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Abstract: Highly sophisticated mechanisms that modulate protein structure and function, 

which involve synthesis and degradation, have evolved to maintain cellular homeostasis. 

Perturbations in these mechanisms can lead to protein dysfunction as well as deleterious 

cell processes. Therefore in recent years the etiology of a great number of diseases has 

been attributed to failures in mechanisms that modulate protein structure. Interconnections 

among metabolic and cell signaling pathways are critical for homeostasis to converge on 

mechanisms associated with protein folding as well as for the preservation of the native 

structure of proteins. For instance, imbalances in secretory protein synthesis pathways lead 

to a condition known as endoplasmic reticulum (ER) stress which elicits the adaptive 

unfolded protein response (UPR). Therefore, taking this into consideration, a key part of 

this paper is developed around the protein folding phenomenon, and cellular mechanisms 

which support this pivotal condition. We provide an overview of chaperone protein 

function, UPR via, spatial compartmentalization of protein folding, proteasome role, 

autophagy, as well as the intertwining between these processes. Several diseases are known 

to have a molecular etiology in the malfunction of mechanisms responsible for protein 

folding and in the shielding of native structure, phenomena which ultimately lead to 

misfolded protein accumulation. This review centers on our current knowledge about pathways 

that modulate protein folding, and cell responses involved in protein homeostasis. 
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1. Introduction 

One of the keystones that has been considered to drive the evolution of organisms, relies on the 

capacity to detect, respond, and adapt to various stressors in the environment through cellular defensive 

mechanisms that protect the entire organism and maintain its capacity to grow and reproduce [1].  

For instance, establishment of preformed enzyme complexes for cell function has been proposed as a 

mechanism used by cells to rapidly respond to homeostasis unbalances [2,3], whereas pathways that 

regulate the conservation of protein folding have a key role [4]. 

Function in proteins largely depends on the acquisition of specific three-dimensional structures by 

folding at physiological time scales. Cells have developed highly controlled mechanisms to maintain 

native protein folding, which include detail three-dimensional structure patterns and specific disordered 

domains. Notwithstanding, although the process is extremely efficient, there is always the possibility that 

this accurate mechanism fails, and, in consequence, finding a protein folded into a non-native state 

becomes a reality [5]. In this case, the structural stability of proteins depends largely on hydrophobic 

residues being oriented towards the protein core. This has allowed evolution to develop a conserved 

warning system, in which the exposure of protein hydrophobic regions is recognized as a molecular 

pattern associated with the presence of cytotoxicity [6]. For instance, oligomerization preceding 

amyloid fibril formation has been associated with cytotoxic effects, which may arise from their 

misfolded conformation in which hydrophobic side chains are exposed to the cytosol [7,8].  

Cytotoxic effects could be triggered by interactions among hydrophobic regions of proteins exposed to 

aqueous microenvironment with cellular biomolecules, such as other proteins, nucleic acids, or lipid 

membranes [9,10]. 

Cells modulate protein folding and protein degradation through extensive signaling networks to 

avoid misfolded protein accumulation [11]. Likewise, cells must not only promote accurate protein 

folding but also prevent the accumulation of misfolded species that may arise from translation errors, 

and synthesis of aberrants mRNAs [12]. Proteomes have been described as multifaceted and constantly 

evolving entities [13]. Then, the understanding of the quality control checkpoints, which are performed 

during normal cell physiology, and those that are activated during protein stress, including the stress 

responses, function of catabolic machineries, and systems of communication among molecules and 

organelles, are subject to an extensive research. 

Most of the signaling proteins used by eukaryotic cells to communicate with their environment are 

assembled in endoplasmic reticulum (ER). Transmission and management of information through 

proteins is crucial for the homeostasis of the organisms, regulating mechanisms such as cell cycle, 

apoptosis, and cell growth [14]. Loss of protein structure can arise from alterations in diverse stages 

during protein synthesis, the degradation process, or changes in concentration of metabolites in the cell 

environment. Given the central role of protein folding in biology, it is interesting to think that a 

misfolding can lead to dysfunction, modifying the cellular mechanism in which the protein is involved. 

In fact, many chronic-degenerative diseases are associated with an aberrant protein folding, modifying 

the condition of protein homeostasis (proteostasis) to cause situations such as ER stress [15–17]. 

Several points of interconnection within pathways responsible for maintaining the cell functions 

converge on mechanisms of protein folding, and therefore, on the conservation of native three 

dimensional structure of proteins. In this paper, the main focus will rely on the analyses of mechanisms 
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related with the chaperone protein function and unfolded protein response (UPR) pathways, in addition 

to strategies developed by cells such as the spatial compartmentalization of protein folding, protein 

degradation by proteasomes, and autophagy; all of these mechanisms connected with the objective to 

conserve the proteostasis (Figure 1). Misfolding condition seen through various topics is a fundamental 

field in the understanding of protein nature, and cells devote many resources for its regulation. 

Therefore, the understanding of these molecular mechanisms is a cornerstone for optimum 

pharmacological treatments of diseases associated with protein misfolding. 

 

Figure 1. Molecular and cellular mechanisms to maintain native protein structure. The 

vertical arrows indicate the mechanisms which cells employ to counteract alterations in 

native protein structure, during their lifetime (horizontal arrow). When the cellular 

machinery designed to control widespread protein misfolding or aggregation fails, apoptosis 

ensues. When apoptosis cannot restrict the systemic spread of protein misfolding, chronic 

diseases originate (red arrow). 

2. Protein Structure 

2.1. Protein Folding 

Cell functions need to be regulated with high levels of efficiency, a condition under strict control is 

the acquisition and maintenance of the native three-dimensional structure of proteins. A protein 

acquires its functional structure through a folding phenomenon, in which its amino acid sequence 

acquires the minimum energy conformation [18]. For folding into a native state, unfolded polypeptide 

chains require the intervention of weak interactions. Driven by hydrophobic interactions, a polypeptide 

chain begins to fold when it is present in an aqueous environment after synthesis, and rapidly becomes 

a molten globule followed by an important release of latent heat. Stabilization of the molten globule is 

achieved mainly through the distribution of hydrophobic residues away from the bulk water. On the 

other hand, because the polar residues contained in a protein develop hydrogen bonds with the water 

network as well as with each other, α-helices and β-sheets can be formed when bonds switch between 

molecules. It has been calculated that such bonds might be in the order of 10−12 s, very similar to those 

we find in water itself [19]. 

The random equilibrium can be shifted toward one of these conformations by means of two stages: 

a fast stage, during which the unfolded polypeptide becomes a molten globule; and a slow stage, in 
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which the molten globule slowly transforms into a fully folded native state [19]. Considering that the 

native state is located at the minimum of the folding funnel, it indicates that this region is the most 

thermodynamically stable configuration of the polypeptide chain [20]. 

Chains of amino acids must acquire their three-dimensional structures in very short time scales, 

which is a requirement to operate within a highly concentrated cellular environment. Although varied 

and intricate structures of globular proteins are encoded by their amino acid sequences, and these 

molecules have an intrinsic ability to fold spontaneously [21], under normal physiological conditions, 

some proteins do not fold into globular structures [22,23], and a negative effect on cell physiology 

might occur. 

2.2. Allosteric Approach to Proteins 

Proteins have been visualized as dynamical objects that interconvert between a diversity of 

structures with varying energies, rather than static sculptures [24]. In this sense, these biomolecules can 

be physicochemically described not as single structures but, rather as conformational ensembles with 

dynamic distributions of states, which can change under different micro-environmental conditions [25]. 

This feature represents a possible association with a new base to understand the allostery, a phenomenon 

related in the first case to describe the dynamic modularity of proteins, and subsequently in the 

possible understanding of cellular dynamics. 

