closely related clinical entities, namely dementia with Lewy bodies (DLB) and Parkinson disease dementia (PDD). According to international consensus criteria, the diagnosis of PDD is established if motor symptoms manifest more than a year prior to onset of cognitive dysfunction. In the case of cognitive features preceding motor symptoms or cognitive symptoms occurring within one year of motor problems, the diagnosis of DLB is given [116]. There are ongoing debates whether splitting Lewy body dementia into DLB and PDD is practical, particularly in light of similar pathological findings in these two patient populations, as well as recall bias and referral bias influencing the choice of terms used.
As in PD, the histopathology in DLB patients shows Lewy bodies and Lewy neurites comprised of aggregated α-synuclein. In contrast to PD though, α-synuclein in DLB patients is more widespread with neocortical, limbic and brainstem involvement [117]. Pathological features of AD in the form of neurofibrillary tangles and amyloid plaques are observed in the majority of patients, placing DLB along a spectrum between PD and AD. Neuronal and synaptic loss is pronounced in the substantia nigra, amygdala, locus coeruleus, nucleus basalis Meynert, dorsal nucleus of vagus and nucleus ambiguus, resulting is multiple neurotransmitter abnormalities involved in motor processing, cognition and autonomic nervous system control [117,118].
Although DLB is generally considered a sporadic disease of late adulthood, rare familial occurrences do suggest a genetic predisposition in at least a subset of cases [119,120,121,122,123]. Further evidence in support of a heritable component is derived from observations in PD, which can rarely present in a familial, autosomal dominant fashion due to mutations in SNCA (duplication, multiplication or missense mutations) [28,30,68,69,70,71,72,124]. Affected individuals occasionally present with clinicopathological features most consistent with DLB, although significant phenotypic and pathological heterogeneity within these families exists. Another important finding is the observation that mutations in GBA, encoding for the lysosomal enzyme glucocerebrosidase, significantly increase risk for PDD and for DLB [125]. This discovery was again driven by observations coming from the PD field, where GBA mutations have been firmly established as a risk gene. Taken together, these intriguing observations in SNCA families and GBA mutation carriers support the notion of shared pathogenic mechanisms leading to these diverse synucleinopathies.
It is important to highlight that the APOE ε4 allele is a significant risk factor for DLB [126,127]. APOE is the strongest known risk gene for sporadic AD, but interestingly it is not associated with risk for PD in a large multicenter GWAS [128]. Multiple other candidate genes implicated in the pathogenesis of neurodegeneration have been explored. Mutations in APP, a gene linked to rare familial early-onset AD, have been shown to occasionally present with clinical and pathological features consistent with DLB [86,129]. Along the same lines, mutations in the rare familial AD genes PSEN1 and PSEN2 can be associated with Lewy body pathology in addition to typical AD changes [83,130,131]. These genetic observations, together with overlapping clinicopathological features firmly place DLB along a spectrum between PD and AD [132].

4. Progressive Supranuclear Palsy

Progressive supranuclear palsy is a neurodegenerative syndrome of unknown etiology clinically characterized by variable combinations of gait impairment, early postural instability, axial rigidity, bradykinesia, ataxia, slow vertical saccades progressing to supranuclear vertical ophthalmoplegia, pseudobulbar palsy and frontal executive dysfunction [133,134]. The age-adjusted prevalence of PSP is estimated to be about 6.4 per 100,000, making it the second most common neurodegenerative form of parkinsonism after PD [135]. PSP typically manifests in the seventh decade of life, and it affects men and women equally. Progression is gradual with a median survival time of 5.6 years [136].
Pathologically, PSP patients have abnormal neuronal and glial neurofibrillary tangles and neuropil threads, which are composed of aggregated, hyperphosphorylated microtubule associated protein tau, predominantly in its four-repeat isoform [137]. Tau protein inclusions are a hallmark of a diverse group of neurologic conditions, commonly referred to as tauopathies, including AD, PSP, CBD, a type of frontotemporal dementia, traumatic encephalopathy, post-encephalitis parkinsonism and parkinsonism-dementia complex of Guam. Brain areas that are most affected in PSP are brainstem, diencephalon and basal ganglia [138]. Microscopically, characteristic tufted astrocytes as well as oligodendroglial coiled bodies are found [139]. Swollen, “ballooned” neurons can be found in PSP, predominantly in paralimbic areas, but they are sparse compared to CBD [140]. Atrophy of above mentioned brain regions leads to multiple neurotransmitter abnormalities, involving the dopaminergic, GABAergic, cholinergic, and serotoninergic systems [141,142,143,144]. Mitochondrial dysfunction results in oxidative stress, which promotes the formation of tau filaments, but the exact mechanism leading to neuronal cell death remains unclear [145].
PSP occurs typically as a sporadic condition, but rare autosomal dominant cases have been documented, predominantly due to mutations in MAPT [97,146,147,148]. An additional locus for familial, autosomal dominant PSP has been nominated on 1q31.1, but independent replication has not yet been performed to confirm this finding [149]. Genetic analysis in sporadic PSP cases has yielded exciting insights into the pathogenesis. One of the most striking findings is a strong, reproducible disease association of the H1 haplotype surrounding MAPT, the gene that codes for microtubule associated protein tau [150,151,152]. This particular haplotype is made up of a large inversion polymorphism, which is common in the general Caucasian population (78% of chromosomes), but it is significantly overrepresented in PSP patients (~95% of chromosomes) [152]. Although the H1 haplotype significantly increases risk for disease, carrier status is not correlated with age at onset, disease severity or survival [153]. MAPT transcripts normally undergo alternative splicing, resulting in several isoforms, of which those containing exon 10 give rise to four-repeat tau. In contrast to normal human brain, in which four-repeat and three-repeat tau are expressed at similar levels, the balance is shifted towards the more aggregation-prone four-repeat isoforms in PSP patients [154,155]. Interestingly, the H1 haplotype has been shown to increase transcription and exon 10 splicing [38,156]. It is therefore possible that increased risk for PSP in H1 haplotype carriers is mediated by a shift towards four-repeat tau.
A large, multicenter genome-wide association study (GWAS) in PSP confirmed the role of H1 MAPT haplotype as a major risk factor; in addition several new risk loci were identified: STX6 (coding for syntaxin 6), EIF2AK3 (encoding PERK) and MOBP (coding for myelin-associated oligodendrocyte basic protein) on chromosomes 1, 2 and 3 respectively [152]. Sequencing of these genes in a subset of pathologically confirmed cases from this study found no coding changes. This finding could indicate that disease association is due to epigenetic drivers surrounding this locus. Interestingly, the risk allele in STX6 was found to be a strong expression quantitative trait locus, lowering expression of syntaxin 6 in the white matter [157]. Syntaxin 6 is a member of the SNARE protein family that is involved in intra-cellular membrane trafficking. It is localized to the trans-Golgi network and endosomal structures, where it is thought to play a role in endosomal membrane fusion events [158]. Impaired intracellular trafficking of misfolded tau protein, among other pathogenic events, may be a mechanism leading to abnormal tau aggregation. This intriguing hypothesis still has to be further investigated.
Candidate gene approaches have implicated a role of VEGF, NAT2 and Park2 in the pathogenesis of PSP. However, none of these loci were associated with disease in a large GWAS, suggesting that these associations either escaped detection due to small effect size or the initial results were spurious in nature [152,159,160,161]. A risk locus on 11p12-11, containing the genes DDB2 and ACP2, has been suggested in a pooled GWAS including only 288 pathologically confirmed cases and 344 matched controls, but this locus was not detected in a larger GWAS [152,162]. In the absence of robust replications these loci should therefore be interpreted as false positives.
Numerous genes implicated in variable neurodegenerative diseases, such as PD, ALS, FTD and other atypical parkinsonism syndromes, can mimic the PSP phenotype (Table 1) [59,65,73,75,76,77,78,79,80,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101]. With the exception of certain mutations in MAPT, which can be a rare cause of familial PSP, candidate screening studies in some of these mimic genes have been disappointing [59,148,163,164,165,166]. Of note, the APOE ε4 allele, which plays a significant role in AD and DLB, is not associated with PSP [167,168,169]. APOE ε4 carrier status also has no influence on age at onset, disease duration or age at death [170,171].
The clinical presentation of PSP can be variable, explaining the difficulties to accurately diagnose PSP patients, particularly those with uncommon features. Atypical features that are well documented include non-fluent primary progressive aphasia, cortical sensory impairment or FTD. Further, sporadic neurodegenerative diseases, such as PD, AD, MSA, Creutzfeldt-Jakob disease (CJD), ALS and CBD, can rarely also present with PSP-like features and result in a false diagnosis [172,173]. Along the same lines, secondary causes mimicking PSP (e.g., vascular dementia, neurosyphilis, Whipple’s disease, paraneoplastic syndrome, post-encephalitic disease) need consideration when clinically evaluating patients with presumed PSP [174,175,176,177,178,179].

