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Abstract: Non-alcoholic fatty liver disease (NAFLD), which is strongly associated with metabolic
syndrome, is increasingly a major cause of hepatic disorder. Dipeptidyl peptidase (DPP)-4
inhibitors, anti-diabetic agents, are expected to be effective for the treatment of NAFLD. In the
present study, we established a novel NAFLD model mouse using monosodium glutamate (MSG)
and a high-fat diet (HFD) and investigated the effects of a DPP-4 inhibitor, teneligliptin, on
the progression of NAFLD. Male MSG/HFD-treated mice were divided into two groups, one of
which received teneligliptin in drinking water. Administration of MSG and HFD caused mice to
develop severe fatty changes in the liver, but teneligliptin treatment improved hepatic steatosis
and inflammation, as evaluated by the NAFLD activity score. Serum alanine aminotransferase
and intrahepatic triglyceride levels were significantly decreased in teneligliptin-treated mice
(p < 0.05). Hepatic mRNA levels of the genes involved in de novo lipogenesis were significantly
downregulated by teneligliptin (p < 0.05). Moreover, teneligliptin increased hepatic expression
levels of phosphorylated AMP-activated protein kinase (AMPK) protein. These findings suggest
that teneligliptin attenuates lipogenesis in the liver by activating AMPK and downregulating the
expression of genes involved in lipogenesis. DPP-4 inhibitors may be effective for the treatment of
NAFLD and may be able to prevent its progression to non-alcoholic steatohepatitis.
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1. Introduction

Obesity is considered to be a serious health problem, as it frequently causes various medical
concerns, including type 2 diabetes mellitus (T2DM), cardiovascular diseases, dyslipidemia and
many types of cancer [1]. Non-alcoholic fatty liver disease (NAFLD), which is strongly associated
with obesity, has become one of the most common causes of chronic liver disease in developed
countries. The clinical importance of NAFLD is illustrated by its high prevalence (6.3%–33%, with
a median of 20%) in the general population [2]. NAFLD is defined as a chronic hepatic status with
fat accumulation in the liver after the exclusion of secondary causes of hepatic fat accumulation,
such as remarkable alcohol consumption, autoimmune or viral hepatitis and certain medications [3].
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Some patients with NAFLD develop a more serious disease condition, non-alcoholic steatohepatitis
(NASH), and 10%–15% of patients with NASH develop liver cirrhosis, leading to hepatocellular
carcinoma (HCC) [4–6]. The incidence of HCC due to NASH is almost the same as that due to chronic
hepatitis C virus [7], which suggests that chronic liver damage or liver carcinogenesis associated with
NAFLD/NASH are critical healthcare problems that should be resolved.

NAFLD is strongly associated with several aspects of metabolic syndrome, i.e., obesity,
dyslipidemia (primarily increased triglycerides), insulin resistance and concomitant glucose
intolerance, including T2DM [6,8,9]. Therefore, improvement of these medical conditions may
be beneficial to ameliorate NAFLD. For instance, pitavastatin, a drug used for the treatment of
dyslipidemia, improved liver steatosis and decreased serum levels of free fatty acid (FFA) and
alanine aminotransferase (ALT) in obese and diabetic db/db mice [10]. In the same strain of
mice, treatment with green tea catechins, which have characteristics facilitating the prevention of
metabolic syndrome, attenuated liver steatosis and suppressed chronic inflammation in the liver [11].
In addition, metformin, an anti-diabetic agent, markedly improve insulin resistance and inhibited
obesity-related liver tumorigenesis in db/db mice [12]. Recently, it was reported that NAFLD is a
strong determinant for the development of metabolic syndrome [13,14], suggesting that interventions
purposing to ameliorate NAFLD are appropriate for the prevention and treatment of metabolic
syndrome and related diseases.

