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Abstract: Plant NADPH oxidases, formerly known as respiratory burst oxidase homologues
(RBOHs), are plasma membrane enzymes dedicated to reactive oxygen species (ROS) production.
These oxidases are implicated in a wide variety of processes, ranging from tissue and organ growth
and development to signaling pathways in response to abiotic and biotic stimuli. Research on the
roles of RBOHs in the plant’s response to biotic stresses has mainly focused on plant-pathogen
interactions; nonetheless, recent findings have shown that these oxidases are also involved in the
legume-rhizobia symbiosis. The legume-rhizobia symbiosis leads to the formation of the root nodule,
where rhizobia reduce atmospheric nitrogen to ammonia. A complex signaling and developmental
pathway in the legume root hair and root facilitate rhizobial entrance and nodule organogenesis,
respectively. Interestingly, several reports demonstrate that RBOH-mediated ROS production displays
versatile roles at different stages of nodulation. The evidence collected to date indicates that ROS
act as signaling molecules that regulate rhizobial invasion and also function in nodule senescence.
This review summarizes discoveries that support the key and versatile roles of various RBOH
members in the legume-rhizobia symbiosis.
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1. Introduction

NADPH oxidases (NOX) are flavin-containing enzymes specialized in the production of reactive
oxygen species (ROS). These membrane-localized proteins catalyze the reduction of oxygen to generate
superoxide anions using the reducing power of NADPH. NOX enzymes, also known as respiratory
burst oxidases, were initially identified in human phagocytes, which mediate the oxidative burst
in response to microbes or inflammatory stimuli. NOX members have been identified and studied
in species ranging from fungi to mammals. In plants, the genes encoding these enzymes display
tissue-specific expression profiles and have particular functions in key processes, such as growth
and development (of underground and aerial tissues/organs), the innate response, and signaling in
response to abiotic stress responses [1,2].

The plant NADPH oxidases, referred to as respiratory burst oxidase homologs (RBOHs),
are approximately 100 kD in size and possess six transmembrane regions. The third and fifth
transmembrane domains coordinate a heme group through four histidine residues. Flavin- and
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NADPH-binding motifs are located at the carboxy (C)-terminus, while the amino (N)-terminus contains
regulatory sequences and two EF-hand motifs [3,4]. RBOH-mediated ROS production is stimulated
when calcium ions interact with the EF-hand motifs. In addition, the activity of these enzymes
is positively or negatively modulated at the N-terminus by protein kinases, calcium-dependent
protein kinases, nitric oxide, and complexes formed between calcineurin B-like calcium sensors
1/9 and protein kinases [5]. RBOH gene families generally consist of a large and variable number
of members [6]. Historically, functional analyses of RBOHs in plant-microbe interactions have
focused mainly on defense mechanisms after pathogen attack and plant tissue damage; nonetheless,
recent discoveries have unraveled their crucial participation in modulating the legume-rhizobia
symbiosis [7–9]. The beneficial association between legumes and the Gram-negative soil bacteria,
rhizobia, leads to the formation of novel organs, the root nodules, where the intracellular bacteria
develop into nitrogen-fixing bacteroids. This mutualistic relationship begins in the rhizosphere with
species-specific molecular crosstalk between both symbionts that involves (iso)-flavonoids released by
the legume root and lipo-chitooligosaccharides, known as nodulation factors (NFs), produced and
secreted by rhizobia in the rhizosphere [10]. When compatible NFs are perceived by receptors in root
hairs, a specific signaling pathway is triggered that leads to cellular, physiological, and morphological
changes that promote root hair infection by the rhizobia via an infection thread (IT). Simultaneously,
cortical cell division and further nodule development take place in the root cortex. During this
process, rhizobia are released from the IT into the nodule cells and the bacteria become bacteroids
that catalyze the conversion of nitrogen to ammonia [11]. Several groups have demonstrated that
RBOHs are essential during nodulation [7–9]. This review describes the participation of RBOHs in
the legume-rhizobia symbiosis, highlighting their contribution to the symbiotic signaling pathway,
rhizobial infection, nodule organogenesis, and senescence.