While the function of several proteins has been characterized from an in vitro approach, information 

regarding the influence of the highly crowded cellular environment, or the effect of metabolites  

and molecules on protein function is not complete. Membrane systems, multi-enzyme complexes, 

macromolecular structures, and metabolite concentrations should have a direct influence on protein 

function and, ultimately in the regulation of cell physiology [26]. For example, perturbations in  

the native three-dimensional structure of proteins does not produce isolated effects on the single 

protein but, rather could affect the assembly of macromolecular structures, modifying the surrounding 

microenvironment [27]. 

Traditionally, the allosteric phenomenon has been associated with conformational and functional 

transitions on individual proteins; for instance, regulating many features of enzyme performance. 

However, some authors have extended this concept to include the impact of protein conformational 

perturbations on cellular function [25,28]. It has been proposed that multi-scale organization across 

different levels provides a feedback regulation on specific proteins, and collectively on cell signaling 

pathways. Through this perspective, proteins perform their functions by highly interconnected cellular 

pathway linkages. Therefore, changes in their conformation by allosteric effects, could propagate 

across networks of multi-complex assemblies [25,29]. Then, allostery is proposed as a fundamental 

regulatory device of the cell, used to modulate its activity in response to external and internal stimuli. 

Depending on the stimuli that cells receive, multi-scale spatial cellular organization could shape 

signaling, and coordinate cellular behavior, through protein clusters [30]. The coordination of the 

activities and responses of the cell to its environment could emerge from pre-organized assemblies 

across the cell with different length scales. Together, these conditions provide a framework of a spatial 

organization of signaling cascades, where signaling could proceed through intermolecular interactions 

among and within clusters of proteins [2]. Spatial structure in cells offers a glimpse into the high 
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organization in all levels, from small molecular complexes and assemblies, to local nanoclusters, and 

micrometer scales between cells [31]. Likewise, spatial structure of cell signaling systems could be 

described in function of dynamic allosteric interactions within and among distinct spatially organized 

transient clusters of biomolecules [2]. 

The existence of intrinsic dynamism as well as static properties of biological systems has been well 

established, and although instance the inherent fluctuations within the proteins have been explored in a 

specific view, and linked with processes ranging from the acquisition of the three-dimensional 

structures to the mechanism of enzymatic action [32,33]. In this focus, protein structure can be 

understood as a factor that exerts influence in its surroundings and ultimately in the spatial 

organization of the cell. Additional to their functional native structures, proteins or specific regions in 

them, acquire other conformations including disordered and partially ordered conformations [34]. 

2.3. Partially Folded States in Proteins 

While the partially folded states in proteins are difficult to conceptualize and their experimental 

study is challenging, a wide variety of roles for protein structure disorder has been proposed [35–37]. 

Disordered proteins are visualized as dynamic assemblies, wherein the atom positions and Ramachandran 

angles axis vary significantly over time. Disordered proteins differ from their counterparts structured 

in their dynamics. Intrinsically disordered proteins (IDP) represent a challenge to the previously 

described structure–function concept, in this case the dominant feature is lack of persistent secondary 

and tertiary structure on these proteins [38–40]. 

The large degree of conformational sampling for IDP gives them significant conformational 

entropy, which can be restricted by intra- and inter-molecular interactions. Moreover, it has been 

suggested that loss of conformational entropy upon ligand binding originates a weaker binding for IDP, 

undergoing disorder-to-order transitions in secondary structure upon ligand interactions [41]. Structural 

disorder may span from short segments in specific domains to entire proteins [42], indeed there is 

experimental evidence of random conformations in 1539 domains of 694 proteins deposited in a 

specialized database (DisProt) [43]. The preponderance of disorder in proteins involved in signaling 

networks within higher eukaryotes in comparison with constitutive metabolic proteins or in bacteria [44], 

suggests a specific function for IDP, which might be linked to molecular recognition [45,46]. 

The importance of disorder in proteins is self-evident, as a large portion of molecular interactions 

depend on the complementary interaction between structurally organized proteins and IDPs. This 

structural condition could confer diverse advantages, such as rapid and specific binding, thus the ability 

to carry out some other functions [47]. Interactions among the motifs are usually weak, transient, and 

cellular-milieu dependent [48,49]. For instance, the disordered state is present in proteins associated with 

transcription, signaling, phosphorylation, RNA processing, ubiquitination, ion transport, cytoskeletal 

organization, cell cycle control, and other highly regulated biological mechanisms [50,51]. From an 

evolutionary point of view, it appears that intrinsic disorder in proteins might have been the driving 

force behind many of the adaptability processes found in proteins [5,52]. 

The relevance of the absence of rigid structures in proteins in the establishment of communication 

between protein networks is evident in the cases of the so-called, guardian of the genome, protein p53 

and the proto-oncogene, c-myc, which have long disordered regions [53,54]. The use of IDPs or 
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unstructured domains in proteins can also prove be deleterious as many of the proteins that are 

involved in the most common misfolding diseases are intrinsically disordered. 

Likewise, specific domains or complete proteins lacking defined tertiary structures are known to 

have the fingerprint to undergo disorder-to-order transitions upon binding to specific or multiple 

partners [55,56]. This ability allows the concept of protein disorder to be proposed as an important 

feature in the capability of proteins to present regions with switch properties [57–59], condition that 

could modulate the function, and respond to specific changes in the surrounding microenvironment. 

The basic properties of a switch mechanism must be based on the equilibrium between high specificity 

and weak affinity, accompanied by a large conformational entropy decrease [60]. 

Disorder-to-order transitions in proteins playing normal switching roles in the cell might become 

distorted and therefore abolish or transform the normal protein-protein language into an aberrant one. 

This is the case for α-synuclein, an important protein found in Lewy bodies in the brain of patients 

affected with Parkinson disease [61]. In the situation of prion diseases, the PrP protein was  

isolated from amyloid plaques, in which a clear conformational change in secondary structure from  

α-helix into β-sheet following a templating mechanism, was recognized as the process that could cause 

the misfolding phenomenon [62]. 

2.4. Amyloid Focus 

Cells have developed effective strategies to maintain native protein folding, either through an 

ordered three-dimensional structure or the use of disordered domains [37]. However, the amyloid 

fibrils which represent self-associated species of peptides and proteins [63], considering their 

remarkable structures and properties, are of particular interest. Misfolding of normally soluble peptides 

and proteins has been associated with about 50 disorders with a multitude of different symptoms,  

in which mechanisms of non-native interactions could form aggregates, including the archetypal 

amyloid-like fibril [64,65]. 

Amyloid state has been proposed as a generic condition, being accessible to different polypeptide 

chains, and, unlike the native state, its essential three-dimensional architecture is not encoded by the 

amino acid sequence [66]. Determined through X-ray fiber diffraction studies, amyloid fibrils show a 

common cross-β pattern that is indicative of a structure mainly β-strand, being oriented perpendicularly 

to the fibril axis [63,67,68]. The cross-β architecture provides great stability to the fibrils because it 

allows the formation of a continuous arrangement of hydrogen bonds [69], complementary steric 

interactions. and the formation of a repetitive structural pattern. 

Amyloid structures are relevant not only in the context of disease, but also because their occurrence 

challenges in many ways our current understanding of the nature, structure, and evolution of the 

functional state of proteins [70–73]. From a wide range of experiments on peptides and proteins, we 

now know that the formation of amyloid structures is not a rare phenomenon associated with a small 

number of diseases, but rather that it reflects a well-defined structural folding of proteins [66,70,74]. 