Intestinal hormone incretins, such as glucagon-like peptide-1 (GLP1), regulate blood glucose
levels by promoting insulin secretion in pancreatic β cells, as well as decreasing glucagon secretion in
pancreatic α cells. Following their secretion from the intestines, incretins are rapidly decomposed by
dipeptidyl peptidase (DPP)-4. DPP-4 inhibitors prevent GLP1 from decomposing, and this leads to
appropriate secretion of insulin and glucagon from the pancreas. Therefore, DPP-4 inhibitors are
commonly used in practice as medicinal agents for T2DM [15,16]. Recently, incretins have been
reported to have various bioactivities, not only in pancreas cells, but also outside the pancreas [17].
Moreover, several studies have revealed the potential roles of incretin-based therapies, including
DPP-4 inhibitors and GLP-1 receptor agonists, in the treatment of NAFLD [18,19]. DPP-4 inhibitors
may be able to attenuate the pathology of NASH, because patients with NAFLD/NASH have
increased DPP-4 activity, which correlates with the histological severity of NASH [20–22].

Monosodium glutamate (MSG)-treated animals exhibit obesity and metabolic
dysfunction [23–25]. In the present study, we established a novel mouse model of NAFLD by
injecting them with MSG and then feeding them a high-fat diet (HFD); these mice display obesity
and severe fatty changes in the liver with an early onset. Using this model, we evaluated the
preventive and therapeutic efficacy of teneligliptin, a DPP-4 inhibitor, on NAFLD and investigated
the underlying mechanisms.

2. Results and Discussion

2.1. Results

2.1.1. General Observations

At the end of the experiment, there were no significant differences in body weight or relative
weight of organs, including the liver and white adipose tissue (periorchis and retroperitoneum),
between the two groups (Table 1). No significant difference was seen in the amount of food ingested
by the two groups during the experiment. No clinical symptoms of adverse event by teneligliptin
were observed throughout the experiment. Histopathological examination also displayed no toxicity
due to teneligliptin treatment in important organs, including the liver, kidney and spleen (data
not shown).
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Table 1. Body, liver and fat weights of the experimental mice.

Measurement Item Control Teneligliptin

Body weight (g) 83.4 ˘ 7.1 a 80.7 ˘ 8.3
Liver weight (g) 5.5 ˘ 1.4 5.1 ˘ 0.8

Liver-to-body weight ratio 0.066 ˘ 0.013 0.063 ˘ 0.016
White adipose tissue b (g) 2.8 ˘ 0.7 2.8 ˘ 1.1

a Mean ˘ SD; b white adipose tissue of the periorchis and retroperitoneum.

2.1.2. Effects of Teneligliptin on the Histopathology of the Experimental Mouse Liver

The hematoxylin and eosin (H&E)-stained liver sections showed fatty degeneration,
inflammation and hepatocellular ballooning in both groups. Macrovesicular fat deposits and
glycogen storage were observed in the livers of both groups, but teneligliptin treatment attenuated fat
accumulation in the experimental mice (Figure 1A). Liver sections were histologically evaluated using
the NAFLD activity score (NAS) system [26]. The total NAS in Group 2 was significantly decreased
compared to that in Group 1 (Figure 1B). When comparing each scoring factor in the NAS system,
hepatic steatosis and inflammation were significantly attenuated in Group 2 compared to those in
Group 1 at this experimental time point (14 weeks of age) (Figure 1C). Liver fibrosis was not detected
in either group.

Int. J. Mol. Sci. 2015, 16, page–page 

3 

Table 1. Body, liver and fat weights of the experimental mice. 

Measurement Item Control Teneligliptin 
Body weight (g) 83.4 ± 7.1 a 80.7 ± 8.3 
Liver weight (g) 5.5 ± 1.4 5.1 ± 0.8 

Liver-to-body weight ratio 0.066 ± 0.013 0.063 ± 0.016 
White adipose tissue b (g) 2.8 ± 0.7 2.8 ± 1.1 

a Mean ± SD; b white adipose tissue of the periorchis and retroperitoneum. 