2. RBOHs Function Downstream of Nodulation Factor (NF) Perception

During NF perception by the legume root hairs, physiological and molecular reprogramming
occurs that is necessary for rhizobial infection and nodule organogenesis [12]. This reprogramming
results in changes in the root hair tip zone, such as increased levels of calcium ions, ROS production,
ion fluxes, cell-membrane depolarization, cytoplasm alkalinization, perinuclear calcium oscillations,
cytoskeleton rearrangements, and gene expression changes [13–21]. The transient ROS burst in
NF-treated Phaseolus vulgaris root hairs, which occurs within seconds of NF application and is
maintained for approximately 3 min, is one of the fastest responses recorded in this signaling
pathway [19]. The finding that this response is sensitive to a NADPH oxidase inhibitor (dyphenilene
iodonium, DPI) suggests that RBOH participates in the legume-rhizobia symbiosis. The fast and
transient oxidative burst contrasts with the sustained increase in ROS levels when legume root hairs are
treated with a pathogen elicitor, which culminates in root hair death. Furthermore, no changes in ROS
levels were detected when the root hairs were challenged with a similar concentration of non-active NFs
(N-acetyl glucosamine pentamers), indicating that compatible NFs trigger specific RBOH-dependent
ROS changes in the root hairs. This notion is supported by findings reported by Morieri et al. [22]
involving nodL-Nod Factors in Medicago truncatula root hairs. The absence of a NodL-determined
acetyl group impaired calcium influx, but did not affect calcium spiking. These authors proposed
that two pathways are triggered in the root hair after activation of NF receptors by compatible NFs,
with the first pathway resulting in calcium spiking and the second stimulating RBOH activity and
increased calcium influx. The latter pathway is most likely responsible for rhizobial infection [22].
Although the mechanism underlying RBOH activation during this process is unknown, it has been
shown that conformational changes at the N-terminus of RBOH induced by calcium binding stimulate
ROS production [23–27]. The increase in cytoplasmic calcium levels in the apical region of root hairs
correlates spatially and temporally with the transient oxidative burst [17,19]. Therefore, feedback is
likely to occur at this early stage of the signaling process, since ROS produced by RBOHs can promote
the opening of calcium channels (Figure 1) [28]. However, further modulation is required to control
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ROS homeostasis, since sustained levels would lead to cell death of the root hair. This assumption is
supported by findings in Pisum sativum plants. Glyan’ko and Ischenko [29] detected an increase in
NADPH oxidase activity (3.9-fold with respect to non-inoculated roots) in microsomal fractions of
roots from P. sativum seedlings at 5 min post-inoculation with R. leguminosarum. In addition, they found
that this response is prevented by amiodarone and lanthanum chloride treatment, which activates and
blocks calcium channels, respectively. These data indicate that NADPH oxidase activation requires
calcium channel opening, but that excessive calcium has a negative effect on NADPH oxidase activity.
Recently, nitric oxide (NO) has been proposed as another negative regulator of RBOH activity in
the symbiotic process [30]. This assumption is based on the evidence of NO production at different
time-points in nodulation and its capacity to abolish AtRBOHD activity during the hypersensitive
response in A. thaliana leaves [31]. Thus, RBOH is only transiently activated after NF treatment and
rhizobial inoculation.
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from plants (ROP GTPases) and phosphorylation at its N-terminus. ROS produced by RBOH 
activation likely act as signaling molecules that mediate rhizobial infection and nodule development. 
CW, cell wall; PM, plasma membrane. 

Rbohs are part of a large gene family in legumes, and their transcripts are differentially expressed 
in organs and tissues and at various developmental stages [8,9,32–35]. However, RBOHs involved in 
the early steps of the NF-signaling program remain to be identified. RbohA and RbohF have been 
proposed as potential candidates, since they are the most abundant Rboh transcripts in P. vulgaris and 
M. truncatula root hairs, respectively [8,36]. However, in P. vulgaris, RbohB seems to have a central 
role, since rhizobial infection is impaired in transgenic plants in which PvRbohB is silenced by RNAi 
and the protein is located in the apical zone of growing root hairs in WT plants [9]. 

