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Abstract: Mast Cells (MCs) play a role in immune responses and more recently MCs have been
involved in tumoral angiogenesis. In particular MCs can release tryptase, a potent in vivo and in vitro
pro-angiogenic factor via proteinase-activated receptor-2 (PAR-2) activation and mitogen-activated
protein kinase (MAPK) phosphorylation. MCs can release tryptase following c-Kit receptor activation.
Nevertheless, no data are available concerning the relationship among MCs Density Positive to
Tryptase (MCDPT) and Microvascular Density (MVD) in both primary gastric cancer tissue and
loco-regional lymph node metastases. A series of 75 GC patients with stage T2–3N2–3M0 (by AJCC
for Gastric Cancer Seventh Edition) undergone to radical surgery were selected for the study.
MCDPT and MVD were evaluated by immunohistochemistry and by image analysis system and
results were correlated each to other in primary tumor tissue and in metastatic lymph nodes
harvested. Furthermore, tissue parameters were correlated with important clinico-pathological
features. A significant correlation between MCDPT and MVD was found in primary gastric cancer
tissue and lymph node metastases. Pearson t-test analysis (r ranged from 0.74 to 0.79; p-value ranged
from 0.001 to 0.003). These preliminary data suggest that MCDPT play a role in angiogenesis in both
primary tumor and in lymph node metastases from GC. We suggest that MCs and tryptase could be
further evaluated as novel targets for anti-angiogenic therapies.
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1. Introduction

Mast Cells (MCs) can play a role in tumor angiogenesis and their involvement has been
demonstrated in several animal and human malignancies [1,2]. MCs can secrete classical
pro-angiogenic factors, including Vascular Endothelial Growth Factor (VEGF), Fibroblast Growth
Factor-2 (FGF-2), Thymidine Phosphorylase (TP) as well as tryptase, a non-classical pro-angiogenetic
factor [3–7]. From them, Tryptase is the most abundant factor contained in MCs secretory granules
and it can be released by several mechanisms including c-Kit receptor activation. Interestingly, it has
been demonstrated that tryptase induces in vitro endothelial cell (ECs) proliferation in a matrigel
assay and displayed in vivo capillary growth in the chick embryo chorioallantoic membrane, which
was suppressed by tryptase inhibitors [8]. From a biological point of view, the signalling induced by
tryptase can be mediated via protease-activated receptor-2 (PAR-2) expressed on ECs, that in turn lead
to ECs proliferation forming angiogenesis [9–27].

So far, few data have been published on the relationship among MCs density positive to
tryptase (MCDPT), and microvascular density (MVD) in both primary gastric cancer (GC) tissue
and loco-regional lymph node metastases (LRLNM) [6,28–32].

In GC, the presence of lymph node metastases is one of the most important determinants of
prognosis and tumor node metastases (TNM) is the most commonly used staging system [33].

In this pilot study, we analyzed by immunohistochemistry and image analysis system MCDPT
and MVD in both primary GC tumor tissue (PGCTT) and LRLNM from 75 patients undergoing radical
surgery. The correlation between the studied parameters and the main clinico-pathological features
has been also performed.

2. Results

Immunohistochemical staining by using the antibodies anti-tryptase showed red-brown positive
to tryptase MCs. MCs showed round or ovoidal shape and heterogeneous size also. In Figure 1, single
small arrows indicate single red-brown immunostained MCs in: A, primary gastric cancer tissue;
B, metastatic lymph node; C, adjacent normal gastric tissue and D, normal lymph node. In particular,
in Figure 1A, several immunostained MCs near blood vessel, with a perivascular position, are visible
with the blood vessel indicated by a big arrow. MCDPT (Figure 1A–D, respectively) was assessed
counting each single immunostained mast cell clearly separated each to other at 40× magnification.
With special reference to the microvessels, they were identified by the primary anti-CD34 antibody and
as red immunostained structure often presenting a small lumen but sometime without a clearly visible
lumen. Interestingly, the blue stained nucleus of endothelium was often distinguished in the context of
the red immunostained endothelium. In detail, in Figure 2, small arrows indicates microvessels: A, in
primery gastric cancer tissue; B, in metastatic lymph node; C, in adjacent normal gastric tissue and D,
in normal lymph node. MVD was detected counting each single immunostained endothelial cell or
each immunostained endothelial cell clearly separated from adjacent microvessels, tumor cells, and
other connective tissue elements.