2.1.2. Effects of Teneligliptin on the Histopathology of the Experimental Mouse Liver 

The hematoxylin and eosin (H&E)-stained liver sections showed fatty degeneration, 
inflammation and hepatocellular ballooning in both groups. Macrovesicular fat deposits and 
glycogen storage were observed in the livers of both groups, but teneligliptin treatment attenuated 
fat accumulation in the experimental mice (Figure 1A). Liver sections were histologically evaluated 
using the NAFLD activity score (NAS) system [26]. The total NAS in Group 2 was significantly 
decreased compared to that in Group 1 (Figure 1B). When comparing each scoring factor in the NAS 
system, hepatic steatosis and inflammation were significantly attenuated in Group 2 compared to 
those in Group 1 at this experimental time point (14 weeks of age) (Figure 1C). Liver fibrosis was not 
detected in either group. 

 
Figure 1. Effects of teneligliptin on hepatic histopathology in experimental mice. (A) Hematoxylin 
and eosin (H&E) staining of liver sections from experimental mice. Representative photomicrographs 
of the liver sections of MSG/high-fat diet (HFD)-administered mice treated with or without 
teneligliptin. Bar, 100 μm; (B,C) The NAFLD activity score (NAS) was determined based on 
histopathological analysis (steatosis, inflammation and ballooning). Ctrl, control. TNL, teneligliptin. 
The values are expressed as the mean ± SD. * p < 0.05 versus the control group. 

2.1.3. Effects of Teneligliptin on the Intrahepatic Triglyceride Levels and the Activation of  
AMP-Activated Protein Kinase in the Livers of Experimental Mice 

Triglyceride levels in the liver were significantly decreased in the teneligliptin-treated group 
(Figure 2A). This was consistent with histological findings of attenuated hepatic steatosis in the 
livers of mice in the group treated with teneligliptin, as evaluated by Oil Red O-stained liver sections  
(Figure 2B). Moreover, teneligliptin administration significantly increased the hepatic expression 
levels of phosphorylated (i.e., activated) AMPK (p-AMPK) protein (Figure 2C), which may be 
associated with the improvement of liver steatosis [27]. 

Figure 1. Effects of teneligliptin on hepatic histopathology in experimental mice. (A) Hematoxylin and
eosin (H&E) staining of liver sections from experimental mice. Representative photomicrographs of
the liver sections of MSG/high-fat diet (HFD)-administered mice treated with or without teneligliptin.
Bar, 100 µm; (B,C) The NAFLD activity score (NAS) was determined based on histopathological
analysis (steatosis, inflammation and ballooning). Ctrl, control. TNL, teneligliptin. The values are
expressed as the mean ˘ SD. * p < 0.05 versus the control group.

2.1.3. Effects of Teneligliptin on the Intrahepatic Triglyceride Levels and the Activation of
AMP-Activated Protein Kinase in the Livers of Experimental Mice

Triglyceride levels in the liver were significantly decreased in the teneligliptin-treated group
(Figure 2A). This was consistent with histological findings of attenuated hepatic steatosis in the livers
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of mice in the group treated with teneligliptin, as evaluated by Oil Red O-stained liver sections
(Figure 2B). Moreover, teneligliptin administration significantly increased the hepatic expression
levels of phosphorylated (i.e., activated) AMPK (p-AMPK) protein (Figure 2C), which may be
associated with the improvement of liver steatosis [27].

