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Abstract: Overexpression of the amyloid precursor protein (APP) and the hyperphosphorylation 

of the tau protein are vital in the understanding of the cause of Alzheimer’s disease (AD). 

As a consequence, regulation of the expression of both APP and tau proteins is one important 

approach in combating AD. The APP and tau proteins can be targeted at the levels of 

transcription, translation and protein structural integrity. This paper reports the utilization of 

a bi-cistronic vector containing either APP or tau internal ribosome entry site (IRES) 

elements flanked by β-galactosidase gene (cap-dependent) and secreted alkaline  

phosphatase (SEAP) (cap-independent) to discern the mechanism of action of memantine, 
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an N-methyl-D-aspartate (NMDA) receptor antagonist. Results indicate that memantine 

could reduce the activity of both the APP and tau IRES at a concentration of ~10 μM 

(monitored by SEAP activity) without interfering with the cap-dependent translation as 

monitored by the β-galactosidase assay. Western blot analysis of the tau protein in 

neuroblastoma (N2A) and rat hippocampal cells confirmed the halting of the expression of 

the tau proteins. We also employed this approach to identify a preparation named NB34, 

extracts of Boussingaultia baselloides (madeira-vine) fermented with Lactobacillus spp., 

which can function similarly to memantine in both IRES of APP and Tau. The water maze 

test demonstrated that NB34 could improve the spatial memory of a high fat diet induced 

neurodegeneration in apolipoprotein E-knockout (ApoE−/−) mice. These results revealed  

that the bi-cistronic vector provided a simple, and effective platform in screening  

and establishing the mechanistic action of potential compounds for the treatment and 

management of AD. 

Keywords: memantine; amyloid precursor protein; tau; Alzheimer’s disease; internal ribosome 

entry sites; bi-cistronic 

 

1. Introduction 

Alzheimer’s disease (AD) is considered as the most common neurodegenerative malady in the  

modern but senile society [1]. This condition is characterized primarily by dementia which afflicts  

an estimated 35.6 million people worldwide and the numbers are estimated to be doubling every  

20 years [2,3]. Anatomical dissections and analyses of the brains of AD patients have led to the 

identification of two hallmarks defining the neuropathological characteristics of this disease: neuritic 

plaques and neurofibrillary tangles (NFTs). Under the electron microscope, abnormal amyloid-like 

filaments were found in the plaques and neurofibrillary tangles [4,5]. The specific sites of plaques and 

tangles are different: plaque filaments are extracellular but most of the tangled filaments are present 

intracellularly; deposited in nerve cell bodies, as well as in neurites of neuron. The major molecular 

compositions of the plaques and tangles are also different: amyloid-β (Aβ) peptide [6] is the major plaque 

component while the tau protein [7] is the major tangle component. The 40–42 amino acid Aβ peptide 

is derived from the sequential cleavage of amyloid precursor protein (APP), a type 1 transmembrane 

protein, by two proteases, β- and γ-secretase [1,2]. Tau protein, on the other hand, is one of the main 

neuronal microtubule-associated protein and functions importantly in the modulation of microtubule 

organization during morphogenesis and process outgrowth in neurons [8]. Transgenic mouse models of 

AD that target the APP and tau genes also confirmed the pathogenetic factors [9–12]. All these studies 

indicate that the control of the expression of APP and tau in the brain may be a good target for drugs that 

can potentially be used in the treatment of AD. 

Aside from the canonical cap-dependent model of recognition and ribosomal scanning, there is  

an alternative method of translation initiation, named cap-independent translation, as first described  

in members of the family Picornaviridae [13,14] and subsequently for a growing subset of cellular 

mRNAs [15,16]. In the cap-independent mechanism of translation initiation, ribosomes are recruited to 
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the mRNA by RNA structural elements called internal ribosome entry sites (IRESes) [17]. Since it has 

been shown that many cellular mRNAs contain IRESes, it is likely that up to 10% of all mRNAs have 

the capability to initiate translation by the cap-independent mechanism [18,19]. It is also apparent that 

genes involved in a diverse range of cellular activities, including proliferation, growth and apoptosis 

employ this alternative mechanism resulting in the consideration of internal initiation through IRES  

as an important cellular mechanism and not just a specialized viral strategy [15]. Recent studies 

demonstrated that the APP mRNA may be translated through an IRES wherein APP mRNA was found 

to be one of the several mRNAs which may remain associated with polyribosomes during mitosis, when 

cap-dependent translation initiation is greatly diminished [20]. Interestingly, it has also been reported 

that the 5' leader in the human tau mRNA contains an IRES and that IRES-dependent translation plays 

a significant role in the generation of the tau protein [21]. 