Several studies place RBOHs as positive regulators that function early in the signaling pathway 
after NF treatment in legume root hairs [11,19,22], and other reports indicate that these oxidases  
must be switched off at a subsequent stage. Specific NFs induce root hair tip swelling in legumes at  
1 h post-incubation. This morphological response correlates with a decrease in ROS levels together 
with the down-regulation of MtRboh2 and MtRboh3 (MtRbohE and MtRbohB, respectively, [8]) 
transcripts in M. truncatula roots [37,38]. The hypothesis that MtRBOHs are deactivated during root 

Figure 1. Scheme of the early symbiotic signaling pathway after nodulation factor (NF) recognition by
root hairs. NF induces a transient increase in respiratory burst oxidase homologues (RBOH)-dependent
reactive oxygen species (ROS) production and cytoplasmic calcium concentration in the apical region
of legume root hairs. RBOH activity is presumably regulated by Rho-like GTPases from plants
(ROP GTPases) and phosphorylation at its N-terminus. ROS produced by RBOH activation likely
act as signaling molecules that mediate rhizobial infection and nodule development. CW, cell wall;
PM, plasma membrane.

Rbohs are part of a large gene family in legumes, and their transcripts are differentially expressed
in organs and tissues and at various developmental stages [8,9,32–35]. However, RBOHs involved
in the early steps of the NF-signaling program remain to be identified. RbohA and RbohF have been
proposed as potential candidates, since they are the most abundant Rboh transcripts in P. vulgaris and
M. truncatula root hairs, respectively [8,36]. However, in P. vulgaris, RbohB seems to have a central role,
since rhizobial infection is impaired in transgenic plants in which PvRbohB is silenced by RNAi and
the protein is located in the apical zone of growing root hairs in WT plants [9].
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Several studies place RBOHs as positive regulators that function early in the signaling pathway
after NF treatment in legume root hairs [11,19,22], and other reports indicate that these oxidases must
be switched off at a subsequent stage. Specific NFs induce root hair tip swelling in legumes at 1 h
post-incubation. This morphological response correlates with a decrease in ROS levels together with
the down-regulation of MtRboh2 and MtRboh3 (MtRbohE and MtRbohB, respectively, [8]) transcripts
in M. truncatula roots [37,38]. The hypothesis that MtRBOHs are deactivated during root hair tip
swelling is supported by pharmacological evidence, since a similar morphological effect is observed in
M. truncatula root hairs at 1 h post-incubation with DPI [37]. The decrease in ROS production following
NF treatment was observed in M. truncatula mutants affected in calcium spiking (dmi1, dmi2, dmi3, nsp1,
nsp2, and hcl) but not in nfp, which lack calcium influx [38]. Nonetheless, after NF-induced swelling,
root hairs resume polar growth and become branched at 12 h post-incubation. RBOHs seem to be
involved in this process, since branching of M. truncatula root hairs is impaired in plants in which the
Rho-like GTPases from plants (ROP GTPase), MtROP9, a putative activator of RBOHs, is silenced [39].