5. Corticobasal Degeneration

CBD is a tauopathy that shares molecular and clinical features with PSP. CBD is a sporadic disease of late adulthood that typically presents with variable combinations of progressive, asymmetric parkinsonism, dystonia, apraxia, myoclonus, cortical signs and cognitive impairment. It is important to highlight the difference between the terms corticobasal syndrome (CBS), which refers to this classical clinical presentation, and corticobasal degeneration (CBD), a term used by pathologists to describe this tauopathy based on characteristic histopathological features. The caveat with clinically diagnosed patients is that a heterogeneous group of other neurodegenerative diseases can also occasionally cause this presentation. These include AD, PSP, FTD, DLB and rarely CJD or spinocerebellar ataxia [180,181,182,183,184,185]. Moreover, secondary causes for CBS are well described (including vascular dementia, neurosyphilis, Fahr’s disease, progressive multifocal leukencephalopathy and antiphospholipid syndrome) and need thoughtful consideration during clinical workup of a patient [186,187,188,189,190,191]. Heterogeneity in the clinical appearance of the larger CBD group has also been described, with variable symptoms such as progressive nonfluent aphasia, behavioral-variant FTD, posterior cortical atrophy and PSP-like presentations [192]. Not surprisingly, this complex clinical heterogeneity results in a low clinical accuracy to diagnose CBD patients effectively (Table 1) [193]. In fact, autopsy studies have shown that only about half of patients presenting with CBS have CBD [180,192,194].
Epidemiologic data are limited, but they show that the incidence of CBD is less than 1 per 100,000 people per year and the prevalence is 6 per 100,000. These numbers are likely to be overestimates as patients could present with CBS due to other etiologies [195,196,197]. The mean age at disease onset is 64 years with an average survival time of 7 years (range 2–12.5 years) [198]. No clear gender bias has been observed.
Neuropathologically, CBD is characterized by focal, sometimes asymmetric, cortical atrophy that is most marked in parasagittal regions, commonly affecting the dorsal prefrontal and peri-Rolandic regions, striatum and brainstem [140,192]. The distribution can be more generalized in cases with dementia and progressive aphasia, affecting inferior frontal and temporal lobes. Histopathologically, spongiosis, tau-positive astrocytic plaques and extensive thread-like lesions are found in cortical, basal ganglia and subcortical regions, as well as swollen “ballooned” neurons. Coiled bodies, which are tau-positive oligodendroglial lesions more commonly found in PSP, are also noted [140].
Due to shared clinical, genetic and biochemical characteristics between PSP and CBD, it remains an issue of debate whether these two disease entities are part of a spectrum or are genuinely separate conditions. Similar to PSP, patients with CBD are more likely to carry the H1 MAPT haplotype [199]. Both conditions are characterized by tau-positive inclusions consisting predominantly of hyperphosphorylated four-repeat isoforms; however, proteolytic processing appears to be different between these two diseases. Specifically, detergent-insoluble cleaved tau from CBD brain tissue migrates at two bands of approximately 37 kDa, as opposed to a single band observed in brain extracts from PSP patients, which migrates as a 33 kDa band [200]. The explanation behind the various species of tau degradation products remains unclear.
Familial occurrences of CBD have been documented [201,202,203,204,205]. In rare instances, coding mutations in MAPT have been found in some of these pathologically confirmed cases [205,206,207], but for most of the familial CBD cases the underlying genetic defect has not yet been established. An exome sequencing study in a CBD family with two affected cousins described coding variants in AGBL5, FANCL, PLEKHB2, MRS2 and ZHX2 in both patients. In-silico analyses suggested that the variants in AGBL5, FANCL and PLEKHB2 are benign, whereas mutations in MRS2 and ZHX 2 are predicted to be damaging to the protein function [202]. The significance of this observation is questionable, particularly given the small size of this family and the fact that these mutations are also reported in the Exome Variant Server, indicating that they could just be rare polymorphisms in the population. No independent study has yet investigated these genes.
Data from a recent small-sized GWAS support the notion of a genetic contribution to the pathogenesis of the more common sporadic form of CBD [208]. Not surprisingly, this study confirmed association with MAPT. In addition, a significant signal was noted in an intronic SNP within the non-coding RNA lnc-KIF13B-1 on 8p12. This lnc RNA regulates transcription of KIF13B, a microtubule based motor protein involved in vesicular trafficking along microtubules, axon extension and caveolin-dependent endocytosis [209,210,211]. Additional loci were suggested on 2p22 and 3p22, but these signals did not meet genome-wide significance. It is of interest though that the signal on 3p22 is at the MOBP locus, a gene that has been previously linked to PSP [152]. This observation supports the notion that PSP and CBD are closely related on a molecular level. EIF2AK3 and STX6, which are two other loci from a previous PSP GWAS, were not found to be associated with CBD. While these findings are promising, independent replication is required to confirm these observations.

6. Conclusions and Future Directions

Advances in modern genetics have provided us with unprecedented opportunities to explore the molecular genetics involved in diverse neurodegenerative diseases. As the genomic revolution unfolds, novel genetic risk factors implicated in the pathogenesis of atypical parkinsonism syndromes emerge, providing us with crucial insights into intricate relationships among the complex spectrum of neurodegenerative diseases. In the near future, it is hoped that these molecular genetic signatures will guide clinicians in establishing an accurate clinical diagnosis, inform clinical decision-making, allow us to classify disease based on molecular deficits and highlight targets for rational therapeutic interventions.
In the near future, the major focus of genomic research in atypical parkinsonism is to further dissect pathways implicated in the pathophysiology, particularly those shared by several neurodegenerative diseases. Our current, although limited, understanding of the genetics of atypical parkinsonism already highlights common overlapping themes, such as a propensity to form protein aggregates, impairment in intracellular trafficking and dysfunctional protein degradation. These commonalities support the notion that atypical parkinsonism syndromes are part of a disease spectrum, and it is hoped that therapeutic strategies targeted against these shared pathways could be applicable to a wider range of neurodegenerative diseases.

Acknowledgments

Sonja W. Scholz reports that this work was supported (in part) by the Intramural Research Program of the U.S. National Institutes of Health, National Institute of Neurological Disorders and Stroke. Scholz received a R25 career development grant by the National Institute of Neurological Disorders and Stroke (grant number: R25 NS065729). Jose Bras is supported by an Alzheimer’s Society Research Fellowship.