Memantine is a US Food and Drug Administration-approved, uncompetitive N-methyl-D-aspartate 

(NMDA) receptor antagonist and reduces clinical deterioration in moderate to severe AD. Preclinical 

evaluations regarding the use of memantine as an NMDA receptor antagonist were reviewed and 

reported extensively [22–26]. In addition, memantine is also capable of halting and reversing the  

protein phosphatase (PP)-2A inhibition-induced abnormal hyperphosphorylation of tau/neurofibrillary 

degeneration [27], and protects the neurons from microglial-inflammatory responses that result to cell 

death [28]. Recently, our laboratory linked NMDA receptor antagonists, amantadine and memantine [22], 

with the down-regulation of the IRES of enterovirus 71 and encephalomyocarditis virus [29,30]. 

In this study, we report that the NMDA receptor antagonist, memantine can suppress the expression 

of neuronal APP and tau proteins through the novel cap-independent translational initiation mechanism. 

Based on this observation, we also employed the IRESes of APP and Tau as the potential targets for AD 

to screen Lactobacillus spp. fermented traditional Chinese herbs and identified a preparation that can 

inhibit the translational activity of the Tau IRES. The water maze test demonstrated that this fermented 

preparation could improve the spatial memory of high-fat diet (HFD) induced neurodegeneration in 

ApoE−/− mice. 

2. Results 

2.1. The Amyloid Precursor Protein and the Tau IRESes Construct 

The expression of APP and tau proteins has been demonstrated in a number of reported studies  

to be mediated by IRES, an atypical translational initiation mechanism, aside from the conventional  

cap-dependent translation initiation [20,21]. 

A previous study had shown that amantadine can inhibit the translation activity of IRES derived from 

HAV, enterovirus 71 or encephalomyocarditis virus [30]. It is interesting to note that the chemical 

structure of amantadine is similar to memantine, a therapeutic drug for moderate to severe AD and both 

are tricyclic symmetric amines. The plasmid pTriEx4, containing either the genes for the β-galactosidase 

or the secreted alkaline phosphatase, were used for the construction of the two bi-cistronic vectors as shown 

in Figure 1 (as described in the Experimental section). The bi-cistronic vectors were generated by 

inserting either the APP (pGS-APP) or Tau (pGS-Tau) IRES of DNA fragments in between the  

β-galactosidase (β-Gal) and secreted alkaline phosphatase (SEAP) reporter genes (Figure 1). 
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Figure 1. Construct of pGS-APP and pGS-Tau. The bi-cistronic vectors contain the genes 

for beta-galactosidase (β-Gal) and secretory alkaline phosphatase (SEAP), IRES element 

from the APP or the Tau genes, APP IRES and Tau IRES, respectively. PCMV IE is the 

promoter of human cytomegavirus immediately early promoter. 

2.2. The Tissue Tropism of APP and Tau IRESes and the Effect of Memantine on APP and Tau IRESes 

The ability of IRESes to initiate translation varies greatly in cells of different origin. Therefore,  

we presumed that both APP and tau IRESes could drive more efficient cap-independent translation  

in neuron-like cells, i.e., N2A, than in non-neuronal cells such as COS-1 and CHO cells. To test this 

presumption, we performed transient transfection assays on different cell lines using the plasmids listed 

in Figure 1. 

It was observed that the CHO cells gave a two-fold β-Gal activity upon transfection with the  

pGS-APP plasmid, signifying an efficient transfection of the plasmid DNA as compared to the N2A and 

the COS-1 cells (Figure 2A). However, considering the activity of the reporter protein SEAP, it is 

apparent that the N2A cells showed a significantly increased secreted alkaline phosphatase activity  

that is three times the measured activity in CHO cells, whereas the SEAP activity was not observed in 

COS-1 cells. After normalizing the SEAP activity using the β-Gal assay, results clearly indicated that 

APP IRES favored the cap-independent translation specifically to the N2A neuron-like cells. Similar data 

were obtained after cell lines were transfected with the plasmid containing the tau IRES (Figure 2B). 

It is conspicuously seen in this result that the tau IRES is significantly more functional in the N2A 

cells since the other cell lines tested gave a very little or no SEAP activity at all. In addition, the tau 

IRES was also found to be more functional than the APP IRES in N2A cells considering the six-fold 

increase of the SEAP activity in the cell medium of the N2A cells transfected with the plasmid containing 

the tau IRES. The results presented herein were consistent with the tissue tropism [31] of either APP or 

Tau IRESes [32]. More interestingly, data revealed that memantine was able to inhibit the IRES activity 

of APP or tau without interfering with the cap-dependent translation. At a memantine concentration  

of 5 μM, a significant decrease equivalent to 52% relative APP (Figure 3A) and tau (Figure 3B)  