In LRLNM, the mean value of MCDPT was: 10.18 ± 4.66 in T2N2M0, 12.52 ± 3.32 T2N3M0,
11.89 ± 4.46 in T3N2M0, 13.20 ± 4.95 in T3N3M0. The mean value of MVD was: 23.37 ± 9.07 in
T2N2M0, 24.08 ± 8.11 T2N3M0, 24.75 ± 8.59 in T3N2M0, 25.03 ± 8.98 in T3N3M0.
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Figure 1. (A) Primary gastric cancer tissue section immunostained with the anti-tryptase antibody. 
Single arrows indicate single red stained mast cells. Big arrow indicates a blood microvessel with a 
red blood cell in its lumen. Magnification 40× (0.19 mm2 area); (B) Lymph node metastases from 
primary gastric cancer tissue section immunostained with the anti-tryptase antibody. Single arrows 
indicate single red stained mast cells. The big arrow indicates residual lymphocytes, double arrow 
indicates a single microvessel. Magnification 40× (0.19 mm2 area); (C) Adjacent normal gastric tissue 
section immunostained with the anti-tryptase antibody; and (D) Normal lymph node section 
immunostained with the anti-tryptase antibody. 

Figure 1. (A) Primary gastric cancer tissue section immunostained with the anti-tryptase antibody.
Single arrows indicate single red stained mast cells. Big arrow indicates a blood microvessel with a red
blood cell in its lumen. Magnification 40× (0.19 mm2 area); (B) Lymph node metastases from primary
gastric cancer tissue section immunostained with the anti-tryptase antibody. Single arrows indicate
single red stained mast cells. The big arrow indicates residual lymphocytes, double arrow indicates
a single microvessel. Magnification 40× (0.19 mm2 area); (C) Adjacent normal gastric tissue section
immunostained with the anti-tryptase antibody; and (D) Normal lymph node section immunostained
with the anti-tryptase antibody.
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Figure 2. (A) Primary gastric cancer tissue section immunostained with the anti-CD34 antibody. 
Single arrows indicate single red stained microvessels. Magnification 40× (0.19 mm2 area);  
(B) Lymph node metastases from primary gastric cancer tissue section immunostained with the  
anti-CD34 antibody. Single arrows indicate single red stained microvessels. The big arrow indicates 
blood vessels containing many metastatic gastric cancer cells. Magnification 40× (0.19 mm2 area);  
(C) Adjacent normal gastric tissue section immunostained with the anti-CD34 antibody; and (D) 
Normal lymph node section immunostained with the anti-CD34 antibody. 

According to the AJCC classification, the mean value ± standard deviation regarding MCDPT 
and MVD in PGCTT and LRLNM are reported in Table 1. In PGCTT the mean value of MCDPT was: 
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value of MVD was: 27.34 ± 8.97 in T2N2M0, 28.22 ± 9.12 in T2N3M0, 28.23 ± 8.88 in T3N2M0, 28.45 ± 9.31 
in T3N3M0. 

Table 1. MCDPT and MVD means ± standard deviations as a function of GC tumor tissue, respectively. 