Functional amyloids have been described in organisms such as bacteria [75,76], fungi [77–79],  

insects [80,81], and mammals [82,83]. Specific cellular function related with the formation of  

amyloid-like fibril structures has been described, suggesting that amyloid deposition can be a common 



Int. J. Mol. Sci. 2015, 16 17199 
 

 

property of the polypeptide chains. The difference between functionality and apparition of toxicity may 

depend on the regulatory mechanisms that cells have evolved to modulate their formation. 

The transition of a protein from its functional native conformation to amyloid fibrils is a complex 

phenomenon that results from the interplay between various elementary processes and a rearrangement 

in molecular interactions on precursor proteins. As aggregation produces arrangements of different 

oligomers, various types of toxic species can be expected considering a mixture of molecular 

populations, indeed almost any misfolded specie is likely to have the potential to generate at least some 

level of toxicity [84]. 

A panorama has emerged over the past 15 years that mature amyloid fibrils are not primary toxic 

compounds, but molecular species which are precursors to their formation, such as oligomers. Possibly 

in the primary mechanism of fibril formation, the exposure of hydrophobic residues is critical for the 

nucleation process, a condition that would favor the formation of intermolecular contacts, offering 

thermodynamic stability for the amyloid structure (Figure 2) [85]. Although many of the protein 

characteristics that preclude amyloid formation are encoded by their amino acid sequences, the 

elucidation of this code has enabled the identification of factors that determine the aggregation  

propensity of proteins [86,87]. 

 

Figure 2. Cell mechanisms that control protein structure. Alterations in protein structure 

during folding can result in anomalous interactions with inner membranes through the 

exposition of hydrophobic surfaces. Cellular mechanisms, such as proteasome activity and 

autophagy, could reduce toxic effects of these molecules, and ultimately prevent cell 

damage. Likewise, these processes occur during physiological protein turnover (Adapted 

from [6]). 
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Under the exposition of hydrophobic patches to the aqueous medium, proteins might find a stable 

conformation to decrease major toxic effects through the formation of amyloid structures. Misfolded 

proteins tend to expose hydrophobic regions, which are normally hidden from the aqueous environment, 

either by folding characteristics, insertion into membranes or by the support of accessory molecules. 

This exposure may cause cytotoxic effects, especially associated to anomalous interaction with lipid 

membranes, in turn causing serious damage to the bilayer. Activation of the innate immune response 

leading to inflammation has been described as one of the first mechanisms of toxicity associated with 

prions, amyloid β (Aβ) peptide, amylin, and other proteins [88]. 

Likewise, cell damage and death are likely to become widespread only when misfolded  

and aggregation-prone species, reach levels that can overwhelm the defensive housekeeping  

systems [37,38,89,90]. This breakdown of proteostasis [89,91] can lead to a situation that is known as 

protein metastasis, in which initial aggregation events trigger a cascade of pathological processes that 

could mark the progression of disease [92]. 

3. Mechanisms to Conserve Protein Structure 

During their functional lifespan, proteins can undergo deviations from their native three-dimensional 

structure. In order to maintain the native protein folding, cells have developed various strategies to 

accomplish this task, through sophisticated chaperone and quality control networks that can resolve 

damage at the level of protein, organelle, or cell (Figure 1). For instance, on the smallest scale, the 

integrity of individual proteins is monitored during their synthesis in ribosomes, and coupled with  

co-translational chaperone function. On a larger scale, cells use compartmentalized defenses and 

networks of communication capable of signaling between cells, and so respond to changes in the 

proteome homeostasis [13]. Together, these layered defenses help protect cells from alterations in protein 

folding and degradation, avoiding the appearance of misfolded proteins and deleterious events [40]. 

The organization and evolutionary dynamics of the proteome provide a line of defense in protein 

quality control, wherein sequences have evolved to avoid aggregation, most proteins tend to be short 

and fold efficiently. This allows the energy-dependent chaperone systems to preferentially protect 

long, aggregation-prone, but functionally important proteins. This condition justifies the need for 

energetically costly quality control mechanisms to secure protein folding [93,94]. 

3.1. Chaperone Protein Function 

Molecular chaperones are central elements of these quality control systems, as they facilitate protein 

biogenesis by assisting polypeptide folding, translocation, and assembly of newly made proteins in  

the crowded cellular environment [95,96]. While denatured proteins can refold in vitro without  

auxiliary factors, in the crowded molecular cell environment highly specific folding machinery is 

required, considering that several billion of protein molecules could exist at concentrations from 50 to 

300 mg/mL [97,98]. 

The recognition of partially unfolded proteins through exposed hydrophobic patches [99,100] 

allows the binding of molecular chaperones to a large variety of different protein folding intermediates, 

this condition prevents non-specific protein interactions (Figure 2). Likewise, this chaperone function is 

associated with proteins during conditions such as the denaturation processes, oligomeric assemblies, 
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proteins that have been translocated to a cell compartment, and during the assistance of proteolytic 

degradation [101]. This offers protection of biological molecules against stress-induced unfolding, 

along with support of the proteasome quality-control machinery which recognizes unfolded molecules 

and subsequently degrades them [102–104]. Thus, molecular chaperones inhibit the formation of 

protein aggregates maintaining proteins in a native conformation [105,106]. 

Molecular chaperones, also known as stress proteins or heat shock proteins (Hsp) are classified into 

families on the basis of molecular weight monomers (Hsp40, Hsp60, Hsp70, Hsp90, Hsp110 and small 

Hsp), although most of them exist as oligomers. Based on the sort of interaction with client proteins, 

chaperones are also classified in holdases, foldases, and disaggregases. Holdases are ATP-independent 

proteins, which can recognize and stabilize partially folded proteins, preventing their aggregation and 

presenting client proteins to foldases. The ATP-dependent foldases are directly involved in protein 

folding. Disaggregases are also ATP-dependent, which disaggregate the client protein aggregates and 

transfer the partially folded proteins to a holdase and/or foldase [107,108]. 

Chaperones Hsp70, Hsp90 and Hsp60 recognize hydrophobic side chains exposed to water 

environment in unfolded proteins. This activity is achieved with the support of ATP-independent 

chaperones, and the small Hsp (Hsp10 and Hsp40), which function as holdases, and are denominated 

co-chaperones. Binding of chaperones to these hydrophobic regions temporarily blocks protein 

aggregation, while ATP hydrolysis is important to allow folding of client unfolded proteins [101,109]. 

Although Hsp70 and Hsp60 share this mechanism to perform their function, they show a significant 

difference because Hsp70 releases the client protein for its folding in solution, while Hsp60 form  

a cylindrical multimeric complex within which the folding of client protein occurs. The Hsp10 

functions as a lid of the Hsp60 complex to close its cavity, whereas the hydrolysis of ATP induces 

conformational changes in the inner surface of the cylindrical complex, allowing the folding of client 

protein [110]. Hsp60 with the support of its co-chaperone Hsp10 is responsible for folding and the 

refolding ATP-dependent, mechanism that allow up to 30% of folding in cells [111]. 

Chaperones of the Hsp70 family are regulated by co-chaperone Hsp40, preventing the aggregation 

of unfolded proteins. This process is involved in folding of proteins that have been translocated to a 

cellular compartment, in turn regulate the heat shock response, and disassemble multimeric protein 

complexes [111]. Hsp70 and Hsp90 are present in abundance within the ER. 

Immunoglobulin binding protein (BiP) also known as GRP78 is the major Hsp70. Specifically, BiP 

binds short stretches of hydrophobic residues exposed to the aqueous environment in unfolded proteins, 

its activity reduces the effective concentration of aggregation-prone sequences. BiP allows progression 

of folding through release and rebinding cycles in unfolded protein substrates, consuming ATP during 

the process. With each release cycle, the client protein has the opportunity to fold. In this sense, 

folding competes with chaperone binding, and both processes offer the thermodynamic stability to 

proteins to acquire native structure [15,112]. 