IRES activity was observed after 24 h treatment. This result implied that memantine, comparable to 

amantadine [30] can also act as an inhibitor of IRESes and on this note, a regulator of the translation of 

the APP and tau proteins. This in turn further supports the previously reported hypothesis [29] that 

memantine has a dual action in the management and treatment of Alzheimer’s disease. Memantine does 

not only obstruct the excitotoxicity of NMDA receptors [33–35] but also halts the expression of APP and 

tau proteins through IRES. The inhibition of the APP IRES and tau IRES by memantine might indicate 

the diminished Aβ production and tauopathies as well as an antagonist of NMDA receptors in AD. 
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Figure 2. Determination of cell tropism of the APP and tau IRES. Transient transfection 

with the corresponding plasmid was performed on mammalian cells (~9 × 104 cells/well) of 

different types using Lipofectamine 2000. Cap-dependent mechanism of translation was 

assessed by β-galactosidase activity in the cell lysate while the IRES-dependent mechanism 

of translation was ascertained through the SEAP activity in the cell medium. Normalization 

was carried out by β-galactosidase assay. (A) Comparison of the APP IRES and (B) Tau 

IRES activity in mouse N2A, CHO and COS-1 cells. 
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Figure 3. Effect of various concentrations of memantine on mouse N2A neuroblastoma 

cells. The N2A cells (~9 × 104 cells/well) were seeded onto a 24-well plate prior to 

transfection. Lipofectamine (2 μL) was used to transfect the plasmid DNA (1 μg) into the 

neuroblastoma cells. At 24 h post treatment with memantine, the culture medium from each 

well was harvested, the cells were lysed, and subsequent SEAP and β-galactosidase assay 

were done, respectively. The effect of memantine on (A) AβPP IRES and (B) tau IRES, as 

evaluated by beta-galactosidase (cap-dependent) and SEAP (IRES-dependent) activities in 

murine neuroblastoma (N2A) cells. 

2.3. Effect of Memantine on Expression of the Amyloid Precursor Protein and Tau in Neuronal Cells 

Aggregated Aβ affects neurons and induces NFT formation and neuronal loss, eventually leading to 

dementia [36]. In a number of cell culture based studies on the assessment of the pharmacological effects 

of memantine, it was revealed that memantine exerted significant activity at a concentration range 

between 1 and 20 μM [35,37,38]. 

In this study, concentrations: 1, 5, 10 and 20 μM of memantine were used to treat mouse N2A  

(Figure 4) and rat hippocampal (Figure 5) neuronal cells and to monitor the expression of tau and APP 

proteins. Tau is a single copy gene in both humans and rats that goes through alternative message splicing 

resulting in multiple isoforms in adults [39]. These isoforms are post-translationally modified via 

phosphorylation [40]. The monoclonal antibody for Tau-1 used in this study identifies an amino acid 

sequence from 192 to 204 in humans and 180–198 in rats when all of the four serine residues are 

unphosphorylated [41]. Western blot analysis confirmed the presence of tau-1 proteins from both neuronal 

(mouse N2A and rat hippocampus) cell lysates treated with various concentrations of memantine (1, 5, 10 

and 20 μM) as revealed by bands at around 52–68 kDa. It is clearly depicted in Figure 4 that memantine 

was able to halt the expression of the tau-1 protein in the murine model as seen through the observed faint 

bands at approximately 52–55 kDa corresponding to different isoforms of mouse tau protein [42] after 

treatment with 10 μM memantine. This is in agreement with the result obtained upon treatment of the rat 

hippocampal cells with memantine wherein the appearance of a diminished bandwidth along ~55 kDa at 

a concentration of 10 μM signifies the stalling of the tau protein expression (Figure 5). Furthermore, 

densitometer scan of gel bands in Figure 5 indicated that expression levels of the tau protein were inhibited 

about 25% with 10 or 20 µM of memantine added in the culture medium of hippocampal cells. It is also 



Int. J. Mol. Sci. 2015, 16 8795 

 

 

evident in Figure 5 that dephosphorylation of the tau-protein may have occurred after it was treated with 

20 μM memantine as shown by the two visible bands at lower molecular weight regions. The experimental 

results therefore provide initial evidence for the potential use of the IRES of the tau protein as a novel 

target for the screening of compounds for the treatment of AD and other tauopathies. 

 

Figure 4. Western blot analysis showing the effect of memantine on tau protein expression  

in the N2A cell lysate. The neuroblastoma cells (~9 × 104) were treated with different 

concentrations of memantine (1, 5, 10 and 20 μM). The PVDF membrane was exposed to  

anti-tau-1 (clone PC1C6) antibody to detect the endogenous tau protein from N2A cells.  

Each lane corresponds to the concentration (1–20 μM) of memantine treatment; Lane C is for 

the untreated cell lysate. Tau protein is visible as bands between the 40 and 55 kDa regions. 

Molecular weight marker is shown left most. β-Actin was used as a loading control. 