Author Contributions

Sonja W. Scholz wrote the initial draft of the manuscript. Jose Bras edited and critically reviewed the paper.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Wenning, G.K.; Geser, F.; Krismer, F.; Seppi, K.; Duerr, S.; Boesch, S.; Kollensperger, M.; Goebel, G.; Pfeiffer, K.P.; Barone, P.; et al. The natural history of multiple system atrophy: A prospective European cohort study. Lancet Neurol. 2013, 12, 264–274. [Google Scholar] [CrossRef]
  2. Low, P.A.; Reich, S.G.; Jankovic, J.; Shults, C.W.; Stern, M.B.; Novak, P.; Tanner, C.M.; Gilman, S.; Marshall, F.J.; Wooten, F.; et al. Natural history of multiple system atrophy in the USA: A prospective cohort study. Lancet Neurol. 2015, 14, 710–719. [Google Scholar] [CrossRef]
  3. Bower, J.H.; Maraganore, D.M.; McDonnell, S.K.; Rocca, W.A. Incidence of progressive supranuclear palsy and multiple system atrophy in Olmsted County, Minnesota, 1976 to 1990. Neurology 1997, 49, 1284–1288. [Google Scholar] [CrossRef] [PubMed]
  4. Schrag, A.; Wenning, G.K.; Quinn, N.; Ben-Shlomo, Y. Survival in multiple system atrophy. Mov. Disord. 2008, 23, 294–296. [Google Scholar] [CrossRef] [PubMed]
  5. Watanabe, H.; Saito, Y.; Terao, S.; Ando, T.; Kachi, T.; Mukai, E.; Aiba, I.; Abe, Y.; Tamakoshi, A.; Doyu, M.; et al. Progression and prognosis in multiple system atrophy: An analysis of 230 Japanese patients. Brain 2002, 125, 1070–1083. [Google Scholar] [CrossRef] [PubMed]
  6. Gilman, S.; May, S.J.; Shults, C.W.; Tanner, C.M.; Kukull, W.; Lee, V.M.; Masliah, E.; Low, P.; Sandroni, P.; Trojanowski, J.Q.; et al. The North American multiple system atrophy study group. J. Neural Transm. 2005, 112, 1687–1694. [Google Scholar] [CrossRef] [PubMed]
  7. Spillantini, M.G.; Crowther, R.A.; Jakes, R.; Cairns, N.J.; Lantos, P.L.; Goedert, M. Filamentous α-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci. Lett. 1998, 251, 205–208. [Google Scholar] [CrossRef]
  8. Papp, M.I.; Kahn, J.E.; Lantos, P.L. Glial cytoplasmic inclusions in the CNS of patients with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy and Shy-drager syndrome). J. Neurol. Sci. 1989, 94, 79–100. [Google Scholar] [CrossRef]
  9. Jellinger, K.A. Neuropathological spectrum of synucleinopathies. Mov. Disord. 2003, 18, S2–S12. [Google Scholar] [CrossRef] [PubMed]
  10. Jellinger, K.A. Neuropathology of multiple system atrophy: New thoughts about pathogenesis. Mov. Disord. 2014, 29, 1720–1741. [Google Scholar] [CrossRef] [PubMed]
  11. Fanciulli, A.; Wenning, G.K. Multiple-system atrophy. N. Engl. J. Med. 2015, 372, 249–263. [Google Scholar] [PubMed]
  12. Song, Y.J.; Lundvig, D.M.; Huang, Y.; Gai, W.P.; Blumbergs, P.C.; Hojrup, P.; Otzen, D.; Halliday, G.M.; Jensen, P.H. P25α relocalizes in oligodendroglia from myelin to cytoplasmic inclusions in multiple system atrophy. Am. J. Pathol. 2007, 171, 1291–1303. [Google Scholar] [CrossRef] [PubMed]
  13. Lashuel, H.A.; Overk, C.R.; Oueslati, A.; Masliah, E. The many faces of α-synuclein: From structure and toxicity to therapeutic target. Nat. Rev. Neurosci. 2013, 14, 38–48. [Google Scholar] [CrossRef] [PubMed]
  14. Watts, J.C.; Giles, K.; Oehler, A.; Middleton, L.; Dexter, D.T.; Gentleman, S.M.; DeArmond, S.J.; Prusiner, S.B. Transmission of multiple system atrophy prions to transgenic mice. Proc. Natl. Acad. Sci. USA 2013, 110, 19555–19560. [Google Scholar] [CrossRef] [PubMed]
  15. Prusiner, S.B.; Woerman, A.L.; Mordes, D.A.; Watts, J.C.; Rampersaud, R.; Berry, D.B.; Patel, S.; Oehler, A.; Lowe, J.K.; Kravitz, S.N.; et al. Evidence for alpha-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc. Natl. Acad. Sci. USA 2015, 112, E5308–E5317. [Google Scholar] [CrossRef] [PubMed]
  16. Itoh, K.; Kasai, T.; Tsuji, Y.; Saito, K.; Mizuta, I.; Harada, Y.; Sudoh, S.; Mizuno, T.; Nakagawa, M.; Fushiki, S. Definite familial multiple system atrophy with unknown genetics. Neuropathology 2014, 34, 309–313. [Google Scholar] [CrossRef] [PubMed]
  17. Multiple-System Atrophy Research Collaboration. Mutations in COQ2 in familial and sporadic multiple-system atrophy. N. Engl. J. Med. 2013, 369, 233–244.
  18. Soma, H.; Yabe, I.; Takei, A.; Fujiki, N.; Yanagihara, T.; Sasaki, H. Heredity in multiple system atrophy. J. Neurol. Sci. 2006, 240, 107–110. [Google Scholar] [CrossRef] [PubMed]
  19. Wullner, U.; Schmitt, I.; Kammal, M.; Kretzschmar, H.A.; Neumann, M. Definite multiple system atrophy in a German family. J. Neurol. Neurosurg. Psychiatry 2009, 80, 449–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  20. Hara, K.; Momose, Y.; Tokiguchi, S.; Shimohata, M.; Terajima, K.; Onodera, O.; Kakita, A.; Yamada, M.; Takahashi, H.; Hirasawa, M.; et al. Multiplex families with multiple system atrophy. Arch. Neurol. 2007, 64, 545–551. [Google Scholar] [CrossRef] [PubMed]
  21. Vidal, J.S.; Vidailhet, M.; Derkinderen, P.; Tzourio, C.; Alperovitch, A. Familial aggregation in atypical Parkinson’s disease: A case control study in multiple system atrophy and progressive supranuclear palsy. J. Neurol. 2010, 257, 1388–1393. [Google Scholar] [CrossRef] [PubMed]
  22. Wenning, G.K.; Wagner, S.; Daniel, S.; Quinn, N.P. Multiple system atrophy: Sporadic or familial? Lancet 1993, 342, 681. [Google Scholar] [CrossRef]
  23. Jeon, B.S.; Farrer, M.J.; Bortnick, S.F. Korean Canadian Alliance on Parkinson’s Disease and Related Disorders (2014) Mutant COQ2 in multiple-system atrophy. N. Engl. J. Med. 2014, 371, 80. [Google Scholar] [CrossRef] [PubMed]
  24. Schottlaender, L.V.; Houlden, H. Multiple-System Atrophy (MSA) Brain Bank Collaboration (2014) Mutant COQ2 in multiple-system atrophy. N. Engl. J. Med. 2014, 371, 81. [Google Scholar] [CrossRef] [PubMed]
  25. Sharma, M.; Wenning, G.; Kruger, R.; European Multiple-System Atrophy Study Group (EMSA-SG). Mutant COQ2 in multiple-system atrophy. N. Engl. J. Med. 2014, 371, 80–81. [Google Scholar] [PubMed]
  26. Chen, Y.P.; Zhao, B.; Cao, B.; Song, W.; Guo, X.; Wei, Q.Q.; Yang, Y.; Yuan, L.X.; Shang, H.F. Mutation scanning of the COQ2 gene in ethnic Chinese patients with multiple-system atrophy. Neurobiol. Aging 2015, 36. [Google Scholar] [CrossRef] [PubMed]
  27. Quinzii, C.M.; Emmanuele, V.; Hirano, M. Clinical presentations of coenzyme q10 deficiency syndrome. Mol. Syndromol. 2014, 5, 141–146. [Google Scholar] [CrossRef] [PubMed]
  28. Fuchs, J.; Nilsson, C.; Kachergus, J.; Munz, M.; Larsson, E.M.; Schule, B.; Langston, J.W.; Middleton, F.A.; Ross, O.A.; Hulihan, M.; et al. Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication. Neurology 2007, 68, 916–922. [Google Scholar] [CrossRef] [PubMed]
  29. Gwinn-Hardy, K.; Mehta, N.D.; Farrer, M.; Maraganore, D.; Muenter, M.; Yen, S.H.; Hardy, J.; Dickson, D.W. Distinctive neuropathology revealed by α-synuclein antibodies in hereditary parkinsonism and dementia linked to chromosome 4p. Acta Neuropathol. 2000, 99, 663–672. [Google Scholar] [CrossRef] [PubMed]
  30. Singleton, A.B.; Farrer, M.; Johnson, J.; Singleton, A.; Hague, S.; Kachergus, J.; Hulihan, M.; Peuralinna, T.; Dutra, A.; Nussbaum, R.; et al. α-Synuclein locus triplication causes Parkinson’s disease. Science 2003, 302, 841. [Google Scholar] [CrossRef] [PubMed]
  31. Chen, R.; Forno, L.; di Monte, D.; Chan, P. Mutation screening in the α-synuclein gene in MSA. Parkinsonism Relat. Disord. 1999, 5, S28. [Google Scholar]
  32. Lincoln, S.J.; Ross, O.A.; Milkovic, N.M.; Dickson, D.W.; Rajput, A.; Robinson, C.A.; Papapetropoulos, S.; Mash, D.C.; Farrer, M.J. Quantitative PCR-based screening of α-synuclein multiplication in multiple system atrophy. Parkinsonism Relat. Disord. 2007, 13, 340–342. [Google Scholar] [CrossRef] [PubMed]
  33. Langerveld, A.J.; Mihalko, D.; de Long, C.; Walburn, J.; Ide, C.F. Gene expression changes in postmortem tissue from the rostral pons of multiple system atrophy patients. Mov. Disord. 2007, 22, 766–777. [Google Scholar] [CrossRef] [PubMed]
  34. Ozawa, T.; Okuizumi, K.; Ikeuchi, T.; Wakabayashi, K.; Takahashi, H.; Tsuji, S. Analysis of the expression level of α-synuclein mRNA using postmortem brain samples from pathologically confirmed cases of multiple system atrophy. Acta Neuropathol. 2001, 102, 188–190. [Google Scholar] [PubMed]
  35. Vogt, I.R.; Lees, A.J.; Evert, B.O.; Klockgether, T.; Bonin, M.; Wullner, U. Transcriptional changes in multiple system atrophy and Parkinson’s disease putamen. Exp. Neurol. 2006, 199, 465–478. [Google Scholar] [CrossRef] [PubMed]
  36. Asi, Y.T.; Simpson, J.E.; Heath, P.R.; Wharton, S.B.; Lees, A.J.; Revesz, T.; Houlden, H.; Holton, J.L. α-Synuclein mRNA expression in oligodendrocytes in MSA. Glia 2014, 62, 964–970. [Google Scholar] [CrossRef] [PubMed]
  37. Scholz, S.W.; Houlden, H.; Schulte, C.; Sharma, M.; Li, A.; Berg, D.; Melchers, A.; Paudel, R.; Gibbs, J.R.; Simon-Sanchez, J.; et al. SNCA variants are associated with increased risk for multiple system atrophy. Ann. Neurol. 2009, 65, 610–614. [Google Scholar] [CrossRef] [PubMed]
  38. Simon-Sanchez, J.; Schulte, C.; Bras, J.M.; Sharma, M.; Gibbs, J.R.; Berg, D.; Paisan-Ruiz, C.; Lichtner, P.; Scholz, S.W.; Hernandez, D.G.; et al. Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat. Genet. 2009, 41, 1308–1312. [Google Scholar] [CrossRef] [PubMed]