Heat shock response (HSR) is coupled with the disposition of denatured proteins in the  

cytosol [113,114]. The transcription factor heat shock factor 1 (HSF1) is a key molecule in the 

coordination of HSR. This transcription factor is activated during cellular stress induced by the 

presence of unfolded proteins, and leads to the transcription of chaperones and other genes that 

modulate the folding. Under normal conditions, HSF1 in a monomeric inactive form is bound to the 

cytosolic Hsp70 and Hsp90. However, when the load of unfolded proteins increases, these chaperones 
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will dissociate from HSF1 and be recruited to unfolded protein localization. Then, HSF1 trimerizes 

and translocates to the nucleus, where it is post-translationally modified by phosphorylation, and 

activates the transcription of HSP genes by binding to DNA containing heat shock elements [115]. 

Although, most knowledge about chaperone function comes from studies of chaperones with  

well-defined three-dimensional structures such as Hsp70 and Hsp90 [116], information regarding 

client-protein interactions which depend on large ATP-driven conformational rearrangements and 

interactions with co-chaperones is lacking [117,118]. Regions lacking defined three-dimensional 

structures in chaperones have shown to be critical for the function of certain chaperones, because they 

could modulate direct interactions with target proteins [116,119]. The lack of an ordered structure in  

regions of chaperones has also been suggested to be important for their ability to bind multiple 

aggregation-sensitive client proteins [35]. Disordered chaperones could represent a unique  

structure-function relationship, because their structural adaptability enables them to interact with 

structurally diverse targets through direct molecular contacts [116]. Disordered regions of proteins 

could assume diverse conformations upon binding to different partner proteins [35], and their 

chaperone functions could be extended. 

3.2. Endoplasmic Reticulum Stress 

Protein folding assistance through chaperones is complemented by the role of certain organelles. 

Considering that about one-third of the human proteome is synthesized in ER and transits to membrane 

compartments, the ER is an organelle that plays key roles in cell homeostasis, such as protein folding 

in the protein secretory pathway, lipid biosynthesis, and calcium storage. Lumen of ER is the major 

site for protein folding in the cell as it contains a variety of molecular chaperones and protein-folding 

enzymes [120]. Therefore, only properly folded proteins are packaged into ER vesicles for further 

transport to destination sites [121]. Proteins enter to ER as nascent, unfolded polypeptides at rates that 

can vary widely within the cell depending on the requirements of metabolic conditions [122]. When 

this machinery is overwhelmed by the increased demand of protein folding capacity, cells suffer a 

condition known as ER stress, a consequence of accumulation of unfolded or misfolded proteins in the 

lumen [15]. 

Through a network of intracellular signaling pathways that maintain the folding capacity [122], 

UPR is used to re-establish the homeostasis of protein folding function in ER [15]. UPR regulates 

translation and gene transcription to reduce the protein-folding load, in turn, increasing the folding 

capacity to contend with stress conditions. Distinct downstream signaling pathways are modulated for 

UPR signal transducers, three branches operate in parallel, whereas each branch is defined by a 

specific transmembrane ER-resident signaling component: IRE1 (inositol requiring enzyme 1), PERK 

(PKR-like ER kinase), and ATF6 (activating transcription factor 6). Synthesis of ER resident 

chaperones and folding catalysts, is induced to increase the folding capacity; and global mRNA 

translation is attenuated to decrease the folding load [123]. Likewise, through a process called  

ER-associated degradation (ERAD) misfolded proteins could be retained in the ER and retrotranslocated 

into the cytosol for proteasomal degradation [124]. UPR operates within the context of a translocation 

machinery that is compartmentalized between cytoplasm and ER [125]. 
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ATF6 is a transcription factor that is initially synthesized as an ER-resident transmembrane protein 

bearing a large ER-luminal domain. Upon accumulation of unfolded proteins, ATF6 is packaged into 

transport vesicles that pinch off the ER and deliver it to the Golgi apparatus [126]. ATF6 is processed 

by two proteases, S1P and S2P (site-1 and site-2 protease), that sequentially remove the luminal 

domain and the transmembrane anchor, respectively [127,128]. The liberated N-terminal cytosolic 

fragment, ATF6 (N), then moves into the nucleus to activate UPR target genes involved in protein 

folding, such as BiP, the protein disulfide isomerase, and GRP94 (glucose-regulated protein 94), a 

chaperone of the Hsp90 family [14]. 

The second branch of the UPR is coordinated by PERK. When it is activated upon sensing ER 

stress, PERK oligomerizes and phosphorylates itself and the ubiquitous translation initiation factor 

eIF2α, then indirectly inactivates eIF2 and inhibits the global translation of mRNA, conditions that 

ameliorate the ER stress [14]. Concomitantly, translation of the transcription factor ATF4 is induced, 

which promotes transcription of two important target genes, CHOP (transcription factor C/EBP 

homologous protein) and GADD34 (growth arrest and DNA damage-inducible 34). CHOP is a 

transcription factor that controls genes encoding components involved in apoptosis. GADD34 encodes 

a PERK-inducible regulatory subunit of the protein phosphatase PP1C that counteracts the action of 

PERK by dephosphorylating eIF2α [14,129,130]. Then, this pathway has an intrinsic feedback regulation. 

The best-studied branch of UPR is IRE1, which transmits UPR signaling through a bifunctional 

transmembrane kinase/endoribonuclease that splices mRNA through a non-conventional mechanism. 

Binding of unfolded proteins triggers conformational changes following lateral oligomerization on the 

ER membrane, which in turn activates the IRE1 ribonuclease activity. Furthermore, IRE1 processes 

the mRNA of transcription factor XBP1 (X-box binding protein 1) [14] (Figure 3). This active, 

processed form of the transcription factor XBP1s controls expression of genes with X-box elements in 

their promoters, genes encoding ER chaperones and folding catalysts [131–134]. Additionally, the 

IRE1/XBP1 pathway is essential to activate genes which carry out ERAD functions [135], promoting 

the development of an elaborate ER response [136]. Active conformation of the kinase domain of 

IRE1 has been revealed through its crystal structure, to be an oligomeric assembly [122]. Indeed 

ribonuclease activity of IRE1 has been described to be proportional to the extent of IRE1 

oligomerization [137]. 

UPR represents a focal point where different sources of stress converge, and stress signaling is 

coordinated within tissue hierarchies and further integrated [14]. Several activated transcription factors 

generated by UPR enter the nucleus and activate the production of their target genes, this mechanism 

establishes a feedback loop that relieves the ER stress by supplying more ER protein-folding capacity 

according to cell requirements [138]. In addition to linear information flow, the three branches of UPR 

transmit information to each other through a phenomenon known as cross-talk to fully integrate the 

signaling networks [139]. Nodes of interaction and communication between proteins required for 

cellular function should be highly regulated. 

More experimental evidence is needed to fully understand specific thresholds necessary for the 

activation of stress signaling pathways, and in turn when homeostasis is reached again, the mechanisms 

that allow these responses to be turned off. For instance, IRE1 and PERK signaling duration is critical to 

determine the fate of cells during prolonged stress [140]. Therefore, when homeostasis cannot be  
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re-established, UPR switches from a protective mechanism to a cytotoxic response [141], indeed UPR 

can function as an apoptotic executor which decreases cell viability (Figure 3). 

