Next Article in Journal
Duplication and Remolding of tRNA Genes in the Mitochondrial Genome of Reduvius tenebrosus (Hemiptera: Reduviidae)
Next Article in Special Issue
RNA Secondary Structure Modulates FMRP’s Bi-Functional Role in the MicroRNA Pathway
Previous Article in Journal
Next Generation Sequencing Approach in a Prenatal Case of Cardio-Facio-Cutaneus Syndrome
Previous Article in Special Issue
The Role of miRNA in Papillary Thyroid Cancer in the Context of miRNA Let-7 Family
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer

1
Department of Nursing, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
2
Department of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
3
Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
4
Department of Dermatology, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 333, Taiwan
5
Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Int. J. Mol. Sci. 2016, 17(6), 945; https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17060945
Submission received: 2 April 2016 / Revised: 1 June 2016 / Accepted: 7 June 2016 / Published: 16 June 2016
(This article belongs to the Special Issue MicroRNA Regulation)

Abstract

:
Human gastric cancer (GC) is characterized by a high incidence and mortality rate, largely because it is normally not identified until a relatively advanced stage owing to a lack of early diagnostic biomarkers. Gastroscopy with biopsy is the routine method for screening, and gastrectomy is the major therapeutic strategy for GC. However, in more than 30% of GC surgical patients, cancer has progressed too far for effective medical resection. Thus, useful biomarkers for early screening or detection of GC are essential for improving patients’ survival rate. MicroRNAs (miRNAs) play an important role in tumorigenesis. They contribute to gastric carcinogenesis by altering the expression of oncogenes and tumor suppressors. Because of their stability in tissues, serum/plasma and other body fluids, miRNAs have been suggested as novel tumor biomarkers with suitable clinical potential. Recently, aberrantly expressed miRNAs have been identified and tested for clinical application in the management of GC. Aberrant miRNA expression profiles determined with miRNA microarrays, quantitative reverse transcription-polymerase chain reaction and next-generation sequencing approaches could be used to establish sample specificity and to identify tumor type. Here, we provide an up-to-date summary of tissue-based GC-associated miRNAs, describing their involvement and that of their downstream targets in tumorigenic and biological processes. We examine correlations among significant clinical parameters and prognostic indicators, and discuss recurrence monitoring and therapeutic options in GC. We also review plasma/serum-based, GC-associated, circulating miRNAs and their clinical applications, focusing especially on early diagnosis. By providing insights into the mechanisms of miRNA-related tumor progression, this review will hopefully aid in the identification of novel potential therapeutic targets.

1. Introduction

Gastric cancer (GC), a malignant epithelial cancer disease [1], is associated with a high global incidence of mortality [2,3]. Although surgical resection, together with chemotherapy and radical therapy, shows significant improvement over surgery alone in early-stage GC patients [4,5], GC patients commonly present with late-stage cancer at initial diagnosis owing to the lack of clinical symptoms that would enable early detection [2,3,6]. The five-year survival rate for late-stage GC patients is only about 20%–30% [7]. Thus, additional studies designed to improve early detection of GC are needed to provide better quality of life and longer survival for GC patients. Early diagnosis is critical for greatly reducing the efficiency of peritoneal spread and local/distal metastasis of GC, necessitating the development of new and more sensitive tumor markers for early GC diagnosis and disease monitoring. Conventional plasma/serum-based tumor biomarkers commonly used clinically for early GC diagnosis, including carcinoembryonic antigen (CEA), the carbohydrate antigens (CA), CA19-9, CA72-4, CA125, CA24-2 and CA50, as well as pepsinogen and α-fetoprotein (AFP), have poor specificity and sensitivity [8,9].
MicroRNAs (miRNAs) are small (~22 bp) nucleic acids that function by regulating the expression of downstream target genes [10]. Their dysregulation has been reported to be involved in pathogenic processes underlying GC tumorigenesis and progression, including cell growth, invasion, metastasis, and apoptosis. Moreover, miRNAs are stable and persistent among individuals of the same species, even for several years in formalin-fixed, paraffin-embedded tissues and body fluids, such as plasma/serum, urine, saliva, and milk [11,12,13,14,15]. Therefore, aberrantly expressed miRNAs are potentially useful biomarkers for GC screening, diagnosis, prognosis and disease monitoring, as well as therapeutic targets.
A number of researchers have explored the possibility of using miRNAs as biomarkers. Here, we summarize major, up-to-date information on the subject, focusing on discoveries from systematic analysis of miRNA profiling, microarray profiling and quantitative reverse transcription-polymerase chain reaction (Q-RT-PCR) profiling approaches. Specifically, we discuss plasma/serum-based, GC-related circulating miRNAs and their clinical application, focusing particularly on their application as diagnostic and prognostic indicators. We also review tissue-based, GC-related miRNA biomarkers and their downstream targets in GC, as well as plasma/serum-based, GC-associated circulating miRNAs and their clinical applications, focusing especially on early diagnosis. Moreover, we examine correlations among significant clinical parameters and prognostic indicators, and discuss recurrence monitoring and therapeutic options in GC. miRNA biomarkers with potential applications in GC are listed in Table 1, Table 2, Table 3 and Table 4.
In order to search of all the related literatures, we used PubMed for the GC microRNA expression profiling studies between January 2000 and December 2016. The keyword “miR and gastric cancer” was used. Selected studies should fit the following search criteria: (1) profiling studies in GC patients; (2) including the appropriate adjacent noncancerous gastric tissues or normal plasma/serum for control; (3) including the known cut-off criteria/value of differentially expressed miRNAs; and (4) including the known number of study patients or normal subjects; (5) showing statistical analysis data.