Tissue MCDPT 40× (0.19 mm2) MVD 40× (0.19 mm2) 
Primary Tumor   

T2N2M0 12.47 ± 4.32 27.34 ± 8.97 
T2N3M0 11.67 ± 3.79 28.22 ± 9.12 
T3N2M0 13.23 ± 3.92 28.23 ± 8.88 
T3N3M0 14.44 ± 4.72 28.45 ± 9.31 

Lymph Node Metastases   
T2N2M0 10.18 ± 4.66 23.37 ± 9.07 
T2N3M0 12.52 ± 3.32 24.08 ± 8.11 
T3N2M0 11.89 ± 4.46 24.75 ± 8.59 
T3N3M0 13.20 ± 4.95 25.03 ± 8.98 

Normal Tissue 4.12 ± 3.10 10.40 ± 7.95 
Normal Lymph Nodes 5.14 ± 2.63 9.39 ± 2.17 

As control cases, far from inflammation, the mean value of MCDPT and MVD in adjacent normal 
gastric tissue was 4.12 ± 3.10 and 10.40 ± 7.95, respectively. In normal lymph nodes, the mean value 
of MCDPT and MVD was 5.14 ± 2.63 and 9.39 ± 2.17, respectively. 

Based on the obtained data, we showed that tryptase positive mast cells increase between normal 
tissue and tumor tissue and this correlation also holds for blood vessels. 

With special regard to tumor tissue and lymph node metastases, a significant correlation was 
found between MCDPT and MVD in PGCTT (r = 0.74, p = 0.003) and LRLNM (r = 0.79, p= 0.001) 
(Figure 3). No correlation concerning MCDPT, MVD, and patient sex was found. 

Figure 2. (A) Primary gastric cancer tissue section immunostained with the anti-CD34 antibody. Single
arrows indicate single red stained microvessels. Magnification 40× (0.19 mm2 area); (B) Lymph node
metastases from primary gastric cancer tissue section immunostained with the anti-CD34 antibody.
Single arrows indicate single red stained microvessels. The big arrow indicates blood vessels containing
many metastatic gastric cancer cells. Magnification 40× (0.19 mm2 area); (C) Adjacent normal gastric
tissue section immunostained with the anti-CD34 antibody; and (D) Normal lymph node section
immunostained with the anti-CD34 antibody.

According to the AJCC classification, the mean value ± standard deviation regarding MCDPT
and MVD in PGCTT and LRLNM are reported in Table 1. In PGCTT the mean value of MCDPT was:
12.47 ± 4.32 in T2N2M0, 11.67 ± 3.79 in T2N3M0, 13.23 ± 3.92 in T3N2M0, 14.44 ± 4.72 in T3N3M0.
The mean value of MVD was: 27.34 ± 8.97 in T2N2M0, 28.22 ± 9.12 in T2N3M0, 28.23 ± 8.88 in T3N2M0,
28.45 ± 9.31 in T3N3M0.

Table 1. MCDPT and MVD means ± standard deviations as a function of GC tumor tissue, respectively.

Tissue MCDPT 40× (0.19 mm2) MVD 40× (0.19 mm2)

Primary Tumor
T2N2M0 12.47 ± 4.32 27.34 ± 8.97
T2N3M0 11.67 ± 3.79 28.22 ± 9.12
T3N2M0 13.23 ± 3.92 28.23 ± 8.88
T3N3M0 14.44 ± 4.72 28.45 ± 9.31

Lymph Node Metastases
T2N2M0 10.18 ± 4.66 23.37 ± 9.07
T2N3M0 12.52 ± 3.32 24.08 ± 8.11
T3N2M0 11.89 ± 4.46 24.75 ± 8.59
T3N3M0 13.20 ± 4.95 25.03 ± 8.98

Normal Tissue 4.12 ± 3.10 10.40 ± 7.95
Normal Lymph Nodes 5.14 ± 2.63 9.39 ± 2.17

As control cases, far from inflammation, the mean value of MCDPT and MVD in adjacent normal
gastric tissue was 4.12 ± 3.10 and 10.40 ± 7.95, respectively. In normal lymph nodes, the mean value
of MCDPT and MVD was 5.14 ± 2.63 and 9.39 ± 2.17, respectively.

Based on the obtained data, we showed that tryptase positive mast cells increase between normal
tissue and tumor tissue and this correlation also holds for blood vessels.