3. RBOHs Mediate Infection Thread (IT) Progression and Nodule Organogenesis

Legume root hair cells are the gateway for rhizobial invasion; however, the infection process is
preceded by the arrest of root hair growth and its subsequent curling to entrap the microsymbiont
within an infection pocket. Thereafter, the IT is formed by an invagination process of the cell
wall and the plasma membrane in the root hair [40]. The IT is internalized to reach the nodule
primordia, via polarized growth that resembles root hair development, but in an inward direction.
Nitroblue tetrazolium blue (NBT) staining revealed the presence of superoxide anions in the tips
of growing root hairs of Arabidopsis thaliana plants [41]. Likewise, superoxide anions accumulate
to high concentrations in the infection pocket and IT of Medicago sativa and M. truncatula root hairs
inoculated with Sinorhizobium meliloti [42,43]. In P. vulgaris, PvRBOHB is thought to underlie superoxide
accumulation, since a GFP-RBOHB chimera (driven by the CaMV 35S promoter) was detected by
confocal microscopy in the infection pocket and IT of P. vulgaris root hairs infected with rhizobia
(Supplementary Video S1). Pharmacological approaches provide initial evidence of the involvement
of RBOH at this nodulation stage, since root hair curling and rhizobial invasion of root hairs are
prevented by previous incubation of M. sativa roots with DPI [44]. Nonetheless, RBOH participation
was conclusively demonstrated in P. vulgaris transgenic roots expressing an RNAi-PvRbohB construct.
Loss-of-function of RbohB resulted in aborted ITs at the base of the root hairs in P. vulgaris plants
inoculated with Rhizobium tropici. However, downregulation (~60%) of the PvRbohB transcript did not
impact the number of infection events per root [9]. Surprisingly, a five-fold over-expression of PvRbohB
induced an increase in the number of ITs per root, but did not affect IT progression [7]. The lack of
IT progression can be explained by the fact that post-transcriptional mechanisms control RBOHB
function during the formation and migration of the IT within P. vulgaris root hair cells. In A. thaliana,
targeting of RBOHC to the root hair tip is crucial for its role in root hair development and depends
on vesicle trafficking, ROP GTPases, and actin microfilaments [23]. A similar scenario exists in the
legume-rhizobia symbiosis, since rhizobial infection is affected in M. truncatula plants silenced in
ROP9. This Rac1 GTPase is presumably a positive regulator of RBOH function in M. truncatula [39].
Furthermore, mutations in genes involved in actin rearrangements trigger abortion of the IT within
root hairs [45–47]. The lines of evidence generated to date show strong similarities between root hair
development and IT progression; therefore, it is reasonable to assume that legumes recruit molecular
components implicated in root hair growth during IT progression. For instance, filamentous actin
plus ends accumulate both at the tip of root hairs during apical growth and in the infection pocket
of P. vulgaris root hairs inoculated with rhizobia [48]. Similarly, the secretory vesicles that usually are
deposited in root hair tips are relocated to the tips of growing ITs [49]. These vesicles are expected to
support IT progression together with other molecules that are necessary for root hair development,
such as calcium, ROS, and the actin cytoskeleton. In that regard, RBOH-mediated ROS production
likely participates in cell wall remodeling during IT advancement. ROS can have opposite effects
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on cell wall extensibility. Hydrogen peroxide promotes cell wall rigidity by polymerizing phenolic
compounds in a cell wall peroxidase-dependent reaction, whereas hydroxyl radicals promote cell wall
loosening by cleaving cell wall polymers [50]. Such processes are crucial for IT initiation and migration,
and this notion is further supported by the observation that IT progression is arrested in a pectate
lyase (LjNPL) mutant of Lotus japonicus inoculated with Mesorhizobium loti [51]. Taken together, these
data indicate that RBOH-mediated ROS production is required in root hair-rhizobial infections but
also during IT progression.