2. Cellular Functions of miRNAs in GC

Aberrantly expressed miRNAs serve oncogenic or tumor-suppressor functions in tumorigenesis. They can regulate cell proliferation, cell cycle progression, apoptosis, angiogenesis, cell migration, cell invasion and/or metastasis in GC (Table 1 and Table 2), depending on their target genes. Therefore, a given miRNA may exert dual, opposite functions in GC. Generally, oncogenic miRNAs (oncomiRs) are over-expressed in GC and act to inhibit tumor-suppressor genes. Conversely, tumor-suppressor miRNAs, which inhibit oncogene expression, are usually down-regulated in GC. miRNAs in this category regulate various biological processes to stimulate cancer development.

2.1. GC-Related miRNAs in Cell Proliferation, Cell Cycle, and Apoptosis

Accelerated cell proliferation, cell cycle progression or disturbed apoptosis are common features of malignancy that arise through silencing of cell cycle-inhibitory or apoptotic pathway-associated genes. In several malignant tumors, miRNA dysregulation stimulates cell cycle progression by up-regulating cyclin expression or down-regulating the expression of other cell cycle regulators or cyclin-CDK (cyclin-dependent kinase) inhibitors, including members of the p16 family (p15, p16, p18 and p19) and p21 family (p21, p27, p28 and p57) [212,213,214]. Moreover, transforming growth factor (TGF)-β1 has been shown to repress GC cell proliferation through transcriptional up-regulation of p21 [108]. In this context, oncomiR-106b and oncomiR-93 are both up-regulated in GC and target the downstream E2F1 (E2F transcription factor 1) and p21 (cyclin-dependent kinase inhibitor 1A), thereby inhibiting the activity of TGF-β1 [26] and contributing to GC by enhancing cell proliferation.
In addition, these oncomiR clusters are significantly up-regulated in GC. miR-106b-93-25 and miR-222-221 have been reported to inhibit the p21 family CDK inhibitors p57KIP2, p21CIP1 and p27KIP1 [27]. Kim et al. showed that over-expression of the miR-222-221 cluster also enhances the growth of GC xenografts in nude mice [27], further reporting that miR-25 targets p57. In addition, both miR-106b and miR-93 down-regulate p21, whereas miR-222 and miR-221 both control p27 and p57. miR-449, which targets cyclin E2 and geminin, among others, and normally promotes senescence and apoptosis, is down-regulated in GC. Consistent with these biological functions, down-regulation of miR-449 in GC promotes G1/S and M/G1 cell cycle progression and cell proliferation [178]. Cui et al. [166] reported that the tumor suppressors miR-449 and miR-29a both target p42.3 (suppressor APC domain containing 2) in GC, promoting increased G2/M cell cycle progression and proliferation. In addition to directly targeting CDK inhibitors, miR-24 also modulates anion exhanger-1 (AE1), and thus promotes cell proliferation [164,165]. Moreover, let-7, which targets CDC34, is frequently down-regulated in GC [105].
Some oncomiRs are significantly up-regulated in GC tissues and target downstream tumor-suppressor genes. Zhang et al. [68,69,70,71,72] showed that one such oncomiR, miR-21, directly targets the tumor-suppressor gene RECK (reversion-inducing cysteine-rich protein with kazal motifs) and contributes to GC by enhancing cell proliferation and inhibiting apoptosis. Several lines of evidence have revealed that miR-21 also has the ability to stimulate cell invasion and migration. The oncomiR miR-199a was shown to significantly inhibit SMAD4, thereby inhibiting TGF-β1 signaling control over cell proliferation and apoptosis, and promoting anchorage-independent growth in soft agar [39,58,62,63,64,65]. Another oncomiR, miR-23a, was shown to significantly promote GC cell proliferation by silencing its target, the interleukin (IL)-6 receptor (IL6R) [77,78,79].
Conversely, some tumor-suppressor miRs that target downstream oncogenes are significantly down-regulated in GC tissues. Carvalho et al. reported that the tumor suppressor miR-101, which targets EZH2 (enhancer of zeste 2 polycomb repressive complex 2 subunit), COX-2 (cytochrome c oxidase subunit II), MCL-1 (myeloid cell leukemia 1) and FOS (FBJ osteosarcoma oncogene), has anti-proliferative and anti-metastatic functions in GC [117,118,119,120]. In addition, the tumor suppressor miR-125a, which targets ERBB2 (erb-b2 receptor tyrosine kinase 2), and miR-129, which targets CDK6 (cyclin-dependent kinase 6), are also involved in anti-proliferative and pro-apoptotic functions [24,126,127,131]. Similarly, Song et al. showed that the tumor suppressor miR-148b, which targets CCKBR (cholecystokinin B receptor), is anti-proliferative in vitro and anti-tumorigenic in vivo [138]. These results suggest that abnormal miRNA expression may increase cell cycle progression through direct or indirect regulation of CDK inhibitors and cell cycle–associated regulators.
In addition, anti-apoptosis is a character of tumorigenesis [16]. miR-106b and miR-93 abrogate TGFβ-induced apoptosis in GC cells by targeting the expression of BIM, encoding the pro-apoptotic protein BCL2-like 11, and thereby prevent apoptosis and cause tumor progression [26]. OncomiR-130b in GC cells increases cell viability and anti-apoptosis by targeting TGFβ-induced RUNX3 (runt related transcription factor 3) [37]. Lai et al. have also reported that miR-130b suppresses TGFβ-induced BIM expression and apoptosis by targeting RUNX3 in GC cells. Moreover, several oncomiRs, namely miR-15b, miR-16, miR-181b and miR-34, directly target the gene encoding the anti-apoptotic protein Bcl-2, and thus promote apoptosis in GC. The tumor suppressors miR-15b, miR-16 and miR-181b have been shown to inhibit chemotherapeutic drug-induced apoptosis [47,48]. In addition, oncomiR-150 negatively regulates the pro-apoptotic gene EGR2 (early growth response 2) to accelerate GC growth [215]. Shen et al. [35] reported that miR-129-2 targets SOX4 to induce apoptosis by regulating the relative abundance of pro-apoptotic and anti-apoptotic members of the Bcl-2 family in GC. Bandres et al. [94] reported that miR-451 functions as a tumor suppressor by repressing migration inhibitory factor (MIF), thereby activating Bcl-2, EGFR (epidermal growth factor receptor) and the phosphoinositide 3-kinase (PI3K)/Akt pathway in GC [95,96]. Another study showed that ectopic expression of the tumor suppressor miR-375 reduced cell viability in GC cells through the proliferative PI3K/Akt pathway (by targeting JAK2 and PDK1) and the anti-apoptotic NF-κB signaling pathway (by targeting the anti-apoptotic protein 14-3-3ζ) [86,174,175]. Moreover, the tumor suppressor miR-218 regulates COX-2 (cyclooxygenase-2) via the anti-apoptotic NF-κB signaling pathway [155]. These findings suggest that the dysregulated miRs control mitochondria-mediated (intrinsic) and death receptor–mediated (extrinsic) apoptotic pathways through the Bcl-2 family target [216]. Further, dysregulated miRs are also involved in the anti-apoptotic PI3K/Akt and NF-κB signaling pathways which control apoptosis by Bad and the XIAP gene [217].
In summary, the abundance of miRs expression may accelerate cell cycle progression through direct or indirect regulation of CDK inhibitors and several cell cycle regulators. Moreover, the abundance of miRs expression also may influence anti-apoptosis or the pro-survival pathway by targeting apoptosis-associated proteins. They may play an important molecular role in GC progression.