  39. Al-Chalabi, A.; Durr, A.; Wood, N.W.; Parkinson, M.H.; Camuzat, A.; Hulot, J.S.; Morrison, K.E.; Renton, A.; Sussmuth, S.D.; Landwehrmeyer, B.G.; et al. Genetic variants of the α-synuclein gene SNCA are associated with multiple system atrophy. PLoS ONE 2009, 4, e7114. [Google Scholar] [CrossRef] [PubMed]
  40. Ross, O.A.; Vilariño-Güell, C.; Wszolek, Z.K.; Farrer, M.J.; Dickson, D.W. Reply to: SNCA variants are associated with increased risk of multiple system atrophy. Ann. Neurol. 2010, 67, 414–415. [Google Scholar] [CrossRef] [PubMed]
  41. Guo, X.Y.; Chen, Y.P.; Song, W.; Zhao, B.; Cao, B.; Wei, Q.Q.; Ou, R.W.; Yang, Y.; Yuan, L.X.; Shang, H.F. SNCA variants rs2736990 and rs356220 as risk factors for Parkinson’s disease but not for amyotrophic lateral sclerosis and multiple system atrophy in a Chinese population. Neurobiol. Aging 2014, 35. [Google Scholar] [CrossRef] [PubMed]
  42. Sun, Z.; Xiang, X.; Tang, B.; Chen, Z.; Peng, H.; Xia, K.; Jiang, H. SNP rs11931074 of the SNCA gene may not be associated with multiple system atrophy in Chinese population. Int. J. Neurosci. 2015, 125, 612–615. [Google Scholar] [CrossRef] [PubMed]
  43. Yun, J.Y.; Lee, W.-W.; Lee, J.-Y.; Kim, H.J.; Park, S.S.; Jeon, B.S. SNCA variants and multiple system atrophy. Ann. Neurol. 2010, 67, 554–555. [Google Scholar] [CrossRef] [PubMed]
  44. Stemberger, S.; Scholz, S.W.; Singleton, A.B.; Wenning, G.K. Genetic players in multiple system atrophy: Unfolding the nature of the beast. Neurobiol. Aging 2011, 32, 1924.e5–1924.e14. [Google Scholar] [CrossRef] [PubMed]
  45. Cairns, N.J.; Atkinson, P.F.; Kovacs, T.; Lees, A.J.; Daniel, S.E.; Lantos, P.L. Apolipoprotein E ε4 allele frequency in patients with multiple system atrophy. Neurosci. Lett. 1997, 221, 161–164. [Google Scholar] [CrossRef]
  46. Combarros, O.; Infante, J.; Llorca, J.; Berciano, J. Interleukin-1A (−889) genetic polymorphism increases the risk of multiple system atrophy. Mov. Disord. 2003, 18, 1385–1386. [Google Scholar] [CrossRef]
  47. Furiya, Y.; Hirano, M.; Kurumatani, N.; Nakamuro, T.; Matsumura, R.; Futamura, N.; Ueno, S. α-1-Antichymotrypsin gene polymorphism and susceptibility to multiple system atrophy (MSA). Brain Res. Mol. Brain Res. 2005, 138, 178–181. [Google Scholar] [CrossRef] [PubMed]
  48. Heckman, M.G.; Schottlaender, L.; Soto-Ortolaza, A.I.; Diehl, N.N.; Rayaprolu, S.; Ogaki, K.; Fujioka, S.; Murray, M.E.; Cheshire, W.P.; Uitti, R.J.; et al. LRRK2 exonic variants and risk of multiple system atrophy. Neurology 2014, 83, 2256–2261. [Google Scholar] [CrossRef] [PubMed]
  49. Infante, J.; Llorca, J.; Berciano, J.; Combarros, O. Interleukin-8, intercellular adhesion molecule-1 and tumour necrosis factor-α gene polymorphisms and the risk for multiple system atrophy. J. Neurol. Sci. 2005, 228, 11–13. [Google Scholar] [CrossRef] [PubMed]
  50. Mitsui, J.; Matsukawa, T.; Sasaki, H.; Yabe, I.; Matsushima, M.; Durr, A.; Brice, A.; Takashima, H.; Kikuchi, A.; Aoki, M.; et al. Variants associated with gaucher disease in multiple system atrophy. Ann. Clin. Transl. Neurol. 2015, 2, 417–426. [Google Scholar] [CrossRef] [PubMed]
  51. Nirenberg, M.J.; Libien, J.; Vonsattel, J.P.; Fahn, S. Multiple system atrophy in a patient with the spinocerebellar ataxia 3 gene mutation. Mov. Disord. 2007, 22, 251–254. [Google Scholar] [CrossRef] [PubMed]
  52. Nishimura, M.; Kawakami, H.; Komure, O.; Maruyama, H.; Morino, H.; Izumi, Y.; Nakamura, S.; Kaji, R.; Kuno, S. Contribution of the interleukin-1β gene polymorphism in multiple system atrophy. Mov. Disord. 2002, 17, 808–811. [Google Scholar] [CrossRef] [PubMed]
  53. Nishimura, M.; Kuno, S.; Kaji, R.; Kawakami, H. Influence of a tumor necrosis factor gene polymorphism in Japanese patients with multiple system atrophy. Neurosci. Lett. 2005, 374, 218–221. [Google Scholar] [CrossRef] [PubMed]
  54. Sasaki, H.; Emi, M.; Iijima, H.; Ito, N.; Sato, H.; Yabe, I.; Kato, T.; Utsumi, J.; Matsubara, K. Copy number loss of (src homology 2 domain containing)-transforming protein 2 (SHC2) gene: Discordant loss in monozygotic twins and frequent loss in patients with multiple system atrophy. Mol. Brain 2011, 4, 24. [Google Scholar] [CrossRef] [PubMed]
  55. Schmitt, I.; Wullner, U.; Healy, D.G.; Wood, N.W.; Kolsch, H.; Heun, R. The ADH1C stop mutation in multiple system atrophy patients and healthy probands in the United Kingdom and Germany. Mov. Disord. 2006, 21, 2034. [Google Scholar] [CrossRef] [PubMed]
  56. Segarane, B.; Li, A.; Paudel, R.; Scholz, S.; Neumann, J.; Lees, A.; Revesz, T.; Hardy, J.; Mathias, C.J.; Wood, N.W.; et al. Glucocerebrosidase mutations in 108 neuropathologically confirmed cases of multiple system atrophy. Neurology 2009, 72, 1185–1186. [Google Scholar] [CrossRef] [PubMed]
  57. Soma, H.; Yabe, I.; Takei, A.; Fujiki, N.; Yanagihara, T.; Sasaki, H. Associations between multiple system atrophy and polymorphisms of SLC1A4, SQSTM1, and EIF4EBP1 genes. Mov. Disord. 2008, 23, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
  58. Goldman, J.S.; Quinzii, C.; Dunning-Broadbent, J.; Waters, C.; Mitsumoto, H.; Brannagan, T.H., 3rd; Cosentino, S.; Huey, E.D.; Nagy, P.; Kuo, S.H. Multiple system atrophy and amyotrophic lateral sclerosis in a family with hexanucleotide repeat expansions in C9orf72. JAMA Neurol. 2014, 71, 771–774. [Google Scholar] [CrossRef] [PubMed]
  59. Schottlaender, L.V.; Polke, J.M.; Ling, H.; MacDoanld, N.D.; Tucci, A.; Nanji, T.; Pittman, A.; de Silva, R.; Holton, J.L.; Revesz, T.; et al. The analysis of C9orf72 repeat expansions in a large series of clinically and pathologically diagnosed cases with atypical parkinsonism. Neurobiol. Aging 2015, 36. [Google Scholar] [CrossRef] [PubMed]
  60. Schols, L.; Szymanski, S.; Peters, S.; Przuntek, H.; Epplen, J.T.; Hardt, C.; Riess, O. Genetic background of apparently idiopathic sporadic cerebellar ataxia. Hum. Genet. 2000, 107, 132–137. [Google Scholar] [CrossRef] [PubMed]
  61. Wullner, U.; Schmitz-Hubsch, T.; Abele, M.; Antony, G.; Bauer, P.; Eggert, K. Features of probable multiple system atrophy patients identified among 4770 patients with parkinsonism enrolled in the multicentre registry of the German Competence Network on Parkinson’s disease. J. Neural Transm. 2007, 114, 1161–1165. [Google Scholar] [CrossRef] [PubMed]
  62. Lee, W.Y.; Jin, D.K.; Oh, M.R.; Lee, J.E.; Song, S.M.; Lee, E.A.; Kim, G.M.; Chung, J.S.; Lee, K.H. Frequency analysis and clinical characterization of spinocerebellar ataxia types 1, 2, 3, 6, and 7 in Korean patients. Arch. Neurol. 2003, 60, 858–863. [Google Scholar] [CrossRef] [PubMed]
  63. Davidzon, G.; Greene, P.; Mancuso, M.; Klos, K.J.; Ahlskog, J.E.; Hirano, M.; DiMauro, S. Early-onset familial parkinsonism due to POLG mutations. Ann. Neurol. 2006, 59, 859–862. [Google Scholar] [CrossRef] [PubMed]
  64. Munhoz, R.P.; Teive, H.A.; Raskin, S.; Werneck, L.C. CTA/CTG expansions at the SCA 8 locus in multiple system atrophy. Clin. Neurol. Neurosurg. 2009, 111, 208–210. [Google Scholar] [CrossRef] [PubMed]
  65. Lin, I.S.; Wu, R.M.; Lee-Chen, G.J.; Shan, D.E.; Gwinn-Hardy, K. The SCA17 phenotype can include features of MSA-C, PSP and cognitive impairment. Parkinsonism Relat. Disord. 2007, 13, 246–249. [Google Scholar] [CrossRef] [PubMed]
  66. Fawcett, K.; Mehrabian, M.; Liu, Y.T.; Hamed, S.; Elahi, E.; Revesz, T.; Koutsis, G.; Herscheson, J.; Schottlaender, L.; Wardle, M.; et al. The frequency of spinocerebellar ataxia type 23 in a UK population. J. Neurol. 2013, 260, 856–859. [Google Scholar] [CrossRef] [PubMed]
  67. Biancalana, V.; Toft, M.; Le Ber, I.; Tison, F.; Scherrer, E.; Thibodeau, S.; Mandel, J.L.; Brice, A.; Farrer, M.J.; Durr, A. FMR1 premutations associated with fragile X-associated tremor/ataxia syndrome in multiple system atrophy. Arch. Neurol. 2005, 62, 962–966. [Google Scholar] [CrossRef] [PubMed]
  68. Polymeropoulos, M.H.; Lavedan, C.; Leroy, E.; Ide, S.E.; Dehejia, A.; Dutra, A.; Pike, B.; Root, H.; Rubenstein, J.; Boyer, R.; et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 1997, 276, 2045–2047. [Google Scholar] [CrossRef] [PubMed]
  69. Kruger, R.; Kuhn, W.; Muller, T.; Woitalla, D.; Graeber, M.; Kosel, S.; Przuntek, H.; Epplen, J.T.; Schols, L.; Riess, O. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat. Genet. 1998, 18, 106–108. [Google Scholar] [CrossRef] [PubMed]
  70. Zarranz, J.J.; Alegre, J.; Gomez-Esteban, J.C.; Lezcano, E.; Ros, R.; Ampuero, I.; Vidal, L.; Hoenicka, J.; Rodriguez, O.; Atares, B.; et al. The new mutation, E46k, of α-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 2004, 55, 164–173. [Google Scholar] [CrossRef] [PubMed]
  71. Proukakis, C.; Dudzik, C.G.; Brier, T.; MacKay, D.S.; Cooper, J.M.; Millhauser, G.L.; Houlden, H.; Schapira, A.H. A novel alpha-synuclein missense mutation in Parkinson disease. Neurology 2013, 80, 1062–1064. [Google Scholar] [CrossRef] [PubMed]
  72. Kiely, A.P.; Asi, Y.T.; Kara, E.; Limousin, P.; Ling, H.; Lewis, P.; Proukakis, C.; Quinn, N.; Lees, A.J.; Hardy, J.; et al. α-Synucleinopathy associated with G51D SNCA mutation: A link between Parkinson’s disease and multiple system atrophy? Acta Neuropathol. 2013, 125, 753–769. [Google Scholar] [CrossRef] [PubMed]
  73. Spanaki, C.; Latsoudis, H.; Plaitakis, A. LRRK2 mutations on Crete: R1441H associated with PD evolving to PSP. Neurology 2006, 67, 1518–1519. [Google Scholar] [CrossRef] [PubMed]