2.1.4. Effects of Teneligliptin on the Expression Levels of Acetyl-CoA Carboxylase, Fatty Acid
Synthetase, Sterol Regulatory Element-Binding Protein 1c and Elongation of Very Long Chain Fatty
Acid-Like Family Member 6 mRNA in the Livers of Experimental Mice

We determined the mRNA expression levels of Acc, Fas, Srebp1c and Elovl6 to elucidate the
effects of teneligliptin on lipid metabolism in the livers of experimental mice. As shown in Figure 3,
the expression levels of Acc, Fas and Srebp1c, which regulate lipogenesis [28,29], were significantly
decreased in the mice treated with teneligliptin when compared to those without teneligliptin. In
addition, teneligliptin administration also decreased the hepatic expression levels of Elovl6, which is
also one of the key molecules controlling fatty acid metabolism and lipotoxicity [28].
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triglyceride (TG) levels were measured (n = 6); (B) steatosis in frozen liver sections from experimental
mice treated with or without teneligliptin was analyzed with Oil Red O staining. Bar, 100 µm; (C) Total
proteins were extracted from the livers of experimental mice, and the expression levels of AMPK and
p-AMPK proteins were examined by Western blot analysis using the respective antibodies. GAPDH
served as a loading control (left panel). Band intensities were quantified using densitometry. After
the average of band intensity ratios of p-AMPK to GAPDH and AMPK to GAPDH were calculated
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expressed as the mean ˘ SD. * p < 0.05 versus the control group.
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experimental mice. Total RNA was isolated from the livers of the experimental mice (n = 6), and the
expression levels of Acc, Fas, Srebp1c and Elovl6 mRNAs were examined using quantitative real-time
RT-PCR with specific primers. The values are expressed as the mean ˘ SD. * p < 0.05 versus the
control group.

2.1.5. Effects of Teneligliptin on Biochemical Parameters

Blood samples were collected from the inferior vena cava at sacrifice after six hours of
fasting for chemical analyses. The levels of serum ALT were significantly reduced by teneligliptin
administration. On the other hand, other parameters, including FFA, glucose, insulin and
triglyceride, were not significantly different between the groups (Table 2).

Table 2. Serum parameters in serum of the experimental mice. FFA, free fatty acid.

Measurement Item Control Teneligliptin

FFA (µEQ/mL) 2091.0 ˘ 328.9 a 1550.4 ˘ 267.5
Glucose (mg/dL) 295.2 ˘ 108.2 528.0 ˘ 102.0
Insulin (ng/mL) 2.3 ˘ 0.9 2.14 ˘ 1.8

ALT (IU/L) 239.8 ˘ 20.4 162.0 ˘ 16.5 b

Triglyceride (mg/mL) 56.4 ˘ 32.2 65.2 ˘ 9.3
a Mean ˘ SD; b significantly different from the control group by the Welch t-test.

2.2. Discussion

The incidence of NAFLD/NASH is expected to continue to increase because of the global
obesity epidemic. Therefore, efficacious therapeutic medications and preventive strategies for
NAFLD/NASH are required. The novel animal model used in our present study is considered
to reflect the pathological conditions in human NAFLD/NASH characterized by macrovesicular
steatosis and chronic liver inflammation and is thought to be a practical and feasible model for
investigating NAFLD and for testing preventive and therapeutic modalities that can suppress
the progression of simple hepatic steatosis into NASH. In addition, this mouse model has the
advantage of developing NAFLD with earlier onset compared to other animal models reported
previously [11,23,30]. Although NAFLD/NASH has been considered as a hepatic manifestation of
metabolic syndrome, it was recently found that NAFLD appears to be a precursor and a strong risk
factor for the future development of metabolic syndrome [13,14]. A previous report by Misu et al. [31]
suggested this reciprocal causality by demonstrating that the serum level of selenoprotein P, which
is a liver-derived secretory protein and which is higher in subjects with NAFLD [32], causes insulin
resistance. From this point of view, it is considered an appropriate action to intervene in ameliorating
NAFLD by various medications, including the DPP-4 inhibitors, for the prevention and treatment of
metabolic syndrome and related diseases.