2.2. GC-Related miRNAs in Cell Migration, Invasion, and Metastasis

Metastasis, a complex, multistep process that involves cytoskeleton remodeling, matrix metalloproteinases (MMPs), homing receptors and their ligands, intracellular signaling pathways (TGFβ and TGFβ/c-Met) and angiogenesis, is a hallmark of malignant tumors [218,219]. As noted above, Zhang et al. [68] identified RECK as a direct target of the oncomiR miR-21, and also found that oncomiR-21 is up-regulated in Helicobacter pylori-infected GC tissues. RECK might also possess anti-invasion, anti-metastasis and anti-angiogenesis functions through modulation of MMP2, MMP9 and MMP14 expression. In addition, miR-21 targeting of PDCD4 (programmed cell death 4) is associated with lymph node metastasis and venous invasion. Another report indicated that PTEN (phosphatase and tensin homologue) is a target of miR-21 that promotes anoikis through activation of the PI3K/Akt pathway [68,72]. In addition, Tsai et al. [59] have shown that oncomiR-196a/b expression promotes GC cell migration, invasion, and metastasis by increasing radixin (RDX) expression in GC tissues. OncomiR-370 was shown to decrease TGFβ-RII expression and stimulate TGFβ1-induced phosphorylation of Smad3. Thus, oncomiR-370 is capable of triggering cell migration by disturbing the TGFβ signaling pathway [85]. Moreover, oncomiR-215 was shown to target ALCAM (activated leukocyte cell adhesion molecule) and increase GC metastasis [71]. Conversely, the tumor suppressor miR-218 promotes invasion and metastasis by targeting Robo1, and thereby activating the Slit/Robo1 signaling pathway [156,157,158,159,160]. Other tumor suppressors of the let-7 family increase the expression of HMGA2 (high mobility group AT-hook 2), which is associated with tumor invasion and is an independent prognostic factor in GC [107]. Furthermore, members of the miR-200 family increase the epithelial-mesenchymal transition (EMT), and contribute to cell migration by reducing the expression of E-cadherin repressors ZEB1 and ZEB2 (zinc finger E-box binding homeobox 2) [145,146]. Down-regulation of miR-335 was found to be significantly associated with lymph node metastasis, invasion of lymphatic vessels, cell invasion and metastasis through targeting of BCL-w and SP1 (specificity protein 1) [82,83].
Interestingly, the function of miRNAs depends on the expression of their target genes. Previous studies revealed that some miRs could target both oncogenes and tumor-suppressor genes, leading to opposite roles in GC. Accordingly, miR-9 may play dual but opposing roles in GC. Thus, acting as an oncomiR, miR-9 targets CDX2 [102] and increases cell proliferation by facilitating cell cycle progression; conversely, acting as a tumor suppressor, miR-9 targets NF-κB1, cyclin D1, and ETS1 to contribute to anti-proliferation and anti-metastasis [102,112,113,114]. Nakayama et al. [20] reported that oncomiR-10b targets HOXD10 (homeobox D10) to promote GC metastasis. However, Kim et al. [116] found that miR-10b also represses the expression of MAPRE1 (microtubule associated protein RP/EB family member 1), resulting in the inhibition of colony formation and cell proliferation. Moreover, oncomiR-223 was shown to promote GC invasion and metastasis by targeting EPB41L3 (erythrocyte membrane protein band 4.1-like 3) expression [76]. However, Kang et al. [162,163] reported that miR-223 acted as a tumor suppressor, directly targeting STMN1 (stathmin 1) expression to inhibit cell growth and metastasis. Thus, some miRNAs play dual roles through targeting of different genes during GC progression. Further studies will be required to elucidate the details of these different roles.