IT progression is accompanied by another key event in the nodulation process, namely nodule
primordium formation. Development of the nodule primordium requires reactivation of mitotic
activity in the root cortex cells [9]. NBT staining revealed that superoxide anions accumulated to
high concentrations in the nodule primordia of M. sativa plants infected with S. meliloti [42]. Similar
results were found in the nodule primordia of P. vulgaris plants inoculated with R. tropici using
the same approach [52]. PvRBOHB is most likely the enzyme responsible for increased levels of
superoxide anions in P. vulgaris, since the spatial and temporal distribution of this anion correlate with
the histochemical staining pattern of P. vulgaris plants expressing the promoter-GUS transcriptional
fusion of PvRbohB [9] (Figure 2A). Moreover, transgenic P. vulgaris plants with PvRbohB loss-of-function
exhibited cortical cell divisions after rhizobial inoculation; however, because the number of nodules in
PvRbohB-RNAi plants is drastically reduced, ROS are probably needed for nodule development [9].
The superoxide generated by RBOH seems to have a prominent role in the mitosis required for nodule
primordium formation, although its precise function during nodule primordium development is
unclear. ROS play versatile roles in the biomechanics of plant cell walls and changes in cell wall
biomechanics are essential for nodule formation. For instance, the superoxide anion in A. thaliana
roots is linked to cell proliferation in the meristematic region, while hydrogen peroxide seems to
have a role in the elongation zone, where cell differentiation occurs [53]. The balance between ROS
production and accumulation is central for root growth and, similarly, nodule organogenesis is a
ROS-dependent process.
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Figure 2. ROS production during nodule development and functioning. (a) Superoxide accumulation
in the IT and nodule primordium of P. vulgaris (pink staining) correlates with the promoter activity of
PvRbohB (blue staining) [9,52]. Superoxide is also generated in nodule primordia from indeterminate
nodules [42]; (b) hydrogen peroxide is detected in vivo from Zone II to Zone III in M. truncatula nodules
with the ROS-sensor Hyper [43]. Similarly, hydrogen peroxide is produced in the IT and senescent cells
(cerium chloride detection method [54,55]). I.C., infected cell; I.T., infection thread; V.T., vascular tissue;
S.C., senescent cell. Zone I, meristematic region; Zone II, infection zone; Zone III, nitrogen-fixing cells;
Zone IV, senescent region.

4. RBOHs Impact Nodule Function and Senescence

Successful rhizobial invasion and nodule organogenesis culminate in the intracellular colonization
of the nodule cells by the endosymbionts liberated from branched ITs. When bacteria enter root
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nodule cells, they become surrounded by a plant-derived membrane, known as the peri-bacteroidal
membrane, which encloses the intracellular bacteria in a symbiosome. Within the symbiosome, the
rhizobia differentiate into bacteroids that are able to fix N2. The nitrogenase complex expressed by
the bacteroids catalyzes the reduction of dinitrogen into ammonia under hypoxic conditions, since
the enzyme is irreversibly inactivated by oxygen [11]. Surprisingly, a recent report demonstrated
that hydrogen peroxide is produced in the nitrogen-fixing zone of M. truncatula nodules expressing
the ROS-sensor Hyper [43] (Figure 2b). Previously, histochemical staining with cerium chloride
revealed that hydrogen peroxide accumulates in the matrix and cell wall of ITs in mature nodules
of M. sativa and P. sativum [42,54] (Figure 2b). In addition, DPI incubation prevents deposition
of cerium perhydroxides in the ITs, suggesting a key role for RBOHs in this process [54]. When
nitrogen fixation peaks (21 days post-inoculation, dpi) several Rboh transcripts start to accumulate,
with MtRbohA and PvRbohB genes exhibiting the highest transcript accumulation in M. truncatula and
P. vulgaris nodules, respectively [8,9,33–35] (Figure 3). In addition, an analysis of the promoter activity
and RNA-sequencing (RNA-Seq) of laser-dissected tissue revealed a high transcriptional activity of
MtRbohA in the nitrogen fixation zone of M. truncatula nodules [8,34] (Figure 4). Approaches based on
RNAi gene silencing and gain-of-function of Rboh genes confirmed their role in nodule functioning
in M. truncatula and P. vulgaris plants [7–9]. Down-regulation (>60%) of MtRbohA transcript levels
does not affect nodule formation in M. truncatula plants, but does result in a 25% reduction in nitrogen
fixation. Such a decrease seems to be related to the low accumulation of the transcript levels of the
bacterial genes nifD and nifH, which encode the Mo-Fe and Fe proteins of the nitrogenase complex,
respectively [8]. Similarly, acetylene reduction is remarkably impaired in the small and few nodules of
P. vulgaris in which PvRbohB is silenced by RNAi. Moreover, the ITs within the nodules are thicker
and the symbiosome integrity is altered upon PvRbohB silencing [9]. By contrast, over-expression
of PvRbohB causes a substantial increase in nitrogen fixation at 21 (>2-fold) and 30 (>3-fold) dpi.
The increased acetylene reduction is certainly a consequence of other alterations found within the
nodules, such as the high number of bacteroids per symbiosome and poly-β-hydroxybutyrate granules
per bacteroid [7]. The evidence collected so far indicates that RBOH has a pivotal role in nodule
functioning that correlates with the distribution patterns of ROS within the nodule. The phenotypes
observed suggest that the ROS produced by RBOHs act as signaling molecules to the endosymbiont
and also mediate the remodeling of the cell wall in the IT. However, other Rboh members probably
have different functions in nodule organogenesis, since PvRbohA, PvRbohC, and PvRbohD transcripts
are also abundant in P. vulgaris nodules [9] (Figure 3). Likewise, MtRbohB shows strong promoter
activity in the meristematic region, infection zone, and nitrogen-fixing zone of M. truncatula nodules.
By contrast, MtRbohE and MtRbohF are mainly expressed in the meristematic region, and MtRbohG
in the vascular tissue of nodules [8] (Figure 4). RNA-Seq of different zones of M. truncatula nodules
further confirmed the particular expression pattern of each Rboh and their putative participation in
different zones of the nodule [34] (Figure 4).