With special regard to tumor tissue and lymph node metastases, a significant correlation was
found between MCDPT and MVD in PGCTT (r = 0.74, p = 0.003) and LRLNM (r = 0.79, p = 0.001)
(Figure 3). No correlation concerning MCDPT, MVD, and patient sex was found.
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method of toluidine blue was employed to identify and count MCs density. Data from this study 
indicated that MCs density in benign gastric ulcers and in cancers was much higher than the control 
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3. Discussion

A large body of evidence supports the central role of angiogenesis in GC development and
progression but few data regarding the role of MCs in GC angiogenesis have been published [34–36].
In particular, in a study performed by Mukherjee et al. [37], the authors studied MCs density in tissue
from patients with gastric ulcers and in tissue from GC patients. In the above study the histochemical
method of toluidine blue was employed to identify and count MCs density. Data from this study
indicated that MCs density in benign gastric ulcers and in cancers was much higher than the control
and correlated with angiogenesis.

Ribatti et al. [30] studied tumor samples from GC patients by mean of immunohistochemistry
employing anti-tryptase and anti-chymase antibodies to stain MCs. In this study, a correlation
between MVD and tryptase and chymase-positive MCs was found suggesting the involvement of MCs
in neovascularization.

Recent published pilot data from our group indicated that MCDPT may induce angiogenesis in
bone metastases from gastric cancer patients suggesting that MCDPT is able to stimulate angiogenesis
in both primary tumor tissue and metastatic tumor site [21].

To this regard, it is important to underline that MCs can stimulate neovascularization releasing
mainly tryptase stored in their secretory granules [38,39].

In the tumor microenvironment, MCs can be activated in different ways including c-kit receptor
stimulation and phosphorylation by its ligand the stem cell factor, IgE-dependent mechanism



Int. J. Mol. Sci. 2016, 17, 1905 6 of 11

mediated by T lymphocytes-MCs interaction and other microenvironmental stimuli [40,41]. After
activation, intensive or piecemeal degranulation of secretory granules occurs depending on MCs
activation mechanism, and MCs derived tryptase is released in tumor microenvironment stimulating
angiogenesis [7,42–46]. In a pre-clinical model tryptase induces in vitro ECs proliferation in a matrigel
assay and displayed in vivo capillary growth in the chick embryo chorioallantoic membrane, which
was suppressed by tryptase inhibitors. Tryptase is an agonist of PAR-2 in vascular ECs that stimulates
their proliferation. Signaling via PAR-2 on ECs elicits activation of the major members of the MAPK
phosphorylation family and contributes to proliferation of ECs and angiogenesis [23–32,47–51].

Our data demonstrated an association between MCDPT and MVD supporting the central role of
tryptase as a main pro-angiogenic factor in PGCTT and interestingly also in LRLNM [52–56].

Our results agree with very recent published research from Micu et al. [57]. These authors
demonstrated the positive correlations between the density of tryptase positive mast cells and that
of new blood vessels in primary gastric cancer tissue. Interestingly, in the above research, new blood
vessels were identified with the anti-CD105 antibody, the marker of endoglin, that is preferentially and
selectively expressed on the new blood vessels.

Further studies could be performed employing the anti-CD105 antibody, as a more specific
marker of tumor angiogenesis in both primary gastric cancer tissue and lymph node metastasis
also to confirm our data obtained with the anti-CD34 pan-endothelial marker. From an anatomical
point of view, obtained results indicated that MCDPT are located in a perivascular position.
For this reason, we think that some of MCs degranulation products, like tryptases, stay in the stroma
of the tumor microenvironment, others go through blood and lymphatic vessels with metastatic
dissemination effects.

Based on this background, will be possible to design clinical trials with novel anti-angiogenetic
therapies targeting MCs degranulation by mean of c-Kit-R tyrosine kinase inhibitors (e.g., masitinib)
or inhibiting tryptase by mean of gabexate mesilate or nafamostat mesilate [58–63]. Finally, MCDPT
could be evaluated as a possible predictive biomarker able to select patients candidable to novels
anti-angiogenic strategies.