3. Clinical Applications of MicroRNAs in GC

3.1. GC-Related miRNAs as Diagnostic Biomarkers

Early diagnosis permits effective and radical treatment of GC before it develops to an advanced and metastatic stage. Gastroscopy with biopsy, the current standard clinical practice, is not a good screen for GC on a population basis, and existing biomarkers exhibit poor sensitivity and specificity. Thus, there are currently no reliable diagnostic biomarkers for GC. Multiple or combined biomarker assays are expected to provide more accurate results [220]. Investigators continue their efforts to identify convenient, high-sensitivity, high-specificity, and noninvasive biomarkers for early GC diagnosis [185]. MiRNAs can be released from tumor tissues into bodily fluids, including serum, plasma, urine, tears, amniotic fluid and gastric juice, through the secretion of exosome particles [15,221,222]. Mitchell et al. [15,221,222] demonstrated that circulating miRNAs in plasma/serum from GC patients are consistent with those in tissues; therefore, they could be useful as noninvasive biomarkers for the initial diagnosis of GC and assessment of GC recurrence. The most widely investigated biomarkers have been discovered using newer methods, such as systematic analysis of miRNA profiling, miRNA profiling, microarray profiling, and Q-RT-PCR profiling approaches [223,224,225,226,227]. The major plasma/serum-based, GC-related circulating miRNAs that have been suggested as useful GC biomarkers are listed in Table 3 and Table 4.
Liu et al. [111] used systematic analysis of miRNA profiling, miRNA profiling to identify a signature of five circulating oncomiRs—miR-1, miR-20a, miR-27a, miR-34 and miR-423-5p—and correlated it with tumor stage. Using receiver-operating characteristic (ROC) curve analyses, these authors evaluated the diagnostic value of this miR signature, showing that it achieved a sensitivity of 80% and a specificity of 81%. They observed that the circulating five-oncomiR signature I exhibited a high diagnostic value, with an area under the ROC curve (AUC) of 0.879. By comparison, the five-oncomiR signature II exhibited an AUC of 0.831, which is higher than that of CEA, with an AUC of 0.503, and CA19-9, with an AUC of 0.6. In a large-scale analysis, four circulating oncomiRs (miR-17-5p, miR-21, miR-106a and miR-106b) significantly distinguished GC patients from healthy controls and pre-operative from post-operative GC patients [185]. Moreover, Valladares-Ayerbes et al. [42], using a Cox multivariate regression model, identified circulating oncomiR-200c as a biomarker for GC diagnosis and as an independent prognostic factor for progression-free survival and overall survival in GC patients. Liu et al. [49] found that oncomiR-378 in the GC patients was significantly higher than that in the healthy controls. OncomiR-378 exhibited a high diagnostic value, with an AUC of 0.861, a sensitivity of 87.5% and a specificity of 70.7%.
In addition, several oncomiRs circulating in the blood of GC patients can be used as diagnostic biomarkers to distinguish GC patients from healthy individuals. These include miR-1, miR-106a, miR-106b, miR-17, miR-17-5p, miR-18a, miR-192, miR-199a-3p, miR-20a, miR-200c, miR-21, miR-210, miR-218, miR-221, miR-222, miR-25, miR-27a, miR-34, miR-376c, miR-378, miR-421, miR-423-5P, miR-451, miR-486, miR-744, and miR-93 [26,27,54,68,71,80,111,184,185,186,187,188,190,191,195,196,197,199,200,203,206,207,208]. Of these, miR-17-5p, miR-18a, miR-20a, miR-200c, miR-21, miR-218, miR-221, miR-222, miR-25, miR-27a, miR-376c, and miR-744 were found to be significantly elevated in GC patients, and their expression was significantly reduced after surgery [26,27,54,68,71,80,81,155,187,192,193,195,196,198,199,200,201,202,203,204,205].
Conversely, several tumor-suppressor miRNAs circulating in the blood of GC patients can also be used as diagnostic biomarkers to distinguish GC patients from healthy individuals, including miR-122, miR-195-5p, miR-203, miR-218, and miR-375 [155,189,198,209,210,211]. Of these, miR-122, miR-203, and miR-218 were found to be significantly reduced in GC patients, and their expression was significantly increased following surgery [155,189,198,211].
Taken together, these findings suggest that circulating miRNAs are useful, noninvasive biomarkers for early diagnosis or monitoring of cancer survivors after treatment of GC. The significance of these biomarkers compares favorably to the use of the traditional biomarkers CEA or CA19.9 alone.