  74. Chen-Plotkin, A.S.; Yuan, W.; Anderson, C.; McCarty Wood, E.; Hurtig, H.I.; Clark, C.M.; Miller, B.L.; Lee, V.M.; Trojanowski, J.Q.; Grossman, M.; et al. Corticobasal syndrome and primary progressive aphasia as manifestations of LRRK2 gene mutations. Neurology 2008, 70, 521–527. [Google Scholar] [CrossRef]
  75. Tayebi, N.; Callahan, M.; Madike, V.; Stubblefield, B.K.; Orvisky, E.; Krasnewich, D.; Fillano, J.J.; Sidransky, E. Gaucher disease and parkinsonism: A phenotypic and genotypic characterization. Mol. Genet. Metab. 2001, 73, 313–321. [Google Scholar] [CrossRef] [PubMed]
  76. Tayebi, N.; Walker, J.; Stubblefield, B.; Orvisky, E.; LaMarca, M.E.; Wong, K.; Rosenbaum, H.; Schiffmann, R.; Bembi, B.; Sidransky, E. Gaucher disease with parkinsonian manifestations: Does glucocerebrosidase deficiency contribute to a vulnerability to parkinsonism? Mol. Genet. Metab. 2003, 79, 104–109. [Google Scholar] [CrossRef]
  77. Goker-Alpan, O.; Schiffmann, R.; LaMarca, M.E.; Nussbaum, R.L.; McInerney-Leo, A.; Sidransky, E. Parkinsonism among gaucher disease carriers. J. Med. Genet. 2004, 41, 937–940. [Google Scholar] [CrossRef] [PubMed]
  78. Caroppo, P.; Le Ber, I.; Clot, F.; Rivaud-Pechoux, S.; Camuzat, A.; de Septenville, A.; Boutoleau-Bretonniere, C.; Mourlon, V.; Sauvee, M.; Lebouvier, T.; et al. DCTN1 mutation analysis in families with progressive supranuclear palsy-like phenotypes. JAMA Neurol. 2014, 71, 208–215. [Google Scholar] [CrossRef] [PubMed]
  79. Newsway, V.; Fish, M.; Rohrer, J.D.; Majounie, E.; Williams, N.; Hack, M.; Warren, J.D.; Morris, H.R. Perry syndrome due to the DCTN1 G71R mutation: A distinctive levodopa responsive disorder with behavioral syndrome, vertical gaze palsy, and respiratory failure. Mov. Disord. 2010, 25, 767–770. [Google Scholar] [CrossRef] [PubMed]
  80. Rubio-Agusti, I.; Kojovic, M.; Edwards, M.J.; Murphy, E.; Chandrashekar, H.S.; Lachmann, R.H.; Bhatia, K.P. Atypical parkinsonism and cerebrotendinous xanthomatosis: Report of a family with corticobasal syndrome and a literature review. Mov. Disord. 2012, 27, 1769–1774. [Google Scholar] [CrossRef] [PubMed]
  81. Federico, A.; Dotti, M.T.; Gallus, G.N. Cerebrotendinous xanthomatosis. In Genereviews(r); Pagon, R.A., Adam, M.P., Ardinger, H.H., Wallace, S.E., Amemiya, A., Bean, L.J.H., Bird, T.D., Dolan, C.R., Fong, C.T., Smith, R.J.H., et al., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
  82. Mehta, A.R.; Fox, S.H.; Tarnopolsky, M.; Yoon, G. Mitochondrial mimicry of multiple system atrophy of the cerebellar subtype. Mov. Disord. 2011, 26, 753–755. [Google Scholar] [CrossRef] [PubMed]
  83. Ishikawa, A.; Piao, Y.S.; Miyashita, A.; Kuwano, R.; Onodera, O.; Ohtake, H.; Suzuki, M.; Nishizawa, M.; Takahashi, H. A mutant PSEN1 causes dementia with Lewy bodies and variant Alzheimer’s disease. Ann. Neurol. 2005, 57, 429–434. [Google Scholar] [CrossRef] [PubMed]
  84. Larner, A.J.; Doran, M. Clinical phenotypic heterogeneity of Alzheimer’s disease associated with mutations of the presenilin-1 gene. J. Neurol. 2006, 253, 139–158. [Google Scholar] [CrossRef] [PubMed]
  85. Piscopo, P.; Marcon, G.; Piras, M.R.; Crestini, A.; Campeggi, L.M.; Deiana, E.; Cherchi, R.; Tanda, F.; Deplano, A.; Vanacore, N.; et al. A novel PSEN2 mutation associated with a peculiar phenotype. Neurology 2008, 70, 1549–1554. [Google Scholar] [CrossRef] [PubMed]
  86. Guyant-Marechal, I.; Berger, E.; Laquerriere, A.; Rovelet-Lecrux, A.; Viennet, G.; Frebourg, T.; Rumbach, L.; Campion, D.; Hannequin, D. Intrafamilial diversity of phenotype associated with APP duplication. Neurology 2008, 71, 1925–1926. [Google Scholar] [CrossRef] [PubMed]
  87. Williams, D.R.; Hadeed, A.; Al-Din, A.S.; Wreikat, A.L.; Lees, A.J. Kufor Rakeb Disease: Autosomal recessive, levodopa-responsive parkinsonism with pyramidal degeneration, supranuclear gaze palsy, and dementia. Mov. Disord. 2005, 20, 1264–1271. [Google Scholar] [CrossRef]
  88. Dopper, E.G.; Seelaar, H.; Chiu, W.Z.; de Koning, I.; van Minkelen, R.; Baker, M.C.; Rozemuller, A.J.; Rademakers, R.; van Swieten, J.C. Symmetrical corticobasal syndrome caused by a novel C.314dup progranulin mutation. J. Mol. Neurosci. 2011, 45, 354–358. [Google Scholar] [CrossRef] [PubMed]
  89. Tremolizzo, L.; Bertola, F.; Casati, G.; Piperno, A.; Ferrarese, C.; Appollonio, I. Progressive supranuclear palsy-like phenotype caused by progranulin p.Thr272fs mutation. Mov. Disord. 2011, 26, 1964–1966. [Google Scholar] [CrossRef] [PubMed]
  90. Benussi, L.; Ghidoni, R.; Pegoiani, E.; Moretti, D.V.; Zanetti, O.; Binetti, G. Progranulin Leu271LeufsX10 is one of the most common FTLD and CBS associated mutations worldwide. Neurobiol. Dis. 2009, 33, 379–385. [Google Scholar] [CrossRef] [PubMed]
  91. Cannas, A.; Borghero, G.; Floris, G.L.; Solla, P.; Chio, A.; Traynor, B.J.; Calvo, A.; Restagno, G.; Majounie, E.; Costantino, E.; et al. The p.A382T TARDBP gene mutation in sardinian patients affected by Parkinson’s disease and other degenerative parkinsonisms. Neurogenetics 2013, 14, 161–166. [Google Scholar] [CrossRef] [PubMed]
  92. Huey, E.D.; Ferrari, R.; Moreno, J.H.; Jensen, C.; Morris, C.M.; Potocnik, F.; Kalaria, R.N.; Tierney, M.; Wassermann, E.M.; Hardy, J.; et al. FUS and TDP43 genetic variability in FTD and CBS. Neurobiol. Aging 2012, 33. [Google Scholar] [CrossRef] [PubMed]
  93. Moreno, F.; Rabinovici, G.D.; Karydas, A.; Miller, Z.; Hsu, S.C.; Legati, A.; Fong, J.; Schonhaut, D.; Esselmann, H.; Watson, C.; et al. A novel mutation P112H in the TARDBP gene associated with frontotemporal lobar degeneration without motor neuron disease and abundant neuritic amyloid plaques. Acta Neuropathol. Commun. 2015, 3, 19. [Google Scholar] [CrossRef] [PubMed]
  94. Van Gerpen, J.A.; Ahlskog, J.E.; Petty, G.W. Progressive supranuclear palsy phenotype secondary to cadasil. Parkinsonism Relat. Disord. 2003, 9, 367–369. [Google Scholar] [CrossRef]
  95. Neville, B.G.; Lake, B.D.; Stephens, R.; Sanders, M.D. A neurovisceral storage disease with vertical supranuclear ophthalmoplegia, and its relationship to niemann-pick disease. A report of nine patients. Brain 1973, 96, 97–120. [Google Scholar] [CrossRef] [PubMed]
  96. Godeiro-Junior, C.; Inaoka, R.J.; Barbosa, M.R.; Silva, M.R.; Aguiar Pde, C.; Barsottini, O. Mutations in NPC1 in two Brazilian patients with Niemann-Pick disease type C and progressive supranuclear palsy-like presentation. Mov. Disord. 2006, 21, 2270–2272. [Google Scholar] [CrossRef] [PubMed]
  97. Morris, H.R.; Osaki, Y.; Holton, J.; Lees, A.J.; Wood, N.W.; Revesz, T.; Quinn, N. Tau exon 10 +16 mutation FTDP-17 presenting clinically as sporadic young onset PSP. Neurology 2003, 61, 102–104. [Google Scholar] [CrossRef] [PubMed]
  98. Tuite, P.J.; Clark, H.B.; Bergeron, C.; Bower, M.; St George-Hyslop, P.; Mateva, V.; Anderson, J.; Knopman, D.S. Clinical and pathologic evidence of corticobasal degeneration and progressive supranuclear palsy in familial tauopathy. Arch. Neurol. 2005, 62, 1453–1457. [Google Scholar] [CrossRef] [PubMed]
  99. Bertoni, J.M.; Label, L.S.; Sackelleres, J.C.; Hicks, S.P. Supranuclear gaze palsy in familial Creutzfeldt-Jakob disease. Arch. Neurol. 1983, 40, 618–622. [Google Scholar] [CrossRef] [PubMed]
  100. Lim, J.G.; Oh, E.; Park, S.; Kim, Y.S.; Lee, A. Familial Creutzfeldt-Jakob disease with M232R mutation presented with corticobasal syndrome. Neurol. Sci. 2014, 36, 1291–1293. [Google Scholar] [CrossRef] [PubMed]
  101. Guerreiro, R.; Kara, E.; Le Ber, I.; Bras, J.; Rohrer, J.D.; Taipa, R.; Lashley, T.; Dupuits, C.; Gurunlian, N.; Mochel, F.; et al. Genetic analysis of inherited leukodystrophies: Genotype-phenotype correlations in the CSF1R gene. JAMA Neurol. 2013, 70, 875–882. [Google Scholar] [CrossRef] [PubMed]
  102. Ogaki, K.; Koga, S.; Aoki, N.; Lin, W.; Suzuki, K.; Ross, O.A.; Dickson, D.W. Adult-onset cerebello-brainstem dominant form of X-linked adrenoleukodystrophy presenting as multiple system atrophy: Case report and literature review. Neuropathology 2015. [Google Scholar] [CrossRef] [PubMed]
  103. Hughes, A.J.; Daniel, S.E.; Ben-Shlomo, Y.; Lees, A.J. The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 2002, 125, 861–870. [Google Scholar] [CrossRef] [PubMed]
  104. Litvan, I.; Goetz, C.G.; Jankovic, J.; Wenning, G.K.; Booth, V.; Bartko, J.J.; McKee, A.; Jellinger, K.; Lai, E.C.; Brandel, J.P.; et al. What is the accuracy of the clinical diagnosis of multiple system atrophy? A clinicopathologic study. Arch. Neurol. 1997, 54, 937–944. [Google Scholar] [CrossRef] [PubMed]
  105. Osaki, Y.; Wenning, G.K.; Daniel, S.E.; Hughes, A.; Lees, A.J.; Mathias, C.J.; Quinn, N. Do published criteria improve clinical diagnostic accuracy in multiple system atrophy? Neurology 2002, 59, 1486–1491. [Google Scholar] [CrossRef] [PubMed]
  106. David, G.; Durr, A.; Stevanin, G.; Cancel, G.; Abbas, N.; Benomar, A.; Belal, S.; Lebre, A.S.; Abada-Bendib, M.; Grid, D.; et al. Molecular and clinical correlations in autosomal dominant cerebellar ataxia with progressive macular dystrophy (SCA7). Hum. Mol. Genet. 1998, 7, 165–170. [Google Scholar] [CrossRef] [PubMed]
  107. Cassarino, D.S.; Quezado, M.M.; Ghatak, N.R.; Duray, P.H. Lyme-associated parkinsonism: A neuropathologic case study and review of the literature. Arch. Pathol. Lab. Med. 2003, 127, 1204–1206. [Google Scholar] [PubMed]