 

Figure 5. Western blot analysis showing the effect of memantine on tau protein expression 

in the rat hippocampal cell lysate. The hippocampal cells (5 × 104/cm2) were treated with 

different concentrations of memantine (1, 5, 10 and 20 μM). The PVDF membrane was 

incubated with anti-tau-1 (clone PC1C6) antibody to identify the endogenous tau protein 

from N2A cells. Each lane corresponds to the concentration (1–20 μM) of memantine 

treatment; Lane C is for the untreated cell lysate. Tau protein is visible as bands in between 

the 43 and 55 kDa regions. Molecular weight marker is shown left most. 
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We also evaluated the effect of memantine on the expression of APP by Western analysis and revealed 

a minimal dose-dependent increase in the intracellular APP as the concentration approaches 10 μM. It is 

noteworthy to mention that at a concentration of 20 μM, the intracellular APP was increased markedly 

(data not shown). This result is consistent with the study by Ray et al. [43], where a significant increase 

in intracellular APP levels with a 20 μM dose of memantine in human neuroblastoma cells was reported. 

However, they also show that memantine treatment decreases levels of secreted APP and Aβ peptide in 

their report [43]. These results may imply that memantine can enhance APP protein expression levels 

through an uncharacterized mechanism, although memantine can inhibit APP IRES activity. Such a 

novel property of memantine demands further study to clarify conflicting results and define its beneficial 

effect on AD. 

2.4. Identification of NB34 as a Potent Inhibitor of Tau IRES 

Mementine can inhibit both APP and Tau IRES, indicating that both the IRES could be potential 

targets for compound screening for AD. Traditional Chinese medicines (TCM) have been widely 

investigated for the treatment of Alzheimer’s disease [44], and reports indicated that fermentation  

of these Chinese herbs by microbes, such as Lactobacillus spp., could dramatically enhance the 

concentration of active compounds. Thus, we tried to prepare 92 different preparations that were derived 

from Eleutherococcus senticosus, Lycium chinense Miller, Panax ginseg, Curcuma longa, Radix 

notoginseng and Gastrodia elata after fermentation by Lactobacillus spp. All the preparations were 

named NB1 to NB92. Figure 6A shows that the preparation, named NB34, could inhibit the Tau IRES 

mediated translation activity in N2A cells. We further studied the dose response of NB34 on the Tau 

IRES and APP IRES activity. Figure 6B shows that the NB34 could inhibit the translational activity of 

Tau IRES as low as 0.02 mg/mL, although its effect on translational activity of APP IRES was only 

obvious at 0.05 mg/mL. Thus, we were interested to investigate whether NB34 could work as mementine 

to benefit AD. NB34 is the product of Radix notoginseng fermented by Lactobacillus spp., and 

interestingly, a previous study demonstrated the anti-aging effect of Radix notoginseng on cultured 

neurons of rats with AD [45]. Thus, we tried to evaluate whether this novel NB34 preparation could be 

beneficial for memory in mice using the Morris water maze task. 

2.5. NB34 Inhibits Impairment of Spatial Learning Induced by High Fat Diets during Memory 

Acquisition in ApoE−/− Mice 

ApoE4 allele is recognized as a prominent risk factor for the development of AD in human [46,47]. 

In mice, ApoE protects against neuropathology induced by HFD and mice deficient in ApoE display 

disturbances in learning and memory function such as long-term potentiation [43], loss of synapses with 

age, or cytoskeletal alterations [48–50]. Thus, we employed the HFD feeding of ApoE−/− mice to address 

whether NB34 could improve the spatial memory of HFD-fed ApoE−/− mice. 

To assess whether simultaneous intake of NB34 could reverse HFD-induced learning and memory 

impairments in ApoE−/− mice, a battery of behavioral tests was conducted. Both groups learned to find 

the hidden platform during the acquisition phase of training (days 1–5), which was shown by a 

progressive decrease in latency to reach the platform. NB34-treated mice appeared to reach the platform 

faster than control mice at day 2 (p < 0.05; Figure 7A) and day 5 (p < 0.005; Figure 7A). However, in 
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the probe trial, there was no significant difference in the time spent in the target quadrant between the 

two groups (Figure 7B). 

 
(A) 

Figure 6. Cont. 
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(B) 

Figure 6. Identification of NB34 as an inhibitor for Tau IRES in N2A cells. (A) The N2A 

cells (~9 × 104 cells/well) were seeded onto a 24-well plate prior to transfection. 

Lipofectamine (1 μL) was used to transfect the pGS-Tau plasmid DNA (1 μg) into the 

neuroblastoma cells. At 24 h post treatment with various preparation (0.05 mg/mL) of 

Chinese herbs fermented by Lactobacillus spp., (NB1-92, and only the NB33-45 are shown) 

the culture medium from each well was harvested, cells were lysed and subsequent SEAP 

and β-galactosidase assays were made, respectively; (B) The dose dependence of NB34 on 

translation activity of APP IRES and Tau IRES in N2A cells. M, 0.25 μM memantine. 
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Figure 7. Effects of NB34 on Spatial memory performance in the Morris water maze 

(MWM). (A) Acquisition trials. The time spent to reach the platform (escape latency).  