3.2. GC-Related miRNAs as Prognostic Biomarkers

To predict GC patient survival time, cancer progression (disease stage), prognostic outcome, lymph node metastasis or response to treatment is challenging. Recurrence is also a key problem leading to the failure of treatments, including radical or chemical treatment and surgical resection. Although the clinical outcome of GC has improved, prognostic indicators capable of predicting recurrence in GC patients after treatment are still lacking. Recently, due to the stability and specificity of expression in tissues and circulation, accumulating evidence has shown that miRNAs can be regarded as novel biomarkers with a potential clinical significance tool for GC patients’ outcomes.
In general, the occurrence of a distant metastasis frequently leads to advanced-stage cancer and shorter survival. In this context, it has been shown that oncomiR-10b, miR-21, and miR-212 in GC patients are associated with a high metastasis risk and poor clinical outcomes, including tumor-node-metastasis, tumor size, stage, lymph node metastasis, and five-year survival rate [69,126,228].
Li et al. [229] showed that a seven-miRNA signature (miR-10b, miR-21, miR-223, let-7a, miR-338, miR-30a-5p and miR-126) could predict relapse-free and overall survival of GC patients. In addition, oncomiR-20b, miR-150 [23], miR-214 [24,74], miR-375 [39,74,86,87,88], tumor suppressor Let-7g [24,109,110], miR-125-5p [126], miR-146a [24,134], miR-218 [154], miR-433 [24,86,109,110,174], and miR-451 [24,94,230] are associated with a poor survival prediction in GC. In GC, high expression of miR-195 [58], miR-199a [39,58,62,63,64,65], miR-1952 [58], miR-335 [82,83], miR-375 [39,74,86,87,88], miR-451 [58,94,95,96] and miR-4512 [39], and low expression of miR-142-5p [39] are more likely to indicate relapse or recurrence of GC patients. Moreover, GC patients with over-expression of miR-107 [28,29,30], miR-143 [40], miR-145 [41,42], miR-181b/c [17,47,48,55,56], miR-196a/b [59], miR-20b [23,66], miR-23a/b [77,78,79], miR-34 [17,47,48,55,56] and miR-630 [100] and decreased expression of miR-1 [111], miR-1207-5p [121], miR-125a-3p/-5p [24,125,126,127], miR-185 [140], miR-193b [60], miR-20a [111], miR-206 [150,151], miR-215 [142], miR-217 [153], miR-27a [111], miR-29c [169], miR-34a [172,173], miR-423-5p [111], and miR-520d-3p [99] indicate advanced tumor stage or TNM stage. High levels of miR-107 [28,29,30], miR-181b/c [17,47,48,55,56], miR-192 [57], miR-196a/b [59], miR-20b [23,66], miR-21 [68,69,70,71,72], miR-214 [24,74], miR-23a/b [77,78,79], miR-25 [26,27,80], miR-27a [23,81], miR-630 [100], and miR-650 [101] and decreased levels of Let-7g [24,109,110], miR-1207-5p [121], miR-125a-3p/-5p [24,125,126,127] and miR-126 [128,129,130], miR-146a [24,134], miR-148a [46,135,136,137], miR-153 [139], miR-218 [154,155,156,157,158,159,160], miR-22 [151,161], miR-27a [111], miR-29c [169], miR-335 [171], miR-34a [172,173], miR-429 [177], miR-433 [24,86,109,110,174] and miR-520d-3p [99] are associated with invasion or LNM, as well as metastasis.
Conversely, the tumor suppressors miR-125a and miR146a are significantly correlated with lymph node metastasis, indicating that they could be prognostic factors of overall survival [126,134]. Other study showed that low expression of let-7 is related to tumor invasiveness and prognosis by targeting HMGA2 [231].
Therefore, many potential predictors have been regarded as beneficial for mediating the prognosis of GC patients and are the basis for targeted therapy. In future, these prognostic miRNAs could be useful for making choices concerning treatment.

3.3. GC-Related miRNAs as Treatment Biomarkers

One miRNA may regulate multi-target gene expression and multiple pathways, affecting the process of tumor development [232,233,234]. Thus, miRNAs are more effective than coding genes as biological regulation molecules.
The methods of current miRNA-mediated treatment are focused on miRNA knockout or silencing the endogenous oncomiRs, including anti-miRNA oligonucleotides (AMOs) [13], miRNA sponges [235], miR-Mask [236], antagomiRs and miRNA inhibitors [12,237]. For example, Chun et al. [200] transfected AS-miR-221/222 with liposomes into GC cell line SGC7901 to inhibit GC cell growth and invasion. Moreover, high expression of miR-196a/-196b promotes GC cell migration and invasion. Elevated miR-196a/-196b expression results in decreasing target RDX protein in GC cells and vice versa. Similar results were obtained in a mouse model of human GC. Tsai et al. [59], through AMOs, used anti-miR-196a/-196b oligonucleotides or the over-expression of RDX, which may serve a therapeutic purpose to inhibit GC metastasis.
Conversely, forced expression the tumor suppressor miRNAs is used to gain the resolution of tumor treatment. miRNA over-expression is often performed by using an in vivo or in vitro RNA delivery system as in cancer therapeutics, including adeno-associated viruses [238] or nonpathogenic bacteria [239] as a carrier to introduce a specific miRNA or miRNA mimics to up-regulate miRNA [240]. miR-1207-5p and miR-1266 are significantly down-regulated in GC tissues. Over-expression of these two miRs inhibited GC growth through targeting hTERT system in vitro and in vivo. Chen et al. [241] showed a novel therapeutic method for the delivery of these two miRs for GC treatment.
However, some problems must be considered. For example, one miRNA modulates multi-target genes and multiple pathways. Also, the off-target effects are unexpected. Thus, better specificity and an effective miRNA delivery system for a therapeutic strategy must be developed [242,243].

4. Conclusions

miRNA biomarkers have been found at elevated levels in the blood or tissues of patients with tumors. Changes in different biomarkers during tumor progression can help clinicians monitor cancer status. Although higher levels of a biomarker can potentially predict a tumor, other factors may also account for such elevated levels. Dysregulation of tumor markers can occur in response to the presence of a tumor or a change in status, enabling them to be used for a range of applications, including screening, diagnosis, staging, prognosis, and monitoring of recurrence after treatment. The values of these miRNAs as biomarkers will require further confirmation in human GC patients. In the future, an miRNA or an miRNA signature could be a better diagnostic or therapeutic tool than a single gene. However, the challenge is to develop a standard protocol for collecting large specimens, re-analyzing them in a large independent cohort, and validating their significance in clinical applications.
Moreover, several studies have suggested that tumor-derived circulating miRs might be secreted into circulation. Circulating miRs in the plasma/serum of GC patients can be used as diagnostic biomarkers to compare GC patients with healthy controls [185,244]. Most of these biomarkers are more sensitive and specific than the traditional biomarkers CEA or CA19.9 alone [111,185,190]. These findings provide novel indicators for monitoring GC dynamics and early diagnosis for GC to improve survival.
Currently, biomarkers are only used as a reference and not to diagnose the disease per se. A professional physician will still need to provide a comprehensive judgment, including choice of tumor marker, evaluation of clinical symptoms, assessment of related imaging performance, and other non-specific factors. Ultimately, the personalized management, diagnosis, and prognosis of the disease can be achieved using a panel of miRNAs.

Acknowledgments

This work was supported by grants from Chang-Gung University, Taoyuan, Taiwan (NMRPD150311, NMRPD170441-42, CMRPG640042-43, CMRPG670291-93, CMRPG6B0011, CMRPF190073, CMRPF1C0151, CMRPF1C0152, CMRPF1C0153) and the National Science Council of the Republic of China (NSC 95-2314-B-182-027, 97-2314-B-182-009-MY2, 99-2314-B-182-022, 102-2314-B-182A-074).