DPP-4 inhibitors are commonly used in practice as medical agents for T2DM [15,16]. The present
study clearly demonstrated that teneligliptin, a DPP-4 inhibitor, suppresses lipogenesis and steatosis
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in the liver of NAFLD model mice generated by administering MSG and HFD, whereas body weight
and white adipose tissue weight were not reduced by this condition. We consider that the positive
effect of teneligliptin on hepatic steatosis is associated, at least in part, with the suppression of
the expression of specific genes, including Srebp1c, Acc and Fas, which play a key role in de novo
lipogenesis [29]. Srebp1c is a key lipogenic transcription factor abundantly present in the mammalian
liver [33]. It has been reported that hepatic gene expression of Srebp1c is increased in subjects with
NAFLD as compared to those without [34]. In addition, treatment with linagliptin, the other DPP-4
inhibitor, also decreased liver expression of Srebp1c and Fas and, thus, improved steatosis in a mouse
model of diet-induced obesity [35]. These reports may suggest that targeting lipogenic molecules,
such as Srebp1c and Fas, with a DPP-4 inhibitor is a promising strategy for improving hepatic steatosis.

Among various agents investigated and thought to be candidates targeting NAFLD, the
effects on fibrosis, ballooning degeneration, steatosis and lobular inflammation are analyzed in a
recent publication comparing vitamin E, thiazolidinediones (TZDs), pentoxifylline and obeticholic
acid (OCA) [36]. The effects of these agents are different; pentoxifylline, TZDs and OCA have
ameliorating effects on lobular inflammation, but vitamin E has no effect on that compared to placebo.
Furthermore, only pentoxifylline shows no effect on ballooning [36]. According to the results in our
present study displaying the effects of teneligliptin on histopathology in the liver, teneligliptin could
ameliorate hepatic steatosis and inflammation, but not ballooning in the NAS system (Figure 1). This
might be because the major effect of teneligliptin as well as pentoxifylline [37] on NAFLD is inhibition
of lipogenesis in the liver.

In the present study, the teneligliptin-treated group showed the tendency of a higher serum
glucose level. This is assumed to be due possibly to the effect of fasting before sacrifice. In the
feeding state, the serum glucose level must be lower than that in the control group, because the effect
of this medicine on the serum glucose level has already been proven in experiments in the drug
development process, as well as in clinical practice. Furthermore, in the feeding state, serum incretin
levels appear to be higher in the teneligliptin-treated group, and it can be suspected that serum
glucose metabolism was relatively dependent on the functions of incretins, including the functions
that induce insulin secretion from the pancreas and enhance the insulin signaling pathway in the
hepatocyte [17], due to the continuous influence of the DPP-4 inhibitor. Then, in the fasting state at
sacrifice, intestines did not secrete incretins, leading probably to the relatively higher glucose levels
shown in teneligliptin-treated mice. Although the serum levels of incretins and insulin, as well as
glucose in the feeding state were not measured in our study, the levels of these might be able to let us
interpret those unexpected data.

AMPK is a key regulator of energy balance and nutrient metabolism [38]. In the liver, AMPK
has been demonstrated to inhibit cholesterol and triglyceride biosynthesis by reducing the activities
of Srebp1c and Fas [27]. AMPK activation also promotes fatty acid β-oxidation by inactivation
of ACC activity [39]. Moreover, GLP-1 suppresses hepatic lipogenesis through the activation of
the AMPK pathway [40]. Other studies reported by Svegliati-Baroni et al. [41] and Lee et al. [42]
also demonstrate that enhanced AMPK signaling due to GLP-1 activation can lead to inhibiting
hepatic steatosis. Therefore, AMPK is considered to be a therapeutic target for NAFLD/NASH
associated with metabolic syndrome [27]. In the present study, teneligliptin treatment significantly
increased the levels of phosphorylated AMPK in the livers of NAFLD model mice (Figure 2C). These
findings suggest that teneligliptin may attenuate lipogenesis in hepatocytes through the activation
of AMPK and, subsequently, downregulation of Srebp1c and Fas (Figure 3). These findings are also
consistent with the results of a previous report showing that AMPK inhibition resulted in elevated
cleavage and transcription of hepatic Srebp1c in insulin-resistant mice [27]. In our study, it can be
considered that teneligliptin elevated the level of GLP-1 due to attenuating the effect of the DDP-4
inhibitor and then enhanced AMPK in hepatocytes through the GLP-1 receptor (GLP-1R). The levels
of GLP-1 and other incretins, however, were not determined in this study, as mentioned above. In
addition, it is still controversial whether GLP-1R is present or responsible for the GLP-1 signal in the
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hepatocyte [43]. Moreover, there may be direct effects of DPP-4 inhibitors on hepatic steatosis through
AMPK activation or other signaling pathways. Further investigations are required in order to clarify
the effect of DPP-4 inhibitors and incretins on lipid metabolism in the hepatocyte.