* p < 0.05 when compared with the corresponding control groups; ** p < 0.005 when 

compared with the corresponding control groups; (B) Probe trial. Probe test performed 24 h 

after the hidden platform acquisition period. Time spent in the target quadrant was similar 

in two groups; (C) Examples of search strategies; (D) Comparison of swimming strategies 

during acquisition phase of MWM between control and NB34 treated ApoE−/− mice combine 

with HFD. Search strategy was examined for first of the 4 trials on different acquisition days. 
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2.6. NB34 Administration Results in Increased Use of Spatial Search Strategies 

To assess the effect of diet on spatial learning, mice were fed diets containing NB34, we also analyzed 

the respective search patterns shown by the mice to locate the hidden platform on each day of the first 

acquisition period in the Morris water maze test. We categorized the behavior of individual mice 

according to the incidence of distinct search strategies, an outcome that is less influenced by locomotion 

deficits. Figure 7C indicated the individual mouse strategies reveal three learning phases, e.g., spatial 

strategy, systemic strategy, and looping strategy, following previously published criteria [51–53]. Three 

different search strategies were defined as follows: swimming directly to the correct target quadrant and 

searching was called the spatial strategy; systematic strategy was defined as searching interior portion 

of or entire tank; and if more than 70% of the swim trace was outside the circle and swimming around 

the wall of tank, it was defined as the looping strategy. The search strategies were examined for the first 

of the four trials on different training days. ApoE−/− mice with NB34 treatment displayed increase spatial 

type (60% vs. 45% from control mice) and reduced looping type (13.3% vs. 17.5% from control mice). 

The mice with spatial strategy for platform indicate better learning behavior than those with looping 

strategy. Comparison of swimming strategies indicated that NB34 treated mice had increased spatial 

strategies for platform, indicating better learning, while control mice, despite having increased systemic 

approaches to platform, also had increased looping approaches indicating poor learning (Figure 7D). 

3. Discussion 

The bi-cistronic assay is considered the gold standard to define internal initiation of translation  

and is one of the most widely used methods for testing supposed IRES sequences [31,54,55]. Thus, we 

constructed bi-cistronic plasmids to monitor the activity of the 5'-UTR of both the APP and tau as well 

as to verify the neurotropism of these IRESes. Notably, the ribosomes and other components of the 

translation machinery were also found in the dendritic processes of neurons, although at minimal 

amounts compared to those found in the cell body [56–58]. Previous reports indicated that APP [20,59] 

and Tau [21] mRNAs can be translated through an IRES. It has been well documented that the APP  

5'-leader contains an IRES and showed that IRES-dependent translation is a mechanism by which 

endogenous APP mRNA is translated [59]. The same is true with the tau protein wherein it exhibits  

the characteristics of a viral IRES that contains a relatively lengthy 5' leader at 250 bp with a high 

guanine/cytosine (G/C) content and this IRES in turn functions in the regulation of the synthesis of the 

tau protein [21]. Therefore, these reports indicate that IRES are good targets for AD treatment due  

to the reason that the internal initiation of translation of the APP and tau mRNAs is an important mode 

for the synthesis of both APP and tau, a mechanism which is controlled by conditions that also contribute 

to AD pathology [59,60]. Based on these observations, we also identified NB34, a preparation of  

Radix notoginseng fermented by Lactobacillus spp. that like memantine could inhibit the translational 

activity of Tau IRES. Interestingly, NB34 could rescue HFD-induced learning and memory impairments 

in ApoE−/− mice (Figure 7). Although the functional components in NB34 that can inhibit the 

translational activity of Tau IRES is unknown, the preparation of Radix notoginseng fermented by 

Lactobacillus spp. might be developed as a potential health food in the future. Thus, identification of the 
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compound(s) that are responsible for NB34 function in learning and memory of ApoE−/− mice would be 

critical and necessary in the future. 

In our study, the NMDA-receptor antagonist- memantine was shown to inhibit both the APP and  

tau IRES without restraining the cap-dependent translation when the concentration of memantine is 

below 10 μM as revealed through the monitoring of the activity of beta-galactosidase in N2A cells 

(Figure 3A,B). The result of our study is in good agreement with the recent study of Ray and  

co-workers [61] where human neuroblastoma SK-N-SH cells treated with 10 μM memantine decreased 

the measured levels of secreted total APP (sAβPP), APPα isoform and Aβ(1–40) in a time dependent 

manner for up to 24 h. 