Taking into account that ER must manage folding and modification of proteins in concentrations 

surpassing 100 mg/mL [142], recognition of unfolded proteins must be a highly precise mechanism  

to initiate the correct cellular response. Additionally, other mechanisms constitute a stress adaptation 

pathway that could reestablish homeostasis of proteins. 

 

Figure 3. Activation of the inositol requiring enzyme 1 (IRE1) branch of the unfolded 

protein response (UPR) pathway is tightly controlled. (A) Schematic representation of 

IRE1 oligomerization and cellular response induced by unfolded proteins. The structure 

employed was obtained from the protein data bank (PDB) access code: 3fbv;  

(B) Uncontrolled protein aggregation in the formation of amyloid fibrils; (C) Effect of the 

overactivation of IRE1 branch on cellular homeostasis. Adapted from reference [141];  

(D) Structural representation of IRE1 with a focus on the surface of interaction between 

monomers. Inset: sterol binding site, with two bound molecules of quercetin. Structure was 

obtained from PDB access code: 3LJ0. 

3.3. Spatial Compartmentalization of Protein Folding 

Connections between loss of proteostasis, protein aggregation phenomenon, and conditions ranging 

from ageing to neurodegeneration, underscore the importance of the knowledge of the mechanisms 

that cells employ to manage protein misfolding [142]. For instance, it is estimated that up to 15% of 
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nascent chains in human cells are co-translationally tagged for degradation, which emphasizes the 

importance of co-translational degradation in protein quality control at the ribosome [143,144]. Cells 

must not only promote accurate folding but also must prevent the accumulation of misfolded species 

that may arise from inefficient folding, errors in translation, and aberrant mRNAs [145]. 

An important condition to maintain the functionality of cells is associated with localization of 

misfolded or aggregated proteins into specialized compartments that are distinct from the organelles. 

Cytotoxicity is avoided through the confinement of misfolded proteins, aggregates, or amyloid like 

structures within appropriate and specific subcellular compartments, thus avoiding the subsequently 

nucleation of protein aggregates. In this sense, cells have developed mechanisms to solubilize and  

fold these proteins, when possible, leaving degradation in defined quality control compartments as a  

last-resort mechanism [146]. 

When quality control machineries fail, such as those previously mentioned, protein-controlled 

sequestration into specific compartments represents an alternative cellular defense against proteotoxic 

stress [147–149]. Upon proteasome impairment, misfolded proteins are distributed into spatially and 

functionally distinct compartments. Evidence has revealed a conserved sequestration of ubiquitinated 

proteins into membrane-enclosed juxtanuclear compartments, such as JUNQ (juxtanuclear quality 

control compartment). JUNQ is a cellular quality control space wherein soluble misfolded proteins 

accumulate for refolding or proteasomal degradation [150]. 

Under proteotoxic conditions in a cell, several chaperones and proteasome complexes can be 

located surrounding the JUNQ compartment, suggesting that JUNQ allows the concentration of 

misfolded proteins with chaperones, therefore increasing the probability of refolding, as opposed to 

simple uncontrolled degradation [151]. Substrates targeted to JUNQ are primarily soluble proteins, 

which are rapidly exchanged with the surrounding environment. When native folding is not reached, 

JUNQ substrates are ubiquitinated and recruit proteasome components, triggering protein degradation. 

In an important manner, when these mechanisms fail or are diminished, protein misfolding has been 

observed by the formation of amyloid fibrils [152,153]. In parallel, diverse strategies have evolved to 

maintain the native structure of proteins for prolonged periods of time, and avoiding their conversion 

into non-functional misfolded structures [154]. 

Distinct cytoplasmic structures, spatially distant from JUNQ have been observed to contain large 

and highly insoluble aggregates [150]. These compartments denominated IPODs (insoluble protein 

deposits) contain insoluble aggregates and amyloid like-fibrils; whereas multiple IPODs can exist at 

the same time in cytoplasm, only a single JUNQ is found within each cell. These types of compartments, 

underscore their essential function in sequestering proteins and triaging them to re-establish native 

protein folding or initiate protein degradation. 

While misfolded polypeptides of JUNQ are sequestered in a detergent soluble state, and the 

aggregated polypeptides are retained in IPOD [142], other compartments have an important function; 

Q-bodies whose formation and processing depend on the cortical ER. The maturation and clearance of 

Q-bodies require chaperones Hsp70 and Hsp90 [142]. 

Biochemical functions of chaperones and their spatial localization within the cell are fundamental to 

understand folding impairments during pathological states [142,155], and considering the presence of a 

dynamic relationship between damaged and aggregated proteins, the function of these compartments 
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could be very important to maintain the proteostasis in the first instance, and collectively cell 

homeostasis [156]. 

3.4. Proteasome, Structure, and Function 

Nascent or newly synthesized polypeptides are predisposed to a high quality control process 

associated to their folding, avoiding the accumulation of anomalous proteins. Most studied systems to 

maintain proteostasis, are performed by molecular chaperones, as well as two mechanisms of protein 

degradation, the ubiquitin-proteasome system and the lysosomal proteolysis through autophagy [157–159]. 

Proteasome (26S) is a multimeric complex whose function is protein degradation through its 

endoprotease activity. Proteasome acts primarily on short-lived proteins with regulatory functions and 

on misfolded proteins. Protein degradation is a specific and efficient process, which depends on  

ATP. It is involved in functions such as modulation of cell cycle, apoptosis, and cell differentiation, 

response to extreme temperature changes, oxidative stress, immune responses, genetic regulation, and 

metabolism [160,161]. 

The 26S proteasome is directly associated to protein degradation via the ubiquitin system. It is 

composed of a catalytic subunit comprising a cylindrical central structure with proteolytic activity, 

denominated 20S proteasome. Additionally, two regulatory subunits 19S are present, which have 

ATPase activity; these are involved in recognition and elimination of ubiquitin chains. Likewise, 19S 

subunits participate in the unfolding of client proteins [160] (Figure 4). 

The 20S catalytic subunit consists of four complexes arranged in the manner of a ring, forming a 

hollow cylindrical structure. Each ring consists of seven different protein subunits, two rings consist of 

subunits denominated α (α1–7) located at the ends of the cylindrical structure, the other two rings 

consist of subunits called β (β1–7) and are located in the central area [162]. The N-terminal domains of 

α-subunits occlude access to the interior of the proteasome, while three of the β subunits have a 

protease activity. Therefore, the 20S subunit is a structure α1–7, β1–7, β1–7, α1–7, with proteolytic capacity 

and highly conserved between eukaryotes [163,164]. 

The 19S regulatory subunit is a complex consisting of at least 19 protein subunits, which are 

distributed to form the base and lid of the 19S subunit. The base is formed by six proteins with ATPase 

activity (Rpt1–Rpt6) that are in contact with α-subunits of the 20S proteasome, and four proteins 

lacking ATPase activity (Rpn1, 2, 10, 13). The protein subcomplex which makes up the lid is 

integrated by proteins without ATPase activity (Rpn3–9, 11, 12), but contains binding sites for 

recognition of ubiquitinated proteins, and maintain a function of deubiquitinase [162,165,166]. 
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Figure 4. Scheme of the 26S proteasome. Proteins that make up the base and lid of the 19S 

regulatory subunit are shown. The cylindrical portion of the 20S catalytic subunit is shown 

in an open conformation, showing the arrangement of α and β proteins identified in orange 

and blue, respectively (Adapted from [167]). 

The client proteins must have at least four ubiquitins attached to be recognized. Recognition and 

anchoring occurs through Rpn10 and Rpn13, which associate with polyubiquitin. Rpn11 accomplishes 

the remotion of ubiquitin chains. Proteins with ATPase activity in the 19S subunit perform the 

unfolding of ubiquitinated proteins while interacting with the α proteins of the 20S subunit, a condition 

that allow its opening, and leads to client proteins into the 20S subunit [163,168,169]. 