Proper nodule development and functioning rely on sophisticated regulation of the redox state;
this requires the participation of antioxidant molecules and RBOH-mediated ROS production [56].
A shift in redox homeostasis seems to be responsible for senescence during nodule aging, as this
process is characterized by a decrease in the content of antioxidant compounds and an increase in
oxidized biomolecules, which negatively impact nitrogen fixation [57]. At the ultrastructural level, the
senescent nodules of Glycine max and P. sativum plants exhibit alterations in symbiosome structure,
accompanied by the presence of hydrogen peroxide, supporting the notion that ROS have important
roles also during nodule senescence [54,55,58] (Figure 2b). Furthermore, the drastic reduction in
nitrogen fixation in P. vulgaris nodules silenced in PvRbohB is probably an early senescence phenotype
of the nodules, since the symbiosome structure is clearly affected [9]. By contrast, over-expression
of PvRbohB (PvRbohB-OE) delays senescence of the nodule. Interestingly, in PvRbohB-OE nodules,
acetylene reduction levels remain elevated at 30 dpi, while in the control plants, nitrogen fixation
decreases during nodule senescence [7].
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Figure 3. Expression profile of Rboh genes in different organs and tissues of P. vulgaris. (a) Heat map
expression profiles highlight the most abundant Rboh transcripts in different organs and tissues of
P. vulgaris; (b) PvRboh expression under different conditions in rhizobia-inoculated roots and nodules;
PvRbohB is predominantly expressed; nonetheless, other Rboh transcripts are expressed in nodules such
as PvRbohA, PvRbohC, and PvRbohD. The expression analysis was assessed in the Phaseolus vulgaris
Gene Expression Atlas [35,59]. YL—Fully expanded second trifoliate leaf tissue from plants provided
with fertilizer; L5—Leaf tissue collected five days after plants were inoculated with effective rhizobium;
LF—Leaf tissue from fertilized plants collected at the same time as LE and LI; LE—Leaf tissue collected
21 days after plants were inoculated with effective rhizobium; LI—Leaf tissue collected 21 days after
plants were inoculated with ineffective rhizobium; YS—All stem internodes above the cotyledon
collected at the second trifoliate stage; ST—Shoot tip, including the apical meristem, collected at the
second trifoliate stage; FY—Young flowers, collected prior to floral emergence; PY—Young pods,
collected 1 to 4 days after floral senescence. Samples contain developing embryos at the globular
stage; PH—Pods approximately 9 cm long, associated with seeds at heart stage (pod only); P1—Pods
between 10 and 11 cm long, associated with stage 1 seeds (pod only); P2—Pods between 12 and 13 cm
long, associated with stage two seeds (pod only); SH—Heart stage seeds, between 3 and 4 mm across
and approximately 7 mg; S1—Stage 1 seeds, between 6 and 7 mm across and approximately 50 mg;
S2—Stage 2 seeds, between 8 and 10 mm across and between 140 and 150 mg; RT—Root tips, 0.5 cm
of tissue, collected from fertilized plants at the second trifoliate stage of development.; YR—Whole
roots, including root tips, collected at the second trifoliate stage of development; R5—Whole roots
separated from five-day old pre-fixing nodules; RF—Whole roots from fertilized plants collected
at the same time as RE and RI; RE—Whole roots separated from fix+ nodules collected 21 days
after inoculation; RI—Whole roots separated from fix- nodules collected 21 days after inoculation;
N5—Pre-fixing (effective) nodules collected five days after inoculation; NE—Effectively fixing nodules
collected 21 days after inoculation; NI—Ineffectively fixing nodules collected 21 days after inoculation.
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Figure 4. Promoter activity and gene expression of Rbohs in different zones of M. truncatula nodules.
A, scheme of the promoter activity (blue staining [8]) (a) and RNA-Seq expression profile (green) [34]
(b) of MtRboh genes in different regions of the nodules suggests the involvement of several MtRbohs in
nodule functioning. RNA-Seq analysis was not performed in the senescent cells. Zone I, meristematic
region; Zone II, infection zone; Zone III, nitrogen-fixing cells; Zone IV, senescent region.