4. Materials and Methods

4.1. Study Population

A series of 75 GC patients diagnosed with preoperative gastric endoscopy were selected to
undergo curative resection. The surgical approaches used were open total and sub-total gastrectomy
with D2 lymph node dissection. Patients were staged as T2–3N2–3M0 (by AJCC for Gastric Cancer
Seventh Edition) according to the American Joint Committee on Cancer Seventh Edition (AJCC-TNM)
classification [33,64,65]. None had distant metastases on computed tomography (CT) of the thorax,
abdomen, and pelvis. All patients in this study had adenocarcinomas. The clinico-pathological features
of the patients are summarized in Table 2. Full ethical approval and signed consent from individual
patients was obtained. The study was conducted in accordance with the Declaration of Helsinki, and
the protocol was approved by the Ethics Committee of the “Mater Domini” Hospital, “Magna Graecia”
University, Catanzaro (2011.61; 13 December 2011).

4.2. Immunohistochemistry

For the evaluation of MCDPT and MVD a three-layer biotin-avidin-peroxidase system was
utilized [66]. Briefly, 6 µm-thick serial sections of formalin-fixed and paraffin-embedded tumor samples,
adjacent normal gastric tissue, lymph node metastases, and normal lymph node were cut. Sections
were first deparaffinized and then, for antigen retrieval, sections were microwaved at 500 W for 10 min,
after which endogenous peroxidase activity was blocked with 3% hydrogen peroxide solution [21].
Tumor sections were incubated with the following primary antibodies: anti-tryptase (clone AA1;
Dako, Glostrup, Denmark) diluted 1:100 for 1 h at room temperature (for MCs identification) and
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anti-CD34 antibody (QB-END 10; Bio-Optica, Milan, Italy) diluted 1:50 for 1 h at room temperature
as a pan-endothelial marker. The bound antibody was visualized using a biotinylated secondary
antibody, an avidin-biotin peroxidase complex and liquid permanent red (LPS, K0640, Dako). Nuclear
counterstaining was performed with Gill’s haematoxylin No.2 (Polysciences, Warrington, PA, USA).
The primary antibody was omitted in negative controls.

Table 2. Clinico-pathological features of patients (n = 75).

Age N

≤65 30
≥65 454

Gender

Male 42
Female 33

Tumor Site

Cardia 11
Lesser curvature 7
Greater curvature 9
Body and fundus 23
Pyloric area 25

TNM by AJCC Stage and Type by Lauren Classification

T2–3N2M0 46
T2–3N3M0 29
Intestinal type 44
Diffuse type 31

Histologic Grade

G1–G2 55
G3 20

4.3. Morphometrical Assay

Light microscopy integrated with an image analysis system (AXIO, Scope A1, ZEISS, Gottingen,
Germany) was utilized [65]. In sections of primary tumor tissue, lymph node metastases, adjacent
gastric normal tissue, and normal lymph nodes, immunostained areas (hot spots) were selected
at 10× magnification. Next, MCDPT (Figure 1A–D, respectively) was assessed counting each single
immunostained mast cell clearly separated each to other at 40 × magnification. With special regard to
MVD, we considered a microvessel each single immunostained endothelial cell or each immunostained
endothelial cell with or without a lumen, clearly separated from adjacent microvessels, tumor cells,
and other connective tissue elements (Figure 2A–D, respectively) at 40× magnification. To define
the evaluated microscopic fields at 40× magnification (ocular lens 10× and objective lens 40×), the
corresponding 0.19 mm2 area for each field was measured by semi-automated modality using the
program of the above image analysis system.

4.4. Statistical Analysis

Mean values ± Standard Deviation (SD) of all the evaluated tissue parameters are reported
in Table 1. Correlations between MCDPT and MVD were calculated using Pearson’s (r) analysis.
Correlations among all the analyzed parameters and the main clinico-pathological features listed in
Table 2 were performed by the Chi-square test (χ2). p < 0.05 was considered significant. All statistical
analyses were performed with the SPSS statistical software package (SPSS, Inc., Chicago, IL, USA).
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