Result of transient transfection studies in different cell lines clearly implied the preferential activity 

of both APP and tau IRESes on neuronal cells rather than on CHO and COS-1 cells (Figure 2A,B), which 

could be attributed to the tissue tropism of the APP and tau IRESes. Anti-Aβ (β-amyloid) therapy  

has been a standard approach toward the development of treatment against AD. The secretion of Aβ in 

AD leads to the production of highly reactive oxygen species (ROS) and mitochondrial defects [62]. 

Thereby, the continuous secretion of Aβ together with high levels of oxidative stress leads to a cascade 

of events resulting in the degeneration of neurons and eventually cell death. Memantine prevented  

Aβ-induced memory impairment in rats that received bilateral microinjections of aggregated Aβ1-40 into 

the (Cornu Ammonis, CA) CA1 and CA3 subfields of the rat hippocampus has been reported. Nakamura 

and co-workers [63] reported that subcutaneous infusion of memantine at doses of 10 and 20 mg/kg/day 

for six weeks starting 24 h before aggregated Aβ1-40 significantly prevented learning deficits and 

hippocampal damage in rats. Here, we report the effect of the NMDA-receptor antagonist—memantine, 

on the expression of both APP and tau proteins in neuronal cells. In the progression of the debilitating 

Alzheimer’s disease, excitotoxicity is considered as a contributing factor specifically on the induction 

of neuronal cell death [33]. The over-activation of the NMDA type glutamate receptor increases the 

ability of the calcium ions (Ca2+) to enter the cytosol, thus acting as one of the culprits of cell injury, 

damage and even cell death (details are discussed in the review of Lipton [64]). Many studies in vitro 

also suggest that glutamate receptors specifically the NMDA receptors contribute to neuronal toxicity 

produced by the accumulation of the β-amyloid peptide [65,66]. 

In our present study, memantine is also demonstrated to down regulate the expression of tau, 

consistent with our previous report [29]. The biological activity of tau is controlled by the degree of  

its phosphorylation. The abnormally hyperphosphorylated tau sequesters the microtubule associated 

proteins (MAP-1 and MAP-2) or normal tau, resulting in the breakdown of the microtubule networks, 

and subsequent neurofibrillary degeneration and other tauopathies may develop [67]. Studies have 

shown that memantine is capable of modulating the signaling pathways of the protein phosphatase-2A, 

an enzyme responsible for the phosphorylation of tau [27,68]. 

Interestingly, no direct evidence indicated the higher activity of APP and Tau IRES result in higher 

release of Aβ and tau extracellularly and intracellularly, respectively. However, Han et al., analyzed 

published data on the AD blood transcriptome and revealed that the perturbation of cellular functional 

units could lead to the upregulation of cellular IRES activity [69]. This in silico study indicated that 

aberrant expression of APP and Tau IRES might increase the release of Aβ and tau extracellularly and 

intracellularly, respectively. Two unexpected observation are also revealed in Figure 4. First, there were 

two faint but clear bands around 100KDa upon addition of memantine in the N2A cell lysate. Previous 
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studies demonstrated that tau multimers with apparent molecular weights of ~140 and ~170 kDa are in 

fact tau dimers of 120 and 130 kDa, based on Bis-Tris or Tris-acetate SDS-PAGE migration [70]. 

However, the bands around 100 kDa were less than 140 kDa, although the major band that represent the 

monomeric tau proteins were around ~43 and ~60 kDa, consistent with the alternative splicing forms of 

tau proteins. Thus, these extra faint bands might not be the dimers of Tau proteins. However, we did not 

exclude the possibility that the faint bands were dimers of Tau protein at present. Second, densitometry 

analysis using image J on the gel in Figure 4 revealed that the three gel bands observed between 40 and 

55 kDa increased about 65% and 85%, respectively, in the presence of 1 and 5 μM of memantine when 

compared with the control. The control and 10 μM lanes show no significant difference and there was  

a 35% decrease between 20 μM and the control. These results might imply that while memantine can 

inhibit the IRES activity of Tau, it may enhance the expression of Tau proteins within the neuronal cells 

when the concentration of memantine is lower than 10 μM, although 20 μM of memantine indeed 

suppressed the expression of Tau protein in N2A cells. Further studies to clarify these unusual results 

may be beneficial for an understanding of the action mechanisms of mematine on AD. 

Based from the results obtained in our study, memantine can be used as a potential IRES-dependent 

translational inhibitor since it is capable of stalling the activity of tau-IRES, leading to diminished tau 

protein expression. Thus, the action of memantine on AD may be due to its inhibition of NMDA 

receptor-induced excitotoxicity as well as through the inhibition of IRES-mediated translation.  

Our findings also offer a facile method for screening biologically important compounds that may play a 

significant role in arresting the development of Alzheimer’s disease. However, the precise mechanism 

on how memantine inhibits the IRES of both tau and APP remains elusive. These IRESes may form 

specific RNA structures that operate as aptamers or molecular switches in response to the direct binding 

of various compounds to regulate and control gene translation. Further studies are yet to be conducted 

on an in-depth understanding of the mechanism of the IRES-mediated translation in the pathogenesis  

of AD. 