  108. Hirooka, Y.; Yuasa, K.; Hibi, K.; Ishikawa, A.; Sobue, G.; Naruse, T.; Mitsuma, T. Hyperparathyroidism associated with parkinsonism. Intern. Med. 1992, 31, 904–907. [Google Scholar] [CrossRef] [PubMed]
  109. Ihara, M.; Makino, F.; Sawada, H.; Mezaki, T.; Mizutani, K.; Nakase, H.; Matsui, M.; Tomimoto, H.; Shimohama, S. Gluten sensitivity in Japanese patients with adult-onset cerebellar ataxia. Intern. Med. 2006, 45, 135–140. [Google Scholar] [CrossRef] [PubMed]
  110. Molho, E.S. Gliomatosis cerebri may present as an atypical parkinsonian syndrome. Mov. Disord. 2004, 19, 341–344. [Google Scholar] [CrossRef] [PubMed]
  111. Quinn, N.; Barnard, R.O.; Kelly, R.E. Cerebellar syndrome in myxoedema revisited: A published case with carcinomatosis and multiple system atrophy at necropsy. J. Neurol. Neurosurg. Psychiatry 1992, 55, 616–618. [Google Scholar] [CrossRef] [PubMed]
  112. Selim, M.; Drachman, D.A. Ataxia associated with Hashimoto’s disease: Progressive non-familial adult onset cerebellar degeneration with autoimmune thyroiditis. J. Neurol. Neurosurg. Psychiatry 2001, 71, 81–87. [Google Scholar] [CrossRef] [PubMed]
  113. Shiraishi, W.; Iwanaga, Y.; Yamamoto, A. A case of an anti-Ma2 antibody-positive patient presenting with variable CNS symptoms mimicking multiple system atrophy with a partial response to immunotherapy. Rinsho Shinkeigaku 2015, 55, 96–100. [Google Scholar] [CrossRef] [PubMed]
  114. Lippa, C.F.; Duda, J.E.; Grossman, M.; Hurtig, H.I.; Aarsland, D.; Boeve, B.F.; Brooks, D.J.; Dickson, D.W.; Dubois, B.; Emre, M.; et al. DLB and PDD boundary issues: Diagnosis, treatment, molecular pathology, and biomarkers. Neurology 2007, 68, 812–819. [Google Scholar] [CrossRef] [PubMed]
  115. McKeith, I.; Mintzer, J.; Aarsland, D.; Burn, D.; Chiu, H.; Cohen-Mansfield, J.; Dickson, D.; Dubois, B.; Duda, J.E.; Feldman, H.; et al. Dementia with Lewy bodies. Lancet Neurol. 2004, 3, 19–28. [Google Scholar] [CrossRef]
  116. McKeith, I.G.; Dickson, D.W.; Lowe, J.; Emre, M.; O’Brien, J.T.; Feldman, H.; Cummings, J.; Duda, J.E.; Lippa, C.; Perry, E.K.; et al. Diagnosis and management of dementia with Lewy bodies: Third report of the DLB consortium. Neurology 2005, 65, 1863–1872. [Google Scholar] [CrossRef] [PubMed]
  117. McKeith, I.G.; Galasko, D.; Kosaka, K.; Perry, E.K.; Dickson, D.W.; Hansen, L.A.; Salmon, D.P.; Lowe, J.; Mirra, S.S.; Byrne, E.J.; et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): Report of the Consortium on DLB International Workshop. Neurology 1996, 47, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
  118. Seidel, K.; Mahlke, J.; Siswanto, S.; Kruger, R.; Heinsen, H.; Auburger, G.; Bouzrou, M.; Grinberg, L.T.; Wicht, H.; Korf, H.W.; et al. The brainstem pathologies of Parkinson’s disease and dementia with Lewy bodies. Brain Pathol. 2015, 25, 121–135. [Google Scholar] [CrossRef] [PubMed]
  119. Tsuang, D.W.; Dalan, A.M.; Eugenio, C.J.; Poorkaj, P.; Limprasert, P.; La Spada, A.R.; Steinbart, E.J.; Bird, T.D.; Leverenz, J.B. Familial dementia with Lewy bodies: A clinical and neuropathological study of 2 families. Arch. Neurol. 2002, 59, 1622–1630. [Google Scholar] [CrossRef] [PubMed]
  120. Bonner, L.T.; Tsuang, D.W.; Cherrier, M.M.; Eugenio, C.J.; Du Jennifer, Q.; Steinbart, E.J.; Limprasert, P.; La Spada, A.R.; Seltzer, B.; Bird, T.D.; et al. Familial dementia with Lewy bodies with an atypical clinical presentation. J. Geriatr. Psychiatry Neurol. 2003, 16, 59–64. [Google Scholar] [CrossRef] [PubMed]
  121. Denson, M.A.; Wszolek, Z.K.; Pfeiffer, R.F.; Wszolek, E.K.; Paschall, T.M.; McComb, R.D. Familial parkinsonism, dementia, and Lewy body disease: Study of family G. Ann. Neurol. 1997, 42, 638–643. [Google Scholar] [CrossRef] [PubMed]
  122. Ishikawa, A.; Takahashi, H.; Tanaka, H.; Hayashi, T.; Tsuji, S. Clinical features of familial diffuse Lewy body disease. Eur. Neurol. 1997, 38 (Suppl. S1), S34–S38. [Google Scholar] [CrossRef]
  123. Ohara, K.; Takauchi, S.; Kokai, M.; Morimura, Y.; Nakajima, T.; Morita, Y. Familial dementia with Lewy bodies (DLB). Clin. Neuropathol. 1999, 18, 232–239. [Google Scholar]
  124. Polymeropoulos, M.H.; Higgins, J.J.; Golbe, L.I.; Johnson, W.G.; Ide, S.E.; Di Iorio, G.; Sanges, G.; Stenroos, E.S.; Pho, L.T.; Schaffer, A.A.; et al. Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science 1996, 274, 1197–1199. [Google Scholar] [CrossRef] [PubMed]
  125. Nalls, M.A.; Duran, R.; Lopez, G.; Kurzawa-Akanbi, M.; McKeith, I.G.; Chinnery, P.F.; Morris, C.M.; Theuns, J.; Crosiers, D.; Cras, P.; et al. A multicenter study of glucocerebrosidase mutations in dementia with Lewy bodies. JAMA Neurol. 2013, 70, 727–735. [Google Scholar] [CrossRef] [PubMed]
  126. Tsuang, D.; Leverenz, J.B.; Lopez, O.L.; Hamilton, R.L.; Bennett, D.A.; Schneider, J.A.; Buchman, A.S.; Larson, E.B.; Crane, P.K.; Kaye, J.A.; et al. APOE ε4 increases risk for dementia in pure synucleinopathies. JAMA Neurol. 2013, 70, 223–228. [Google Scholar] [CrossRef] [PubMed]
  127. Bras, J.; Guerreiro, R.; Darwent, L.; Parkkinen, L.; Ansorge, O.; Escott-Price, V.; Hernandez, D.G.; Nalls, M.A.; Clark, L.N.; Honig, L.S.; et al. Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. Hum. Mol. Genet. 2014, 23, 6139–6146. [Google Scholar] [CrossRef] [PubMed]
  128. Nalls, M.A.; Pankratz, N.; Lill, C.M.; Do, C.B.; Hernandez, D.G.; Saad, M.; DeStefano, A.L.; Kara, E.; Bras, J.; Sharma, M.; et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat. Genet. 2014, 46, 989–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  129. Rosenberg, C.K.; Pericak-Vance, M.A.; Saunders, A.M.; Gilbert, J.R.; Gaskell, P.C.; Hulette, C.M. Lewy body and Alzheimer pathology in a family with the amyloid-β precursor protein APP717 gene mutation. Acta Neuropathol. 2000, 100, 145–152. [Google Scholar] [CrossRef] [PubMed]
  130. Leverenz, J.B.; Fishel, M.A.; Peskind, E.R.; Montine, T.J.; Nochlin, D.; Steinbart, E.; Raskind, M.A.; Schellenberg, G.D.; Bird, T.D.; Tsuang, D. Lewy body pathology in familial Alzheimer disease: Evidence for disease- and mutation-specific pathologic phenotype. Arch. Neurol. 2006, 63, 370–376. [Google Scholar] [CrossRef] [PubMed]
  131. Meeus, B.; Verstraeten, A.; Crosiers, D.; Engelborghs, S.; van den Broeck, M.; Mattheijssens, M.; Peeters, K.; Corsmit, E.; Elinck, E.; Pickut, B.; et al. DLB and PDD: A role for mutations in dementia and Parkinson disease genes? Neurobiol. Aging 2012, 33. [Google Scholar] [CrossRef] [PubMed]
  132. Meeus, B.; Theuns, J.; van Broeckhoven, C. The genetics of dementia with Lewy bodies: What are we missing? Arch. Neurol. 2012, 69, 1113–1118. [Google Scholar] [CrossRef] [PubMed]
  133. Williams, D.R.; Lees, A.J. Progressive supranuclear palsy: Clinicopathological concepts and diagnostic challenges. Lancet Neurol. 2009, 8, 270–279. [Google Scholar] [CrossRef]
  134. Respondek, G.; Stamelou, M.; Kurz, C.; Ferguson, L.W.; Rajput, A.; Chiu, W.Z.; van Swieten, J.C.; Troakes, C.; Al Sarraj, S.; Gelpi, E.; et al. The phenotypic spectrum of progressive supranuclear palsy: A retrospective multicenter study of 100 definite cases. Mov. Disord. 2014, 29, 1758–1766. [Google Scholar] [CrossRef] [PubMed]
  135. Schrag, A.; Ben-Shlomo, Y.; Quinn, N.P. Prevalence of progressive supranuclear palsy and multiple system atrophy: A cross-sectional study. Lancet 1999, 354, 1771–1775. [Google Scholar] [CrossRef]
  136. Litvan, I.; Mangone, C.A.; McKee, A.; Verny, M.; Parsa, A.; Jellinger, K.; D’Olhaberriague, L.; Chaudhuri, K.R.; Pearce, R.K. Natural history of progressive supranuclear palsy (steele-richardson-olszewski syndrome) and clinical predictors of survival: A clinicopathological study. J. Neurol. Neurosurg. Psychiatry 1996, 60, 615–620. [Google Scholar] [CrossRef] [PubMed]
  137. Pollock, N.J.; Mirra, S.S.; Binder, L.I.; Hansen, L.A.; Wood, J.G. Filamentous aggregates in Pick’s disease, progressive supranuclear palsy, and Alzheimer’s disease share antigenic determinants with microtubule-associated protein, tau. Lancet 1986, 2, 1211. [Google Scholar] [CrossRef]
  138. Lantos, P.L. The neuropathology of progressive supranuclear palsy. J. Neural Transm. Suppl. 1994, 42, 137–152. [Google Scholar] [PubMed]
  139. Dickson, D.W.; Rademakers, R.; Hutton, M.L. Progressive supranuclear palsy: Pathology and genetics. Brain Pathol. 2007, 17, 74–82. [Google Scholar] [CrossRef] [PubMed]
  140. Dickson, D.W.; Bergeron, C.; Chin, S.S.; Duyckaerts, C.; Horoupian, D.; Ikeda, K.; Jellinger, K.; Lantos, P.L.; Lippa, C.F.; Mirra, S.S.; et al. Office of rare diseases neuropathologic criteria for corticobasal degeneration. J. Neuropathol. Exp. Neurol. 2002, 61, 935–946. [Google Scholar] [PubMed]
  141. Murphy, K.E.; Karaconji, T.; Hardman, C.D.; Halliday, G.M. Excessive dopamine neuron loss in progressive supranuclear palsy. Mov. Disord. 2008, 23, 607–610. [Google Scholar] [CrossRef] [PubMed]
  142. Hirano, S.; Shinotoh, H.; Shimada, H.; Aotsuka, A.; Tanaka, N.; Ota, T.; Sato, K.; Ito, H.; Kuwabara, S.; Fukushi, K.; et al. Cholinergic imaging in corticobasal syndrome, progressive supranuclear palsy and frontotemporal dementia. Brain 2010, 133, 2058–2068. [Google Scholar] [CrossRef] [PubMed]