Proteolytic activity of the 20S proteasome subunit lies in the extreme N-terminus of the subunits β1, 

β2, and β5 of β-rings. β1 subunit has a caspase activity on amino acids, β2 shows the trypsin activity 

on basic amino acids, and β3 subunit a chymotrypsin activity on hydrophobic amino acids. Even more,  

in vitro experiments have shown that the 20S subunit alone can present proteolytic activity, generating 

peptides of 3–15 residues [167]. 

Alzheimer’s, Parkinson’s, and Huntington’s diseases are characterized by dysfunction of the 

ubiquitin-proteasome system, and accumulation of misfolded proteins in the central nervous system. 

Particularly, in Alzheimer’s disease, the patient has two important lesions, extracellular amyloid 

plaques, and intraneuronal neurofibrillary tangles formed by Aβ peptide [170,171], which is generated 

through sequential cleavage of amyloid precursor protein (APP). In vitro experiments showed that 

Aβ40 directly binds to the inside of 20S proteasome and selectively inhibits its chymotrypsin-like 

activity [172,173]. More recent evidence shows that Aβ42 also impairs proteasome activity [174,175]; 

both of them may be endogenous inhibitors of the proteasome. This condition is a consequence of 

dysfunction of the ubiquitin-proteasome and its possible association to disease. 
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3.5. Autophagy Mechanism 

Autophagy includes a lysosomal degradation pathway, in which cells self-digest their own 

components, and has been shown to be essential for survival, differentiation, development, and 

homeostasis. Autophagy involves the sequestration of cytoplasmic components in double membrane 

autophagosomes, wherein these structures fuse with lysosomes and their cargoes, and are delivered for 

degradation and recycling [176]. 

Mechanisms of autophagy play an important role in removing protein aggregates and organelles that 

fail to be degraded by the ubiquitin-proteasome system [177]. Furthermore, the role of autophagy in 

maintaining macromolecular synthesis and ATP production is likely a critical mechanism underlying 

its evolutionarily conserved pro-survival function [178]. For instance, when cells suddenly undergo a 

surge in metabolic demand, autophagy may be needed to generate sufficient intracellular metabolic 

substrates to maintain energy levels. This self-digestion process not only provides nutrients to maintain 

cellular functions during fasting, but can also relieve cells of superfluous or damaged organelles, 

misfolded proteins, and invading microorganisms [179]. Indeed, it has been described that autophagy 

could provide an adaptive role to protect organisms against diverse pathologic conditions; which 

include: cancer, neurodegeneration, aging, and heart disease [180]. 
Through this process, cells carry out double-membrane vesicles, denominated autophagosomes, which 

could sequester organelles, proteins, or portions of the cytoplasm for delivery to the lysosomes [159].  

The core pathway of mammalian autophagy begins with the formation of an isolation membrane  

(also called a phagophore), and involves a minimum of five molecular components, including (1) the 

AuTophaGy related 1 (Atg1)/unc-51-like kinase (ULK) complex; (2) the Beclin 1/class III 

phosphatidylinositol 3-kinase (PI3K) complex; (3) two transmembrane proteins, Atg9, and vacuole 

membrane protein 1 (VMP1); (4) two ubiquitin-like protein conjugation systems (Atg12 and 

Atg8/LC3); and (5) proteins that drive fusion between autophagosomes and lysosomes. It has been 

described that some of these core autophagy pathway components are directly modulated by cellular 

stress signals [181,182]. 

Several functions of autophagy, such as, elimination of defective proteins and organelles, prevention 

of protein aggregate accumulation, and clearance of large poly-ubiquitinated proteins, overlap with 

those of the ubiquitin-proteasome system; however, pathways leading up to autophagy are uniquely 

capable of degrading entire organelles such as mitochondria, peroxisomes, ER, as well as intact 

intracellular microorganisms [183]. Unlike proteasomal degradation, the autophagic breakdown of 

substrates is not limited by steric conditions, because substrates do not need to be unfolded to pass 

through the narrow pore of the proteasomal barrel. Oligomeric and aggregated proteins are poor 

substrates for proteasomal degradation, and better targets for autophagic degradation; therefore, 

preventing the intracellular accumulation of misfolded proteins and contributing to the proteostasis [183]. 

Autophagy is also upregulated when cells undergo remodeling events, such as developmental 

transitions or to rid themselves of damaging cytoplasmic components, during oxidative stress or 

infections [182]. Likewise, autophagy is activated as an adaptive catabolic process in response to 

different forms of metabolic stress, including growth factor depletion and hypoxia [183]. Through 

autophagy, bulk degradation generates free amino acids and fatty acids that can be recycled or further 

processed to maintain ATP production in cells when it is required [182]. 
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Nevertheless, alterations in autophagy could result in the accumulation of ubiquitinated and 

aggregated proteins, and in turn damaged organelles. In experimental diseases, the self-cannibalistic or, 

paradoxically, even the prosurvival functions of autophagy may be deleterious [182]. Autophagosomes 

have been observed to accumulate in the brains of patients with diverse neurodegenerative diseases, 

including Alzheimer, transmissible spongiform encephalopathies, Parkinson, and Huntington [182]. 

For instance, autophagosomes accumulate in dystrophic neurons of Alzheimer’s disease patients, 

possibly as a result of impairment in autophagolysosomal maturation, consequently contributing to the 

accumulation of pathogenic Aβ peptide [184]. 

On the other hand, the pharmacological activation of autophagy reduces the levels of soluble and 

aggregated conformations of mutant huntington, mutated proteins in spinocerebellar ataxia, as well as 

mutant forms of α-synuclein and tau. This activation reduces cellular toxicity and their neurotoxicity in 

mouse and Drosophila models [185]. Particularly in these models, neuroprotection modulated by 

autophagy may be due to a quantitative reduction in the amounts of toxic protein species as well as 

anti-apoptotic effects [185]. 

Autophagy can influence life and death decisions of cells, being cytoprotective or self-destructive; 

and being directly linked to apoptotic death pathways. Based on the knowledge of physiological 

functions of autophagy, it has been determined that both, basal levels of autophagy and stress-induced 

increase of autophagy, are likely determinant in mammalian homeostasis [186]. 

4. Clinical Focus 

Several regulatory and control strategies have evolved in biological systems to protect the 

phenomenon of protein folding. Molecular chaperones, protease activities, and molecular factors work 

together to refold or remove proteins [187]. When these defensive housekeeping systems of cells are 

unable to counteract with these challenges and homeostatic systems are gradually deteriorated, 

pathological conditions associated with misfolding become evident [11,90,188]. Even without genetic 

defects, protein translation is sufficiently error-prone to allow a missense mutation in proteins  

every 1000 to 10,000 amino acids, resulting in defects between 4% and 36% of all new proteins 

synthesized [189–191]. This can be tolerated if these proteins can be degraded, but when the load is 

excessive, as occurs during cell stress, cell death could appear [192,193]. 

4.1. Neurodegenerative Diseases 

Mechanisms preventing amyloid fibril formation are associated with properties of cell environment, 

including the location of proteins within specific compartments [150,194], as well as the presence of 

molecular chaperones and degradation mechanisms, such as the ubiquitin–proteasome system and 

autophagy [195–199] (Figure 2). Protein misfolding is developed when proteins are unable to attain or 

maintain their biologically active conformation [187]. 