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

AE1: Anion exhanger-1; AFP: Alphafetoprotein; ALCAM: Activated leukocyte cell adhesion molecule; AMOs: Anti-miRNA oligonucleotides; AUCs: Areas under the ROC curves; CA19-9: Carbohydrate antigen 19-9; CCKBR: Cholecystokinin B receptor; CEA: Carcinoembryonic antigen; COX-2: Cyclooxygenase-2; Cyclin-CDK: Cyclin-dependent kinase; CDK6: Cyclin-dependent kinase 6; E2F1: E2F transcription factor 1; EGFR: Epidermal growth factor receptor; EGR2: Early growth response 2; EMT: Epithelial–mesenchymal transition; EPB41L3: Erythrocyte membrane protein band 4.1-like 3; ERBB2: Erb-b2 receptor tyrosine kinase 2; EZH2: Enhancer of zeste 2 polycomb repressive complex 2 subunit; FFPE: Formalin-fixed paraffin-embedded; FOS: FBJ osteosarcoma oncogene; GC: Gastric cancer; HMGA2: High mobility group AT-hook 2; HOXD10: Homeobox D10; IL6R: interleukin (IL)-6 receptor; MAPRE1: Microtubule associated protein RP/EB family member 1; MCL-1: Myeloid cell leukemia 1; MIF: Migration inhibitory factor; miRNAs: MicroRNAs; MMP: Matrix metalloproteinase; NF-κB: Nuclear factor-κB; OncomiRs: Oncogenic miRNAs; OS: Overall survival; p21: cyclin-dependent kinase inhibitor 1A; PDCD4: Programmed cell death 4; PFS: progression free survival; PI3K: phosphoinositide 3-kinase; Post-op: Post-operative; Pre-op: Pre-operative; PTEN: Phosphatase and tensin homologue; Q-RT-PCR: quantitative reverse transcription-polymerase chain reaction; RDX: Radixin; RECK: reversion-inducing cysteine-rich protein with kazal motifs; ROC: Receiver operating characteristic; RUNX3: Runt related transcription factor 3; SP1: Specificity protein 1; STMN1: Stathmin 1; TGF-β1: Transforming growth factor-β1; TNM: Tumor-node-metastasis; Tumor suppressor-miRs: Tumor suppressive miRNAs; ZEB2: Zinc finger E-box binding homeobox 2.