  143. Levy, R.; Ruberg, M.; Herrero, M.T.; Villares, J.; Javoy-Agid, F.; Agid, Y.; Hirsch, E.C. Alterations of GABAergic neurons in the basal ganglia of patients with progressive supranuclear palsy: An in situ hybridization study of GAD67 messenger RNA. Neurology 1995, 45, 127–134. [Google Scholar] [CrossRef] [PubMed]
  144. Stamelou, M.; Matusch, A.; Elmenhorst, D.; Hurlemann, R.; Eggert, K.M.; Zilles, K.; Oertel, W.H.; Hoglinger, G.U.; Bauer, A. Nigrostriatal upregulation of 5-HT2A receptors correlates with motor dysfunction in progressive supranuclear palsy. Mov. Disord. 2009, 24, 1170–1175. [Google Scholar] [CrossRef] [PubMed]
  145. Swerdlow, R.H.; Golbe, L.I.; Parks, J.K.; Cassarino, D.S.; Binder, D.R.; Grawey, A.E.; Litvan, I.; Bennett, J.P., Jr.; Wooten, G.F.; Parker, W.D. Mitochondrial dysfunction in cybrid lines expressing mitochondrial genes from patients with progressive supranuclear palsy. J. Neurochem. 2000, 75, 1681–1684. [Google Scholar] [CrossRef] [PubMed]
  146. Rohrer, J.D.; Paviour, D.; Vandrovcova, J.; Hodges, J.; de Silva, R.; Rossor, M.N. Novel L284R MAPT mutation in a family with an autosomal dominant progressive supranuclear palsy syndrome. Neurodegener. Dis. 2011, 8, 149–152. [Google Scholar] [CrossRef] [PubMed]
  147. Poorkaj, P.; Muma, N.A.; Zhukareva, V.; Cochran, E.J.; Shannon, K.M.; Hurtig, H.; Koller, W.C.; Bird, T.D.; Trojanowski, J.Q.; Lee, V.M.; et al. An R5L T mutation in a subject with a progressive supranuclear palsy phenotype. Ann. Neurol. 2002, 52, 511–516. [Google Scholar] [CrossRef] [PubMed]
  148. Stanford, P.M.; Halliday, G.M.; Brooks, W.S.; Kwok, J.B.; Storey, C.E.; Creasey, H.; Morris, J.G.; Fulham, M.J.; Schofield, P.R. Progressive supranuclear palsy pathology caused by a novel silent mutation in exon 10 of the tau gene: Expansion of the disease phenotype caused by tau gene mutations. Brain 2000, 123, 880–893. [Google Scholar] [CrossRef] [PubMed]
  149. Ros, R.; Gomez Garre, P.; Hirano, M.; Tai, Y.F.; Ampuero, I.; Vidal, L.; Rojo, A.; Fontan, A.; Vazquez, A.; Fanjul, S.; et al. Genetic linkage of autosomal dominant progressive supranuclear palsy to 1q31.1. Ann. Neurol. 2005, 57, 634–641. [Google Scholar] [CrossRef] [PubMed]
  150. Baker, M.; Litvan, I.; Houlden, H.; Adamson, J.; Dickson, D.; Perez-Tur, J.; Hardy, J.; Lynch, T.; Bigio, E.; Hutton, M. Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum. Mol. Genet. 1999, 8, 711–715. [Google Scholar] [CrossRef] [PubMed]
  151. Conrad, C.; Andreadis, A.; Trojanowski, J.Q.; Dickson, D.W.; Kang, D.; Chen, X.; Wiederholt, W.; Hansen, L.; Masliah, E.; Thal, L.J.; et al. Genetic evidence for the involvement of tau in progressive supranuclear palsy. Ann. Neurol. 1997, 41, 277–281. [Google Scholar] [CrossRef] [PubMed]
  152. Hoglinger, G.U.; Melhem, N.M.; Dickson, D.W.; Sleiman, P.M.; Wang, L.S.; Klei, L.; Rademakers, R.; de Silva, R.; Litvan, I.; Riley, D.E.; et al. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat. Genet. 2011, 43, 699–705. [Google Scholar] [CrossRef] [PubMed]
  153. Litvan, I.; Baker, M.; Hutton, M. Tau genotype: No effect on onset, symptom severity, or survival in progressive supranuclear palsy. Neurology 2001, 57, 138–140. [Google Scholar] [CrossRef] [PubMed]
  154. Goedert, M. Tau protein and neurodegeneration. Semin. Cell Dev. Biol. 2004, 15, 45–49. [Google Scholar] [CrossRef] [PubMed]
  155. Panda, D.; Samuel, J.C.; Massie, M.; Feinstein, S.C.; Wilson, L. Differential regulation of microtubule dynamics by three- and four-repeat tau: Implications for the onset of neurodegenerative disease. Proc. Natl. Acad. Sci. USA 2003, 100, 9548–9553. [Google Scholar] [CrossRef] [PubMed]
  156. Myers, A.J.; Gibbs, J.R.; Webster, J.A.; Rohrer, K.; Zhao, A.; Marlowe, L.; Kaleem, M.; Leung, D.; Bryden, L.; Nath, P.; et al. A survey of genetic human cortical gene expression. Nat. Genet. 2007, 39, 1494–1499. [Google Scholar] [CrossRef] [PubMed]
  157. Ferrari, R.; Ryten, M.; Simone, R.; Trabzuni, D.; Nicolaou, N.; Hondhamuni, G.; Ramasamy, A.; Vandrovcova, J.; Consortium, U.K.B.E.; Weale, M.E.; et al. Assessment of common variability and expression quantitative trait loci for genome-wide associations for progressive supranuclear palsy. Neurobiol. Aging 2014, 35. [Google Scholar] [CrossRef] [PubMed]
  158. Wendler, F.; Tooze, S. Syntaxin 6: The promiscuous behaviour of a snare protein. Traffic 2001, 2, 606–611. [Google Scholar] [CrossRef] [PubMed]
  159. Borroni, B.; Del Bo, R.; Goldwurm, S.; Archetti, S.; Bonvicini, C.; Agosti, C.; Bigni, B.; Papetti, A.; Ghezzi, S.; Sacilotto, G.; et al. VEGF haplotypes are associated with increased risk to progressive supranuclear palsy and corticobasal syndrome. J. Alzheimers Dis. 2010, 21, 87–94. [Google Scholar] [PubMed]
  160. Potts, L.F.; Cambon, A.C.; Ross, O.A.; Rademakers, R.; Dickson, D.W.; Uitti, R.J.; Wszolek, Z.K.; Rai, S.N.; Farrer, M.J.; Hein, D.W.; et al. Polymorphic genes of detoxification and mitochondrial enzymes and risk for progressive supranuclear palsy: A case control study. BMC Med. Genet. 2012, 13, 16. [Google Scholar] [CrossRef] [PubMed]
  161. Ros, R.; Ampuero, I.; Garcia de Yebenes, J. Parkin polymorphisms in progressive supranuclear palsy. J. Neurol. Sci. 2008, 268, 176–178. [Google Scholar] [CrossRef] [PubMed]
  162. Melquist, S.; Craig, D.W.; Huentelman, M.J.; Crook, R.; Pearson, J.V.; Baker, M.; Zismann, V.L.; Gass, J.; Adamson, J.; Szelinger, S.; et al. Identification of a novel risk locus for progressive supranuclear palsy by a pooled genomewide scan of 500,288 single-nucleotide polymorphisms. Am. J. Hum. Genet. 2007, 80, 769–778. [Google Scholar] [CrossRef] [PubMed]
  163. Ross, O.A.; Whittle, A.J.; Cobb, S.A.; Hulihan, M.M.; Lincoln, S.J.; Toft, M.; Farrer, M.J.; Dickson, D.W. LRRK2 R1441 substitution and progressive supranuclear palsy. Neuropathol. Appl. Neurobiol. 2006, 32, 23–25. [Google Scholar] [CrossRef] [PubMed]
  164. Tan, E.K.; Skipper, L.; Chua, E.; Wong, M.C.; Pavanni, R.; Bonnard, C.; Kolatkar, P.; Liu, J.J. Analysis of 14 LRRK2 mutations in Parkinson’s plus syndromes and late-onset Parkinson’s disease. Mov. Disord. 2006, 21, 997–1001. [Google Scholar] [CrossRef] [PubMed]
  165. Asselta, R.; Rimoldi, V.; Siri, C.; Cilia, R.; Guella, I.; Tesei, S.; Solda, G.; Pezzoli, G.; Duga, S.; Goldwurm, S. Glucocerebrosidase mutations in primary parkinsonism. Parkinsonism Relat. Disord. 2014, 20, 1215–1220. [Google Scholar] [CrossRef] [PubMed]
  166. Halliday, G.M.; Song, Y.J.; Creasey, H.; Morris, J.G.; Brooks, W.S.; Kril, J.J. Neuropathology in the S305S tau gene mutation. Brain 2006, 129, E40. [Google Scholar] [CrossRef] [PubMed]
  167. Williams, D.R.; de Silva, R.; Paviour, D.C.; Pittman, A.; Watt, H.C.; Kilford, L.; Holton, J.L.; Revesz, T.; Lees, A.J. Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson’s syndrome and PSP-parkinsonism. Brain 2005, 128, 1247–1258. [Google Scholar] [CrossRef] [PubMed]
  168. Anouti, A.; Schmidt, K.; Lyons, K.E.; Hubble, J.P.; Schellenberg, G.; Golbe, L.I.; Lang, A.E.; Galvez-Jimenez, N.; Hershey, L.; Koller, W.C. Normal distribution of apolipoprotein E alleles in progressive supranuclear palsy. Neurology 1996, 46, 1156–1157. [Google Scholar] [CrossRef] [PubMed]
  169. Sawa, A.; Amano, N.; Yamada, N.; Kajio, H.; Yagishita, S.; Takahashi, T.; Oda, M.; Arai, N.; Ikeda, K.; Tadokoro, M.; et al. Apolipoprotein E in progressive supranuclear palsy in Japan. Mol. Psychiatry 1997, 2, 341–342. [Google Scholar] [CrossRef] [PubMed]
  170. Baba, Y.; Putzke, J.D.; Tsuboi, Y.; Josephs, K.A.; Thomas, N.; Wszolek, Z.K.; Dickson, D.W. Effect of MAPT and APOE on prognosis of progressive supranuclear palsy. Neurosci. Lett. 2006, 405, 116–119. [Google Scholar] [CrossRef] [PubMed]
  171. Morris, H.R.; Schrag, A.; Nath, U.; Burn, D.; Quinn, N.P.; Daniel, S.; Wood, N.W.; Lees, A.J. Effect of APOE and tau on age of onset of progressive supranuclear palsy and multiple system atrophy. Neurosci. Lett. 2001, 312, 118–120. [Google Scholar] [CrossRef]
  172. Murphy, M.A.; Friedman, J.H.; Tetrud, J.W.; Factor, S.A. Neurodegenerative disorders mimicking progressive supranuclear palsy: A report of three cases. J. Clin. Neurosci. 2005, 12, 941–945. [Google Scholar] [CrossRef] [PubMed]
  173. Josephs, K.A.; Dickson, D.W. Diagnostic accuracy of progressive supranuclear palsy in the society for progressive supranuclear palsy brain bank. Mov. Disord. 2003, 18, 1018–1026. [Google Scholar] [CrossRef] [PubMed]
  174. Winikates, J.; Jankovic, J. Vascular progressive supranuclear palsy. J. Neural Transm. Suppl. 1994, 42, 189–201. [Google Scholar] [PubMed]
  175. Murialdo, A.; Marchese, R.; Abbruzzese, G.; Tabaton, M.; Michelozzi, G.; Schiavoni, S. Neurosyphilis presenting as progressive supranuclear palsy. Mov. Disord. 2000, 15, 730–731. [Google Scholar] [CrossRef]
  176. Amarenco, P.; Roullet, E.; Hannoun, L.; Marteau, R. Progressive supranuclear palsy as the sole manifestation of systemic Whipple’s disease treated with pefloxacine. J. Neurol. Neurosurg. Psychiatry 1991, 54, 1121–1122. [Google Scholar] [CrossRef] [PubMed]
  177. Tan, J.H.; Goh, B.C.; Tambyah, P.A.; Wilder-Smith, E. Paraneoplastic progressive supranuclear palsy syndrome in a patient with B-cell lymphoma. Parkinsonism Relat. Disord. 2005, 11, 187–191. [Google Scholar] [CrossRef] [PubMed]