Protein misfolding and formation of toxic aggregates, for instance could affect the proteostasis in 

cells to induce ER stress, and in this condition, UPR is required. Likewise, molecular chaperones can 

target specific steps in the process that leads to misfolding, specifically inhibiting either primary or 

secondary nucleation processes [200], such as the case of the Hsp70 function [201]. 
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The disturbance of proteostasis can lead to a situation that is considered a metastasis in proteins, 

therefore initial aggregation events trigger a cascade of pathological processes that could mark the 

progression of chronic-degenerative diseases [202]. In cases such as Aβ peptide, α-synuclein, and 

others peptides, the direct connection between misfolding and the formation of amyloid fibrils, is 

determined by structural transitions at the molecular level [40]. Therefore, amyloid formation is 

triggered when the protective mechanisms have been exceeded, or due to malfunction of mechanisms 

of cell regulation [40]. 

Protein aggregation and amyloid formation are two fields that have been extensively studied by the 

association of amyloid deposition with a range of chronic degenerative disorders, from Alzheimer’s 

disease (AD) to diabetes mellitus type 2, many of which are major threats to human health and welfare 

in the modern world [203,204]. AD is characterized by cognitive alterations, memory loss, and 

behavioral changes. Amyloid plaques and neurofibrillary tangles are the hallmark lesions in the 

pathology and both arise from protein misfolding phenomena [205]. In this condition, the Aβ peptide 

and tau protein suffer conformational changes that span disordered states and lead to maturation of 

toxic aggregates. The presence of such structures leads to ER stress, activating IRE1 and PERK 

pathways that active CHOP, conditions reported to induce neuronal death [120]. Likewise, amyloid 

precursor protein (APP) and presenilins 1 and 2 have been associated with a familiar form of 

Alzheimer. Taking into account their ER membrane location, stress conditions may alter the activity of 

presenilin 1 and 2, inducing an increase in the processing of Aβ peptide [206]. In Parkinson disease, 

the death of dopaminergic neurons and protein aggregation (Lewy bodies) in different regions of the 

brain, is present [207]. 

4.2. Metabolic Diseases 

ER stress is associated with inflammatory and stress signaling pathways, which could exacerbate 

metabolic dysfunction, contributing to obesity, insulin resistance, fatty liver, and dyslipidemia [208,209]. 

The presence of amyloid structures in pancreatic islets of Langerhans is a pathophysiological condition 

related with diabetes mellitus type 2. These deposits are composed of a peptide hormone named 

amylin [210]. Amylin is normally soluble, and its structure in the monomeric state is natively 

disordered. However, secondary structure transitions can be important to attain the three-dimensional 

structure found in amyloid fibrils. Aggregation of amylin is associated with an increased response of 

ER stress, which leads to dysfunction of pancreatic β cells, apoptosis, and eventually the loss of the 

cell mass of islets [211–214]. Likewise, high levels of plasmatic non-esterified fatty acids can 

contribute to β cell dysfunction [215]. In our work group, we have been able to establish a potential 

relationship of interaction between these important biomolecules [216]. 

UPR is chronically activated in atherosclerotic related cells, particularly on advanced lesional 

macrophages and endothelial cells [217]. Oxidative stress, oxysterols, high levels of intracellular 

cholesterol, and saturated fatty acids, are conditions that can lead to prolonged activation of the UPR in 

advanced lesions. Likewise, these arterial wall stressors may be associated with obesity, insulin 

resistance, and diabetes, all of which promote the clinical progression of atherosclerosis. The potentially 

important proatherogenic effect of prolonged ER stress is activation of inflammatory pathways. Even 
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more, prolonged ER stress triggers apoptosis in macrophages, which in turn leads to plaque necrosis if 

the apoptotic cells are not rapidly cleared [217]. 

Conditions associated to atherosclerosis, such as chronic ER stress, affects systemic risk factors at 

the level of hepatic lipid metabolism and pancreatic β-cell function [218]. A specific focus has been 

performed on signaling modulation through IRE1. Recent developments in understanding how IRE1α 

functions to promote cell death versus cell survival at a protein structural level, raise the possibility of 

several specific drugs that can block IRE1α-dependent cell death [219,220]. 

4.3. Cancer and Protein p53 

Factors which contribute to a significant increase in protein misfolding incidences are mutations, 

thermodynamics, and external stress conditions [187]. The proposal that ER stress signaling could 

either be beneficial for tumor growth or play a guardian role to prevent cell transformation is very 

important to analyze [221]. Tumor cells are often subjected to major molecular changes due either to 

transformation-dependent metabolic demand or to stressful environments, including hypoxia, nutritional 

stress or pH stress [222]. For example, one of the conditions of activation of UPR in cancer, has been 

attributed to the hypoxic condition in the tumor surrounding environment [223]. 

Involvement of PERK and IRE1 arms of the UPR in tumor growth has been broadly  

characterized [222]. In these conditions, ER stress signaling represents an important constituent of 

tumor progression and survival [222]. IRE1α enhances angiogenesis and may alter cell adhesion and 

migration through regulated IRE1-dependent decay (RIDD). Likewise, cells deficient in XBP1 or 

PERK have a large reduction in their ability to form solid tumors in mice models. In fact, negative 

regulation of chaperone activity has been investigated as an anticancer strategy [224,225]. 

Expression of components of the ER protein-folding machinery, such as BiP, has also been suggested 

to promote tumor progression, cell survival, metastasis, and resistance to chemotherapy [226]. Strategies 

to downregulate BiP in models of cancer or through the use of inhibitors of the ATP-binding domain 

have great cytotoxic potential [227–232]. 

On the other hand, p53 is a transcription factor with an essential role in guarding cells responses to 

various stress signals, through the induction of cell cycle arrest, and apoptosis as well as effects that 

are independent of its ability to transactivate gene expression [233]. Mutation of the tumor suppressor 

p53 is the most frequent genetic alteration in human cancer [234]. The majority of the mutations occur 

in the DNA-binding domain of the p53 (residues 102–292), which result in loss of DNA binding. 

Zinc binding, coordinated by H179, C176, C238, and C242, is critical for maintain the native folding of 

p53 and requires reduction of thiol groups on cysteines. Residues from the loop-sheet-helix motif 

interact in the major groove of the DNA, while an arginine from one of the two large loops interacts in 

the minor groove. Loops and the loop-sheet-helix motif represent the conserved regions of the core 

domain, and contain the majority of the p53 mutations identified in tumors [235]. In this sense, several 

mutations induce conformational changes in the DNA binding surface [236] although destabilized 

mutants of p53 can be stabilized by the binding of other molecules [237,238]. 

Consider that cellular and extracellular spaces are highly saturated environments that allow a wide 

variety of interactions between molecules. This feature, often referred to as macromolecular saturated 

environment could have important consequences in the thermodynamics of molecules, affecting the 
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conformational states of proteins [239], and then proteostasis. Even more, according to scientists 

working in different fields of knowledge, nature appears to have employed disorder to create high 

levels of organization. In some cases nature seems to have created disorder, when there is, in the first 

place a lack of it [240]. This situation extrapolated to the role of proteins and their association with 

disease, could find their origin in the way proteins carry out many structural changes, employing finely 

tuned disorder-to-order transitions [34]. 

5. Protein Folding in Drug Development 

In all organisms, energy and nutrient management requires the highly regulated and coordinated 

operation of many homeostatic systems. Much of the development and evolution of these systems  

has taken place in a different environment to the one we now experience as modern humans,  

which includes excess nutrients, new dietary components, lack of physical activity, and an increased 

life span [209]. In fact, the requirements for the timespan as well as the magnitude of adaptive 

responses have dramatically increased due to rises in life expectancy and a chronic lifetime exposure to 

the stress signals [209]. 