Studies based both on silencing and over-expression of PvRbohB indicate that this oxidase has a
central role during nodule senescence, and this notion is further supported by the strong promoter
activity of this gene in senescent nodules [7]. The collected evidence suggests that ROS-produced
by RBOH has a signaling role during nodule senescence in P. vulgaris, acting as a negative regulator.
Conversely, none of the MtRbohs (MtRbohA, MtRbohB, MtRbohE, MtRbohF, and MtRbohG) analyzed to
date show promoter activity in the senescence zone of indeterminate M. truncatula nodules, eliminating
the possibility that these genes function in nodule senescence in this legume [8] (Figure 4). It seems
likely that RBOHs have a more prominent role in determinate nodules than in indeterminate nodules.
However, the possibility that MtRboh genes participate in nodule senescence should not be discarded,
since uncharacterized members of the family could be involved in this process.

5. Conclusions and Perspectives

A diverse range of approaches undertaken by different laboratories have demonstrated that
RBOH members participate at distinct stages of the legume-rhizobia symbiosis. These oxidases
play key roles throughout nodulation; for instance, they are involved in the signaling pathway
induced by NF treatment in the root hairs, IT growth, nodule organogenesis, nitrogen fixation, and
nodule senescence. The evidence collected to date indicates that ROS generated by RBOH activity
function as signaling molecules in the nodulation pathway, but also modify the structure of the cell
wall in the IT. However, important gaps remain in our understanding of the function of RBOHs at
several stages of rhizobial symbiosis. Specifically, the localization and dynamics of NADPH oxidases
throughout nodulation remain to be determined. In addition, only two members of the Rboh gene
family, MtRbohA, and PvRbohB, have been functionally analyzed, although transcriptome evidence
suggests the involvement of other Rbohs both in M. truncatula and P. vulgaris nodules. Therefore,
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functional characterization of other Rboh members is urgently needed. Another remaining challenge is
to decipher the molecular targets of the ROS produced in response to RBOH activity, as well as the
precise function of RBOHs in the NF signaling cascade. The legume-rhizobia symbiosis is a remarkable
model for understanding ROS participation at the molecular level during infectious and developmental
processes, and information gleaned from studies conducted in this system will be of general interest to
the plant-microbe interaction research community.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/17/
5/680/s1, Video S1: Subcellular localization of PvRBOHB-GFP in the infection thread of P. vulgaris roots.
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