References

  1. Heise, K.; Bertran, E.; Andia, M.E.; Ferreccio, C. Incidence and survival of stomach cancer in a high-risk population of Chile. World J. Gastroenterol. 2009, 15, 1854–1862. [Google Scholar] [CrossRef] [PubMed]
  2. Wu, C.W.; Hsiung, C.A.; Lo, S.S.; Hsieh, M.C.; Chen, J.H.; Li, A.F.; Lui, W.Y.; Whang-Peng, J. Nodal dissection for patients with gastric cancer: A randomised controlled trial. Lancet Oncol. 2006, 7, 309–315. [Google Scholar] [CrossRef]
  3. Wu, C.W.; Lo, S.S.; Shen, K.H.; Hsieh, M.C.; Lui, W.Y.; P’Eng, F.K. Surgical mortality, survival, and quality of life after resection for gastric cancer in the elderly. World J. Surg. 2000, 24, 465–472. [Google Scholar] [CrossRef] [PubMed]
  4. Sharma, M.R.; Schilsky, R.L. GI cancers in 2010: New standards and a predictive biomarker for adjuvant therapy. Nat. Rev. Clin. Oncol. 2011, 8, 70–72. [Google Scholar] [CrossRef] [PubMed]
  5. Smyth, E.C.; Cunningham, D. Gastric cancer in 2012: Defining treatment standards and novel insights into disease biology. Nat. Rev. Clin. Oncol. 2013, 10, 73–74. [Google Scholar] [CrossRef] [PubMed]
  6. Dassen, A.E.; Lemmens, V.E.; van de Poll-Franse, L.V.; Creemers, G.J.; Brenninkmeijer, S.J.; Lips, D.J.; Vd Wurff, A.A.; Bosscha, K.; Coebergh, J.W. Trends in incidence, treatment and survival of gastric adenocarcinoma between 1990 and 2007: A population-based study in the Netherlands. Eur. J. Cancer 2010, 46, 1101–1110. [Google Scholar] [CrossRef] [PubMed]
  7. Oba, K.; Paoletti, X.; Bang, Y.J.; Bleiberg, H.; Burzykowski, T.; Fuse, N.; Michiels, S.; Morita, S.; Ohashi, Y.; Pignon, J.P.; et al. Role of chemotherapy for advanced/recurrent gastric cancer: An individual-patient-data meta-analysis. Eur. J. Cancer 2013, 49, 1565–1577. [Google Scholar] [PubMed]
  8. Emoto, S.; Ishigami, H.; Yamashita, H.; Yamaguchi, H.; Kaisaki, S.; Kitayama, J. Clinical significance of CA125 and CA72–4 in gastric cancer with peritoneal dissemination. Gastric Cancer Off. J. Int. Gastric Cancer Assoc. Jpn. Gastric Cancer Assoc. 2012, 15, 154–161. [Google Scholar] [CrossRef] [PubMed]
  9. Wang, A.B.; Cheng, C.W.; Lin, I.C.; Lu, F.Y.; Tsai, H.J.; Lin, C.C.; Yang, C.H.; Pan, P.T.; Kuan, C.C.; Chen, Y.C.; et al. A novel DNA selection and direct extraction process and its application in DNA recombination. Electrophoresis 2011, 32, 423–430. [Google Scholar] [CrossRef] [PubMed]
  10. Lee, Y.; Ahn, C.; Han, J.; Choi, H.; Kim, J.; Yim, J.; Lee, J.; Provost, P.; Radmark, O.; Kim, S.; et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003, 425, 415–419. [Google Scholar] [CrossRef] [PubMed]
  11. Fernandez, L.A.; Northcott, P.A.; Taylor, M.D.; Kenney, A.M. Normal and oncogenic roles for microRNAs in the developing brain. Cell Cycle 2009, 8, 4049–4054. [Google Scholar] [CrossRef] [PubMed]
  12. Tachibana, A.; Yamada, Y.; Ida, H.; Saito, S.; Tanabe, T. LidNA, a novel miRNA inhibitor constructed with unmodified DNA. FEBS Lett. 2012, 586, 1529–1532. [Google Scholar] [CrossRef] [PubMed]
  13. Weiler, J.; Hunziker, J.; Hall, J. Anti-miRNA oligonucleotides (AMOs): Ammunition to target miRNAs implicated in human disease? Gene Ther. 2006, 13, 496–502. [Google Scholar] [CrossRef] [PubMed]
  14. Fujiwara, T. Genetically engineered adenovirus for human cancer therapy. Nihon Rinsho Jpn. J. Clin. Med. 2010, 68, 627–633. [Google Scholar]
  15. Ihloff, A.S.; Petersen, C.; Hoffmann, M.; Knecht, R.; Tribius, S. Human papilloma virus in locally advanced stage III/IV squamous cell cancer of the oropharynx and impact on choice of therapy. Oral Oncol. 2010, 46, 705–711. [Google Scholar] [CrossRef] [PubMed]
  16. Cotter, T.G. Apoptosis and cancer: The genesis of a research field. Nat. Rev. Cancer 2009, 9, 501–507. [Google Scholar] [CrossRef] [PubMed]
  17. Kim, C.H.; Kim, H.K.; Rettig, R.L.; Kim, J.; Lee, E.T.; Aprelikova, O.; Choi, I.J.; Munroe, D.J.; Green, J.E. miRNA signature associated with outcome of gastric cancer patients following chemotherapy. BMC Med. Genom. 2011, 4, 79. [Google Scholar] [CrossRef] [PubMed]
  18. Wang, Y.Y.; Li, L.; Ye, Z.Y.; Zhao, Z.S.; Yan, Z.L. MicroRNA-10b promotes migration and invasion through Hoxd10 in human gastric cancer. World J. Surg. Oncol. 2015, 13, 259. [Google Scholar] [CrossRef] [PubMed]
  19. Hersey, P.; Zhang, X.D. Treatment combinations targeting apoptosis to improve immunotherapy of melanoma. Cancer Immunol. Immunother. CII 2009, 58, 1749–1759. [Google Scholar] [CrossRef] [PubMed]
  20. Nakayama, I.; Shibazaki, M.; Yashima-Abo, A.; Miura, F.; Sugiyama, T.; Masuda, T.; Maesawa, C. Loss of HOXD10 expression induced by upregulation of miR-10b accelerates the migration and invasion activities of ovarian cancer cells. Int. J. Oncol. 2013, 43, 63–71. [Google Scholar] [PubMed]
  21. Glatz, J.F.; Luiken, J.J.; van Bilsen, M.; van der Vusse, G.J. Cellular lipid binding proteins as facilitators and regulators of lipid metabolism. Mol. Cell. Biochem. 2002, 239, 3–7. [Google Scholar] [CrossRef] [PubMed]
  22. Xiao, B.; Guo, J.; Miao, Y.; Jiang, Z.; Huan, R.; Zhang, Y.; Li, D.; Zhong, J. Detection of miR-106a in gastric carcinoma and its clinical significance. Clin. Chim. Acta Int. J. Clin. Chem. 2009, 400, 97–102. [Google Scholar] [CrossRef] [PubMed]
  23. Katada, T.; Ishiguro, H.; Kuwabara, Y.; Kimura, M.; Mitui, A.; Mori, Y.; Ogawa, R.; Harata, K.; Fujii, Y. microRNA expression profile in undifferentiated gastric cancer. Int. J. Oncol. 2009, 34, 537–542. [Google Scholar] [PubMed]