One of the key mechanisms of incretin-based therapies, including DPP-4 inhibitors, for improving
liver steatosis is the reduction of FFA [44] and improvement of glucose metabolism [15,16]. Therefore,
we initially expected that teneligliptin would attenuate liver steatosis in the MSG/HFD-treated mice
by improving these metabolic abnormalities. However, serum levels of FFA, glucose, insulin and
triglycerides were not decreased by treatment with teneligliptin in the present study. We speculated
that this was likely due to the study protocols, because MSG plus HFD treatment induced very severe
obesity and steatosis within a short period of time. The present experimental condition (10 weeks of
treatment with teneligliptin) may have been insufficient to obtain anti-diabetic effects, which is one
of the limitations of the present study. Another limitation is that plasma levels of GLP-1 were not
measured, and therefore, inhibition of DPP-4 by teneligliptin was not evaluated. We also did not
assay the plasma DPP-4 activity or concentration. Therefore, future long-term studies should be
conducted to confirm that teneligliptin improves liver steatosis by decreasing serum levels of FFA
and improving glucose metabolism, focusing on the serum levels of GLP-1 and the activity of DPP-4
in several animal models.

3. Experimental Section

3.1. Animals and Chemicals

ICR mice were obtained from Charles River Japan (Kanagawa, Japan), and their newborns were
employed in the study. MSG was purchased from Wako Pure Chemical (Osaka, Japan). CRF-1, a
basal diet and HFD were from Oriental Yeast (Tokyo, Japan). Teneligliptin (Tenelia™) was kindly
provided by Mitsubishi Tanabe Pharma Corporation (Tokyo, Japan). We fully complied with the
Guidelines Concerning Experimental Animals issued by the Japanese Association for Laboratory
Animal Science [45] and exercised due consideration to minimize pain and suffering.

3.2. Experimental Procedure

MSG was administered into the neonatal ICR mice at birth as a single-dose subcutaneous
injection (4 mg/g body weight). Among these mice, males were divided into two groups at 4 weeks
of age: the MSG/HFD group (n = 6, Group 1) and the MSG/HFD/teneligliptin-treated group (n
= 6, Group 2). The mice in Group 2 were administered teneligliptin (30 mg/kg per day) in the
drinking water from 4 weeks of age. The treatment dose of teneligliptin was determined according
to the data from the animal experiments in the drug development process. Although the dose was
relatively higher than that for humans in clinical practice, no notable adverse effect was observed in
the treatment with the dose for the experimental animal in the process. Both groups were fed HFD
from 4–14 weeks of age. At the termination of the experiment (14 weeks of age), all animals were
sacrificed by CO2 asphyxiation to analyze hepatic histopathology.

3.3. Histopathological Examination

Maximum sagittal sections of three hepatic sublobes were used for histopathological
examination. For all experimental mice, 4 µm-thick sections of formalin-fixed and paraffin-embedded
livers were stained with H&E for conventional histopathology. The histological features of the liver
were evaluated using the NAS system [26].