Opportunities for the development of effective therapies against protein-aggregation disorders lie in 

the discovery of molecules that decrease the concentrations and formation rates of anomalous protein 

assemblies or that enable our natural defenses to maintain their efficacy for longer periods of time [40]. 

A key milestone in the development of any new therapy is the selection of appropriate molecular targets. 

5.1. Strategies Focus on Amyloidosis 

Pharmacological strategies for effective therapy in the treatment of diseases associated with protein 

folding, might consider the following conditions: inducing the stabilization of native state, reducing the 

concentration of aggregation-prone species, blocking the nucleation and growth of aggregates; in 

general conditions that are able to reduce the risk of aggregation. Another strategy is optimization of 

cell defense mechanisms to maintain their efficacy for longer periods of time, using molecules that can 

act as pharmacological chaperones. As already suggested, the most effective procedures for the 

prevention and treatment of misfolding diseases, are likely to be those that address the earliest events 

in their development [92,241]. 

Stability of proteins and design of sequences that can efficiently acquire a globular structure,  

have been considered to be one of the factors that prevent the conversion of a globular protein into 

amyloid-like fibrils. It has been demonstrated that loss of stability in the native state is a primary 

mechanism by which mutations promote their pathogenic effects in some hereditary forms of 

amyloidosis [242]. For example, nature has used strategies to reduce the number of patterns that favor 

the formation of β-structure, alternating groups of hydrophobic and hydrophilic residues, as well as 

maintain a high net charge in the sequence, place strategically charged amino acids through the 

sequence, generate short β-strands on the edges of large β-sheets, incorporate proline residues, and 

cover β-sheets with α-helices [81,83,243,244]. 

A representative example in this topic is the drug tafamidis (Fx-1006A), a small molecule that acts 

as a pharmacological chaperone of transthyretin (TTR), stabilizing the native TTR and some variants. 

TTR tetramer dissociation has been described as the rate-limiting step in the amyloid formation 
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cascade. Tetramer dissociation is followed by dimer dissociation yielding unstable monomers. TTR 

monomers easily unfold leading to spontaneous self-assembly into amyloid fibrils [245]. Tafamidis is the 

first disease modifying pharmacological treatment available to treat familial amyloid polyneuropathy.  

In fact, fibril formation has been demonstrated as a mechanism for sequestration of oligomeric species, 

in a way that cells reduce toxicity [246]. 

5.2. Chemical Chaperones 

Identification of molecule regulators of the UPR signaling as potential therapeutic strategies to treat 

protein misfolding and other human diseases, results in a promising approach. UPR is considered  

a target for drug discovery because of emerging evidence from animal models indicating its contribution 

to diverse diseases, including cancer, metabolic diseases, diabetes, neurodegenerative disorders, 

inflammation, liver dysfunction, and brain and heart ischaemia [247]. 

Development of drugs that interfere with ER stress, have wide therapeutic potential. Five groups of 

strategies according to their mechanism of action have been characterized: compounds directly binding 

to ER stress molecules, chemical chaperones, inhibitors of protein degradation, antioxidants, and drugs 

affecting calcium signaling. Treatments are generally inhibitory, also lead to increased viability, except 

when applied to cancer cells [248]. 

Chemical chaperones are described as low-molecular mass compounds that stabilize the folding of 

proteins and buffer abnormal protein aggregation. In this case, chemical chaperones have been shown 

to improve ER function, through diminishing protein misfolding events. The most studied chemical 

chaperones in a disease context are 4-phenylbutyrate (4-PBA) and tauroursodeoxycholic acid (TUDCA), 

which have been approved by regulatory authorities for primary biliary cirrhosis (4-BPA) and urea 

cycle disorders (TUDCA) [249]. 

In animal models of obesity, chemical chaperones reduced ER stress in the liver of mouse, 

improved insulin sensitivity and glucose homeostasis [250], and reversed leptin resistance [251]. 

Treatment with 4-PBA also improved glucose tolerance in patients with insulin-resistance [252], and 

TUDCA partially restored insulin sensitivity in liver and muscle [253]. 

High-throughput screening for IRE1 modulators has identified plant-derived flavonols as activators 

of IRE1 sensors, as well as possible new regulatory sites of interaction. Docking of small-molecule 

libraries suggests the presence of a pocket associated with dimerization/oligomerization of IRE1 

including a binding site to sterols, which could represent an important binding site for the regulation of 

IRE1 signaling [254,255]. Comparative and systematic studies are needed in a better way to define  

the real therapeutic value of manipulating ER stress levels, in addition to outlining possible side  

effects [209]. 

Likewise, approaches through compounds that bind and stabilize mutants of p53 have been 

performed. Upon screening of a library of over 100,000 compounds and further optimizing of the hits, 

compound 7 (CP-31398) was shown to promote the conformational stability of wild-type p53  

DNA-binding domain and that of full-length p53 [237,256]. Screening of the diversity set from the 

National Cancer Institute led to the discovery of some chemical chaperones with mutant  

p53-reactivating capacity: compound 854 known as PRIMA-1 (p53 reactivation and induction of 

massive apoptosis) and compound 954 known as MIRA-3 (mutant p53 dependent induction of  
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rapid apoptosis). Additional screening of small compound libraries also identified compound 1055 

denominated STIMA-1 (SH group-targeting compound that induces massive apoptosis) [187]. 

5.3. Final Considerations 

Three-dimensional structure of proteins in general, and specifically proteins that participate in UPR 

could provide critical information for the development of new pharmacological treatments, this 

approach may be incomplete, since the disordered domains of proteins involved in UPR and 

chaperones, have been proven to be critical for their function. Likewise, complex pathways to ensure 

proteostasis in different subcellular compartments, defined as unfolded protein responses have evolved 

in the cytosol and mitochondria, which are finely coordinated and require close communication with 

the nucleus [248]. Even more, the UPR has demonstrated impact on various immune cells, in which  

it regulates the secretion of pro-inflammatory cytokines and innate immunity signals [254]. These 

conditions reflect the complexity of cell physiology that might be considered for drug development. 

Whereas cellular and extracellular spaces are highly saturated environments [97,98] which allow a 

wide variety of interactions between molecules, not all biologically active compounds have the desired 

physicochemical properties to be a drug, which must be sufficiently lipophilic to be absorbed, maintain 

polar properties to cross the gastrointestinal wall, and have a vulnerable chemical functionality,  

then molecules can be targeted by liver catabolic systems [26]. Without doubt a more complex 

understanding of the threshold of responses that occur within cells to sustain the proteostasis, implies a 

greater understanding of the regulatory mechanisms that regulate protein folding, which will result in 

an increase in tools that could be the basis to modulate the functional activity of therapeutically 

important proteins. 

6. Conclusions 

Mechanisms that modulate protein folding within the highly saturated cellular environment, which 

are regulated by a highly sophisticated network of communication between proteins, reflect the 

complexity of cellular processes. These features span several molecular hierarchies, from the use of 

small disordered regions within intricate three-dimensional structures, and an effective folding 

phenomenon to keep hidden the hydrophobic domains. Likewise required are the activity of highly 

organized molecules such as chaperones, and the participation of pathways associated with complete 

degradation of organelles, to maintain the homeostasis of proteins as a whole. Evidence indicates that 

nearly all large, subcellular processes, from the organelles to ribosomes, may have specific ways of 

sensing the proteome and reacting to proteotoxic stress, and so that every step in the life of proteins is 

under close scrutiny. Therefore, the insights into the features of the functional conformations of 

proteins, the environments in which they work, and the ways that cellular defense mechanisms 

normally function so effectively together to maintain protein homeostasis, can expand the possibilities 

for better treatments against human diseases. 
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