4. Experimental Section 

4.1. Culturing of Cells, Plasmids Construction and Transfection Studies on Mammalian Cells 

The cell lines used in the experiment were COS-1 (African green monkey kidney fibroblast-like cells; 

Bioresource Collection and Research Center (BCRC), Taiwan; 60002), CHO (Chinese hamster ovary 

cells; BCRC, 60006) and N2A (Mouse neuroblastoma; BCRC, 60026). The COS-1 and CHO cells were 

grown in Dulbecco’s medium (DMEM) (Invitrogen, Carlsbad, CA, USA) while the N2A cells were 

grown in Minimum Essential Medium (MEM) (Invitrogen) both supplied with 10% fetal bovine serum. 

The plasmid pUC57 (NCBI No. NM016835) containing the tau IRES DNA fragment was synthesized 

by PROTECH Technology Company, Taiwan. The 240 bp tau IRES was cut from pUC57 by enzymatic 

digestion with Not1 and cloned into the Not1 treated plasmid-pGS-EMCV [69] to replace the EMCV 

IRES fragment. The AβPP IRES DNA fragment was amplified by PCR using two pairs of primers:  

(1 Forward: ATTGCGGCCGCAGTTTCCTCGGCAGCGGTAGGCGAGAGCACGCGGAGGAGCG 

TGCGC; 2 Reverse: TCTGCCCGCGCCGCCACCGCCGCCGTCTCCCGGGGCCCCCGCGCACGC 

TCCTCCGCGT; 3 Forward: TGGCGGCGCGGGCAGAGCAAGGACGCGGCGGATCCCADTCGC 
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ACAGCAGCGCACTC; 4 Reverse: TATGCGGCCGCCGCGACCCTGCGCGGGGCACCGAGTGC 

GCTGCTGTGCGA). The restriction sites in Not1I are underlined. The AβPP IRES containing DNA 

fragment was digested with Not1 and cloned into the Not1 treated plasmid-pGS-EMCV [71] to replace 

the EMCV IRES fragment. The plasmids were generated as pGS-APP and pGS-Tau, respectively 

(Figure 1). In each plasmid, the IRES element from the genes of either APP or tau was flanked 

correspondingly by the reporter genes β-galactosidase and secreted human alkaline phosphatase (SEAP). 

Prior to transfection, cells from the corresponding cell line were seeded onto a 24-well plate at a density 

~9.0 × 104 cells/well. The cells were washed repeatedly with serum-free medium to remove all traces of 

sera. Plasmids were then transfected into the respective cell line using Lipofectamine 2000 reagent 

(Invitrogen). Briefly, the plasmid DNA (1 μg) was diluted with serum-free either DMEM or MEM  

(50 μL), then the Lipofectamine 2000 reagent (1 μL) was added and allowed to form the complexation 

product for 15~20 min, followed by transfection to the respective cells and incubated at 37 °C with 95% 

air and 5% CO2. After five hours, the transfection medium was removed, the adherent cells were washed 

with PBS and then replaced with a fresh medium (with 10% FBS and antibiotics) and the corresponding 

memantine dosage. 

4.2. IRES Reporter Assay 

Memantine solutions were prepared at various concentrations (0.1, 1, 5, 10 and 20 μM) by dilution 

with DMEM or MEM to treat the transfected COS-1, CHO and N2A cells. Twenty-four hours  

post-addition of memantine, the cell culture medium from each well was pipetted out and was kept 

frozen at −20 °C until used for SEAP activity measurement using BD Great EscApe SEAP detection kit 

(Clontech, Palo Alto, CA, USA). Subsequently, remaining cells were lysed for 10 min in 120 μL of lysis 

buffer (Cytobuster™ Protein Extraction Reagen; Novagen, Madison, WI, USA) and was subjected to 

centrifugation at 12,800 rpm for 10 min the lysate supernatant was then assayed for β-galactosidase 

activity using Luminiscent β-Galactosidase Detection Kit II (BD Biosciences, San Jose, CA, USA).  

The chemiluminescence intensity (relative light units, RLU) and was measured with Mithras LB 940 

(Berthold Technologies, Wildbad, Germany) chemical luminescence counter. 