3.4. Clinical Chemistry

Blood samples were collected from the inferior vena cava at sacrifice after 6 h of fasting for
chemical analyses. Unfortunately, one blood sample could not be taken properly in the sampling
procedure in each group; therefore, 5 blood samples in each were used to analyze. The serum
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concentrations of glucose (BioVision Research Products, Mountain View, CA, USA), triglycerides
(Wako Pure Chemical), FFAs (Wako Pure Chemical) and insulin (Shibayagi, Gunma, Japan) were
measured as previously reported [46]. ALT was measured using a standard clinical automatic
analyzer (Type 7180; Hitachi, Tokyo, Japan).

3.5. RNA Extraction and Quantitative Real-Time Reverse Transcription-PCR Analysis

Total RNA was extracted from the mice livers using the RNeasy Mini Kit (QIAGEN, Venlo,
The Netherlands). cDNA was synthesized from 0.2 µg of total RNA with the High Capacity
cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA). A quantitative
real-time reverse transcription-PCR (RT-PCR) analysis was applied using a LightCycler Nano (Roche
Diagnostics, Indianapolis, IN, USA) and FastStart Essential DNA Green Master (Roche Diagnostics).
The sequences of specific primers for amplifying eElovl6, Fas, Acc, Srebp1c and 18S genes were
obtained by Primer-BLAST [47] (Table 3). The expression level of each gene was normalized to that
of 18S.

Table 3. Primer sequences.

Genes 51-Primer 31-Primer

Acc GGCTCAAACTGCAGGTATCC TTGCCAATCCACTCGAAGA
Elovl6 CAGCAAAGCACCCGAACTA AGGAGCACAGTGATGTGGTG

Fas GCTGCTGTTGGAAGTCAGC AGTGTTCGTTCCTCGGAGTG
Srebp1c CTGGAGCTGCGTGGTTT GCCTCATGTAGGAATACCCTCCTCATA

18s CCATCCAATCGGTAGTAGCG GTAACCCGTTGAACCCCATT

3.6. Hepatic Lipid Analysis

Approximately 200 mg of frozen liver samples were homogenized, and lipids were extracted
using Folch’s method [48]. The triglyceride levels in the liver were measured with the Triglyceride
E-test Kit (Wako Pure Chemical), as previously reported [49]. To visualize the intrahepatic lipids, Oil
Red O staining was performed based on the standard protocol for frozen liver sections.

3.7. Protein Extraction and Western Blot Analysis

Total protein was extracted from the mice livers, and equivalent amounts of proteins (10 µg/lane)
were examined by Western blot analysis [11]. Primary antibodies were obtained from Cell Signaling
Technology (Beverly, MA, USA), including AMPK (#2603), p-AMPK (#2535) and GAPDH (#2118).
The antibody for p-AMPK was used to detect the phosphorylation site at Thr172 in the activation
loop. GAPDH served as the loading control. The intensities of the bands were quantified with NIH
Image software ver. 1.62 (Bethesda, MD, USA). After the average of band intensity ratios of p-AMPK
to GAPDH and AMPK to GAPDH was calculated in each sample, the ratio of these calculated values,
which was expressed as p-AMPK/AMPK, were determined.

3.8. Statistical Analysis

The results are presented as the means ˘ SD and were analyzed using JMP software Version 10
(SAS Institute, Cary, NC, USA). Differences among the two groups were analyzed by Welch’s t-test.
The differences were considered significant at p-values of less than 0.05.

4. Conclusions

Teneligliptin, the DPP4 inhibitor, improved the histopathological appearance of the liver and
decreased intrahepatic triglyceride levels in an NAFLD model mouse, which was associated with
downregulation of hepatic lipogenesis-related genes due to AMPK activation. Interestingly, the
hepatic Dpp-4 mRNA expression level is significantly higher in patients with NAFLD compared
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to healthy subjects [50]. The results of the present study, together with those of previous
reports [19,21,22], have prompted us to conduct a clinical trial to determine the effectiveness of DPP-4
inhibitors for the prevention and treatment of NAFLD.
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