  178. Pramstaller, P.P.; Lees, A.J.; Luxon, L.M. Possible clinical overlap between postencephalitic parkinsonism and progressive supranuclear palsy. J. Neurol. Neurosurg. Psychiatry 1996, 60, 589–590. [Google Scholar] [CrossRef] [PubMed]
  179. Wenning, G.K.; Jellinger, K.; Litvan, I. Supranuclear gaze palsy and eyelid apraxia in postencephalitic parkinsonism. J. Neural Transm. 1997, 104, 845–865. [Google Scholar] [CrossRef] [PubMed]
  180. Boeve, B.F.; Maraganore, D.M.; Parisi, J.E.; Ahlskog, J.E.; Graff-Radford, N.; Caselli, R.J.; Dickson, D.W.; Kokmen, E.; Petersen, R.C. Pathologic heterogeneity in clinically diagnosed corticobasal degeneration. Neurology 1999, 53, 795–800. [Google Scholar] [CrossRef] [PubMed]
  181. Lleo, A.; Rey, M.J.; Castellvi, M.; Ferrer, I.; Blesa, R. Asymmetric myoclonic parietal syndrome in a patient with Alzheimer’s disease mimicking corticobasal degeneration. Neurologia 2002, 17, 223–226. [Google Scholar] [PubMed]
  182. Horoupian, D.S.; Wasserstein, P.H. Alzheimer’s disease pathology in motor cortex in dementia with Lewy bodies clinically mimicking corticobasal degeneration. Acta Neuropathol. 1999, 98, 317–322. [Google Scholar] [CrossRef] [PubMed]
  183. Tartaglia, M.C.; Sidhu, M.; Laluz, V.; Racine, C.; Rabinovici, G.D.; Creighton, K.; Karydas, A.; Rademakers, R.; Huang, E.J.; Miller, B.L.; et al. Sporadic corticobasal syndrome due to FTLD-TDP. Acta Neuropathol. 2010, 119, 365–374. [Google Scholar] [CrossRef] [PubMed]
  184. Zhang, Y.; Minoshima, S.; Vesselle, H.; Lewis, D.H. A case of Creutzfeldt-Jakob disease mimicking corticobasal degeneration: FDG PET, SPECT, and MRI findings. Clin. Nucl. Med. 2012, 37, e173–e175. [Google Scholar] [CrossRef] [PubMed]
  185. Baba, Y.; Uitti, R.J.; Farrer, M.J.; Wszolek, Z.K. Sporadic SCA8 mutation resembling corticobasal degeneration. Parkinsonism Relat. Disord. 2005, 11, 147–150. [Google Scholar] [CrossRef] [PubMed]
  186. Kim, Y.D.; Kim, J.S.; Lee, E.S.; Yang, D.W.; Lee, K.S.; Kim, Y.I. Progressive “vascular” corticobasal syndrome due to bilateral ischemic hemispheric lesions. Intern. Med. 2009, 48, 1699–1702. [Google Scholar] [CrossRef] [PubMed]
  187. Miyaji, Y.; Koyama, K.; Kurokawa, T.; Mitomi, M.; Suzuki, Y.; Kuroiwa, Y. Vascular corticobasal syndrome caused by unilateral internal carotid artery occlusion. J. Stroke Cerebrovasc. Dis. 2013, 22, 1193–1195. [Google Scholar] [CrossRef] [PubMed]
  188. Benito-Leon, J.; Alvarez-Linera, J.; Louis, E.D. Neurosyphilis masquerading as corticobasal degeneration. Mov. Disord. 2004, 19, 1367–1370. [Google Scholar] [CrossRef] [PubMed]
  189. Warren, J.D.; Mummery, C.J.; Al-Din, A.S.; Brown, P.; Wood, N.W. Corticobasal degeneration syndrome with basal ganglia calcification: Fahr’s disease as a corticobasal look-alike? Mov. Disord. 2002, 17, 563–567. [Google Scholar] [CrossRef] [PubMed]
  190. Van Zanducke, M.; Dehaene, I. A “cortico-basal degeneration”-like syndrome as first sign of progressive multifocal leukoencephalopathy. Acta Neurol. Belg. 2000, 100, 242–245. [Google Scholar] [PubMed]
  191. Morris, H.R.; Lees, A.J. Primary antiphospholipid syndrome presenting as a corticobasal degeneration syndrome. Mov. Disord. 1999, 14, 530–532. [Google Scholar] [CrossRef]
  192. Lee, S.E.; Rabinovici, G.D.; Mayo, M.C.; Wilson, S.M.; Seeley, W.W.; DeArmond, S.J.; Huang, E.J.; Trojanowski, J.Q.; Growdon, M.E.; Jang, J.Y.; et al. Clinicopathological correlations in corticobasal degeneration. Ann. Neurol. 2011, 70, 327–340. [Google Scholar] [CrossRef] [PubMed]
  193. Litvan, I.; Agid, Y.; Goetz, C.; Jankovic, J.; Wenning, G.K.; Brandel, J.P.; Lai, E.C.; Verny, M.; Ray-Chaudhuri, K.; McKee, A.; et al. Accuracy of the clinical diagnosis of corticobasal degeneration: A clinicopathologic study. Neurology 1997, 48, 119–125. [Google Scholar] [CrossRef] [PubMed]
  194. Shelley, B.P.; Hodges, J.R.; Kipps, C.M.; Xuereb, J.H.; Bak, T.H. Is the pathology of corticobasal syndrome predictable in life? Mov. Disord. 2009, 24, 1593–1599. [Google Scholar] [CrossRef] [PubMed]
  195. Winter, Y.; Bezdolnyy, Y.; Katunina, E.; Avakjan, G.; Reese, J.P.; Klotsche, J.; Oertel, W.H.; Dodel, R.; Gusev, E. Incidence of Parkinson’s disease and atypical parkinsonism: Russian population-based study. Mov. Disord. 2010, 25, 349–356. [Google Scholar] [CrossRef] [PubMed]
  196. Grijalvo-Perez, A.M.; Litvan, I. Corticobasal degeneration. Semin. Neurol. 2014, 34, 160–173. [Google Scholar] [CrossRef] [PubMed]
  197. Osaki, Y.; Morita, Y.; Kuwahara, T.; Miyano, I.; Doi, Y. Prevalence of Parkinson’s disease and atypical parkinsonian syndromes in a rural Japanese district. Acta Neurol. Scand. 2011, 124, 182–187. [Google Scholar] [CrossRef] [PubMed]
  198. Armstrong, M.J.; Litvan, I.; Lang, A.E.; Bak, T.H.; Bhatia, K.P.; Borroni, B.; Boxer, A.L.; Dickson, D.W.; Grossman, M.; Hallett, M.; et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 2013, 80, 496–503. [Google Scholar] [CrossRef] [PubMed]
  199. Houlden, H.; Baker, M.; Morris, H.R.; MacDonald, N.; Pickering-Brown, S.; Adamson, J.; Lees, A.J.; Rossor, M.N.; Quinn, N.P.; Kertesz, A.; et al. Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype. Neurology 2001, 56, 1702–1706. [Google Scholar] [CrossRef] [PubMed]
  200. Arai, T.; Ikeda, K.; Akiyama, H.; Nonaka, T.; Hasegawa, M.; Ishiguro, K.; Iritani, S.; Tsuchiya, K.; Iseki, E.; Yagishita, S.; et al. Identification of amino-terminally cleaved tau fragments that distinguish progressive supranuclear palsy from corticobasal degeneration. Ann. Neurol. 2004, 55, 72–79. [Google Scholar] [CrossRef] [PubMed]
  201. Fujioka, S.; Boeve, B.F.; Parisi, J.E.; Tacik, P.; Aoki, N.; Strongosky, A.J.; Baker, M.; Sanchez-Contreras, M.; Ross, O.A.; Rademakers, R.; et al. A familial form of parkinsonism, dementia, and motor neuron disease: A longitudinal study. Parkinsonism Relat. Disord. 2014, 20, 1129–1134. [Google Scholar] [CrossRef] [PubMed]
  202. Fekete, R.; Bainbridge, M.; Baizabal-Carvallo, J.F.; Rivera, A.; Miller, B.; Du, P.; Kholodovych, V.; Powell, S.; Ondo, W. Exome sequencing in familial corticobasal degeneration. Parkinsonism Relat. Disord. 2013, 19, 1049–1052. [Google Scholar] [CrossRef] [PubMed]
  203. Brown, J.; Lantos, P.L.; Roques, P.; Fidani, L.; Rossor, M.N. Familial dementia with swollen achromatic neurons and corticobasal inclusion bodies: A clinical and pathological study. J. Neurol. Sci. 1996, 135, 21–30. [Google Scholar] [CrossRef]
  204. Spillantini, M.G.; Yoshida, H.; Rizzini, C.; Lantos, P.L.; Khan, N.; Rossor, M.N.; Goedert, M.; Brown, J. A novel tau mutation (N296N) in familial dementia with swollen achromatic neurons and corticobasal inclusion bodies. Ann. Neurol. 2000, 48, 939–943. [Google Scholar] [CrossRef]
  205. Bugiani, O.; Murrell, J.R.; Giaccone, G.; Hasegawa, M.; Ghigo, G.; Tabaton, M.; Morbin, M.; Primavera, A.; Carella, F.; Solaro, C.; et al. Frontotemporal dementia and corticobasal degeneration in a family with a P301S mutation in tau. J. Neuropathol. Exp. Neurol. 1999, 58, 667–677. [Google Scholar] [CrossRef] [PubMed]
  206. Kouri, N.; Carlomagno, Y.; Baker, M.; Liesinger, A.M.; Caselli, R.J.; Wszolek, Z.K.; Petrucelli, L.; Boeve, B.F.; Parisi, J.E.; Josephs, K.A.; et al. Novel mutation in MAPT exon 13 (p.N410H) causes corticobasal degeneration. Acta Neuropathol. 2014, 127, 271–282. [Google Scholar] [CrossRef] [PubMed]
  207. Casseron, W.; Azulay, J.P.; Guedj, E.; Gastaut, J.L.; Pouget, J. Familial autosomal dominant cortico-basal degeneration with the P301S mutation in the tau gene: An example of phenotype variability. J. Neurol. 2005, 252, 1546–1548. [Google Scholar] [CrossRef] [PubMed]
  208. Kouri, N.; Ross, O.A.; Dombroski, B.; Younkin, C.S.; Serie, D.J.; Soto-Ortolaza, A.; Baker, M.; Finch, N.C.; Yoon, H.; Kim, J.; et al. Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy. Nat. Commun. 2015, 6, 7247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  209. Kanai, Y.; Wang, D.; Hirokawa, N. KIF13B enhances the endocytosis of LRP1 by recruiting LRP1 to caveolae. J. Cell Biol. 2014, 204, 395–408. [Google Scholar] [CrossRef] [PubMed]
  210. Horiguchi, K.; Hanada, T.; Fukui, Y.; Chishti, A.H. Transport of PIP3 by GAKIN, a kinesin-3 family protein, regulates neuronal cell polarity. J. Cell Biol. 2006, 174, 425–436. [Google Scholar] [CrossRef] [PubMed]
  211. Hanada, T.; Lin, L.; Tibaldi, E.V.; Reinherz, E.L.; Chishti, A.H. GAKIN, a novel kinesin-like protein associates with the human homologue of the Drosophila discs large tumor suppressor in T lymphocytes. J. Biol. Chem. 2000, 275, 28774–28784. [Google Scholar] [CrossRef] [PubMed]

Share and Cite

MDPI and ACS Style

Scholz, S.W.; Bras, J. Genetics Underlying Atypical Parkinsonism and Related Neurodegenerative Disorders. Int. J. Mol. Sci. 2015, 16, 24629-24655. https://0-doi-org.brum.beds.ac.uk/10.3390/ijms161024629

AMA Style

Scholz SW, Bras J. Genetics Underlying Atypical Parkinsonism and Related Neurodegenerative Disorders. International Journal of Molecular Sciences. 2015; 16(10):24629-24655. https://0-doi-org.brum.beds.ac.uk/10.3390/ijms161024629

Chicago/Turabian Style

Scholz, Sonja W., and Jose Bras. 2015. "Genetics Underlying Atypical Parkinsonism and Related Neurodegenerative Disorders" International Journal of Molecular Sciences 16, no. 10: 24629-24655. https://0-doi-org.brum.beds.ac.uk/10.3390/ijms161024629

Article Metrics

Back to TopTop