4.3. Western Blot Analysis of the APP and Tau Proteins in Neuronal Cells 

Primary hippocampal neurons were dissociated from the rat fetuses at the 18th embryonic day 

according to the procedures previously described [72,73]. Inhibition of the expression of the tau  

protein was conducted in neuronal cells (N2A and hippocampal neurons). The hippocampal cells  

(5 × 104 cells/cm2) were cultured in MEM (Invitrogen) supplemented with 5% horse serum, 5% FBS, 

0.5 mM glutamine and penicillin/streptomycin (PS, all from Invitrogen) and was allowed to grow for  

24 h prior to testing with a range of concentrations of memantine (1, 5, 10, 20 μM). The memantine-treated 

cells were then lysed using Cytobuster™ (Novagen) and were subsequently analyzed for endogenous 

tau protein expression. Bicinchoninic acid assay (BCA) was done to determine the total protein 

concentration and protein separation was carried out with SDS-PAGE. Western blot analysis followed, 

using the monoclonal antibodies (1:2500) for tau-1 clone PC1C6 (Millipore, Billerica, MA, USA) and 

rabbit polyclonal antibody against APP (ab207; ABCAM Company, Cambridge, UK) to detect the target 

proteins from the cell lysates. 
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4.4. Fermentation of Traditional Chinese Herb 

All the Lactobacillus spp. used in this study were purchased from Bioresources Collection and 

Research Center (BCRC), Hsin Tue, Taiwan and were preserved in Lactobacilli MRS broth (DIFCO, 

Detroit, MI, USA) (−80 °C, with 15% glycerol). To prepare the products of Lactobacillus spp. fermented 

Chinese herb, these Lactobacillus spp. were first activated in Lactobacilli MRS broth with 0.05%  

L-cysteine (100 mL, 37 °C) for 24 h. The Chinese herbs (700 g) were added with the activated 

Lactobacillus spp. and incubated in a 10 liter fermenter with 7 liter culture broth for 24 h at 37 °C. The 

composition of the culture broth contained: peptone (20 g/L); yeastolate (10 g/L) and glucose (70 g/L) 

in potassium phosphate buffer pH 7.4. 

4.5. Preparation of the Fermentation Products 

After the Chinese herbs including: Eleutherococcus senticosus, Lycium chinense Miller, Panax ginseg, 

Curcuma longa, Radix notoginseng and Gastrodia elata were fermented with the Lactobacillus spp., the 

ferments were extracted with 70% alcohol for two days and filtrated twice. The filtrates were collected 

and concentrated with rotary evaporator and then with lyophilizer to remove remained water. The 

powders of these Lactobacillus spp. fermented Chinese herbs were stored in −20 °C freezer before use. 

4.6. Animals 

All procedures were performed according to the National Institutes of Health Guidelines for the  

Use of Laboratory Animals and approved by the Institutional Animal Care and Use Committee of Chung 

Tuan Christian University, Taoyuan, Taiwan. ApoE−/− mice with the C57BL/6 genetic background were 

provided by National Taiwan University (S.W. Lin). Mice (male, 10 weeks old) were randomly divided 

into two groups (n = 8 per group) and were fed either HFD containing 60% of kilocalories from fat 

(TestDiet; LabDiet Cat No. 58Y1) or HFD plus NB34 for 12 weeks. The NB34 group received 4 mg/kg 

body weight (bw)/day NB34 via a gavage of gastric tube for 12 weeks, with dose adjustment weekly 

according to body weight. 

4.7. Morris Water Maze (MWM) Task 

The spatial learning performance of the control or NB34 treated ApoE−/− mice was assessed in a white 

circular water tank (diameter 120 cm, depth 45 cm) filled with tap water (25 ± 0.5 °C). The water tank 

was located in a test room that contained several cues around the maze and remained unchanged during 

the test. Each mouse was subjected to a series trial, 4 trials per day. For each trial, the place where the 

mouse was put in the water differed with four different positions. If the mouse could not find the platform 

within 60 s, it was guided to the platform with a sieve, and after it was on the platform for 20 s it was 

then put into its cage. After completing the 5 days learning of the MWM, memory recall was determined 

by a probe test. This probe test was performed 24 h after the acquisition, and measured the ability to 

consolidate spatial memories. For the acquisition trial the latency period of these control or NB34 treated 

mice to reach the platform were recorded and compared. For the probe trial, the platform was removed 

from the water tank, and the time periods the mice needed to swim in the four quarters were recorded 

and analysed using a video-tracking software (Ethovision XT 7, Noldus Information Technology, 
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Wageningen, The Netherlands). Water maze search strategy analysis was performed as described  

previously [51,52]. The search strategies were analyzed for the first of the four trials of the Morris Water 

Maze for six days. The percentage of each strategy in each group was calculated. Swim strategies were 

characterized as spatial, systematic, or looping, and representative strategies are provided (Figure 7C). 

4.8. Data Analysis 

All data were presented as the means ± SEM. Statistical comparisons were performed by paired or 

unpaired Student’s t-tests, and one-way analysis of variance (ANOVA) or two way ANOVA for repeated 

experiments followed by Fisher’s protected least significant different test. p < 0.05 was considered to 

indicated a statistically significant difference. 
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