  24. Ueda, T.; Volinia, S.; Okumura, H.; Shimizu, M.; Taccioli, C.; Rossi, S.; Alder, H.; Liu, C.G.; Oue, N.; Yasui, W.; et al. Relation between microRNA expression and progression and prognosis of gastric cancer: A microRNA expression analysis. Lancet Oncol. 2010, 11, 136–146. [Google Scholar] [CrossRef]
  25. Song, J.H.; Meltzer, S.J. MicroRNAs in pathogenesis, diagnosis, and treatment of gastroesophageal cancers. Gastroenterology 2012, 143, 35–47. [Google Scholar] [CrossRef] [PubMed]
  26. Petrocca, F.; Visone, R.; Onelli, M.R.; Shah, M.H.; Nicoloso, M.S.; de Martino, I.; Iliopoulos, D.; Pilozzi, E.; Liu, C.G.; Negrini, M.; et al. E2F1-regulated microRNAs impair TGFβ-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 2008, 13, 272–286. [Google Scholar] [CrossRef] [PubMed]
  27. Kim, Y.K.; Yu, J.; Han, T.S.; Park, S.Y.; Namkoong, B.; Kim, D.H.; Hur, K.; Yoo, M.W.; Lee, H.J.; Yang, H.K.; et al. Functional links between clustered microRNAs: Suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res. 2009, 37, 1672–1681. [Google Scholar] [CrossRef] [PubMed]
  28. Li, X.; Zhang, Y.; Shi, Y.; Dong, G.; Liang, J.; Han, Y.; Wang, X.; Zhao, Q.; Ding, J.; Wu, K.; et al. MicroRNA-107, an oncogene microRNA that regulates tumour invasion and metastasis by targeting DICER1 in gastric cancer. J. Cell. Mol. Med. 2011, 15, 1887–1895. [Google Scholar] [CrossRef] [PubMed]
  29. Inoue, T.; Iinuma, H.; Ogawa, E.; Inaba, T.; Fukushima, R. Clinicopathological and prognostic significance of microRNA-107 and its relationship to DICER1 mRNA expression in gastric cancer. Oncol. Rep. 2012, 27, 1759–1764. [Google Scholar] [PubMed]
  30. Feng, L.; Xie, Y.; Zhang, H.; Wu, Y. miR-107 targets cyclin-dependent kinase 6 expression, induces cell cycle G1 arrest and inhibits invasion in gastric cancer cells. Med. Oncol. 2012, 29, 856–863. [Google Scholar] [CrossRef] [PubMed]
  31. Yang, O.; Huang, J.; Lin, S. Regulatory effects of miRNA on gastric cancer cells. Oncol. Lett. 2014, 8, 651–656. [Google Scholar] [CrossRef] [PubMed]
  32. Fesler, A.; Zhai, H.; Ju, J. miR-129 as a novel therapeutic target and biomarker in gastrointestinal cancer. OncoTargets Ther. 2014, 7, 1481–1485. [Google Scholar]
  33. Yu, X.; Luo, L.; Wu, Y.; Liu, Y.; Zhao, X.; Zhang, X.; Cui, L.; Ye, G.; Le, Y.; Guo, J. Gastric juice miR-129 as a potential biomarker for screening gastric cancer. Med. Oncol. 2013, 30, 365. [Google Scholar] [CrossRef] [PubMed]
  34. Du, Y.; Wang, D.; Luo, L.; Guo, J. miR-129-1-3p promote BGC-823 cell proliferation by targeting PDCD2. Anat. Rec. 2014, 297, 2273–2279. [Google Scholar] [CrossRef] [PubMed]
  35. Shen, R.; Pan, S.; Qi, S.; Lin, X.; Cheng, S. Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 in gastric cancer. Biochem. Biophys. Res. Commun. 2010, 394, 1047–1052. [Google Scholar] [CrossRef] [PubMed]
  36. Jiang, H.; Yu, W.W.; Wang, L.L.; Peng, Y. miR-130a acts as a potential diagnostic biomarker and promotes gastric cancer migration, invasion and proliferation by targeting RUNX3. Oncol. Rep. 2015, 34, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
  37. Lai, K.W.; Koh, K.X.; Loh, M.; Tada, K.; Subramaniam, M.M.; Lim, X.Y.; Vaithilingam, A.; Salto-Tellez, M.; Iacopetta, B.; Ito, Y.; et al. MicroRNA-130b regulates the tumour suppressor RUNX3 in gastric cancer. Eur. J. Cancer 2010, 46, 1456–1463. [Google Scholar] [CrossRef] [PubMed]
  38. Shin, J.Y.; Kim, Y.I.; Cho, S.J.; Lee, M.K.; Kook, M.C.; Lee, J.H.; Lee, S.S.; Ashktorab, H.; Smoot, D.T.; Ryu, K.W.; et al. MicroRNA 135a suppresses lymph node metastasis through down-regulation of ROCK1 in early gastric cancer. PLoS ONE 2014, 9, e85205. [Google Scholar] [CrossRef] [PubMed]
  39. Zhang, X.; Yan, Z.; Zhang, J.; Gong, L.; Li, W.; Cui, J.; Liu, Y.; Gao, Z.; Li, J.; Shen, L.; et al. Combination of hsa-miR-375 and hsa-miR-142-5p as a predictor for recurrence risk in gastric cancer patients following surgical resection. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2011, 22, 2257–2266. [Google Scholar] [CrossRef] [PubMed]
  40. Naito, Y.; Sakamoto, N.; Oue, N.; Yashiro, M.; Sentani, K.; Yanagihara, K.; Hirakawa, K.; Yasui, W. MicroRNA-143 regulates collagen type III expression in stromal fibroblasts of scirrhous type gastric cancer. Cancer Sci. 2014, 105, 228–235. [Google Scholar] [CrossRef] [PubMed]
  41. Gao, P.; Xing, A.Y.; Zhou, G.Y.; Zhang, T.G.; Zhang, J.P.; Gao, C.; Li, H.; Shi, D.B. The molecular mechanism of microRNA-145 to suppress invasion-metastasis cascade in gastric cancer. Oncogene 2013, 32, 491–501. [Google Scholar] [CrossRef] [PubMed]
  42. Naito, Y.; Yasuno, K.; Tagawa, H.; Sakamoto, N.; Oue, N.; Yashiro, M.; Sentani, K.; Goto, K.; Shinmei, S.; Oo, H.Z.; et al. MicroRNA-145 is a potential prognostic factor of scirrhous type gastric cancer. Oncol. Rep. 2014, 32, 1720–1726. [Google Scholar] [CrossRef] [PubMed]
  43. Sha, M.; Ye, J.; Zhang, L.X.; Luan, Z.Y.; Chen, Y.B. Celastrol induces apoptosis of gastric cancer cells by miR-146a inhibition of NF-kappaB activity. Cancer Cell Int. 2013, 13, 50. [Google Scholar] [CrossRef] [PubMed]
  44. Xiao, B.; Zhu, E.D.; Li, N.; Lu, D.S.; Li, W.; Li, B.S.; Zhao, Y.L.; Mao, X.H.; Guo, G.; Yu, P.W.; et al. Increased miR-146a in gastric cancer directly targets SMAD4 and is involved in modulating cell proliferation and apoptosis. Oncol. Rep. 2012, 27, 559–566. [Google Scholar] [PubMed]
  45. Zhou, L.; Zhao, X.; Han, Y.; Lu, Y.; Shang, Y.; Liu, C.; Li, T.; Jin, Z.; Fan, D.; Wu, K. Regulation of UHRF1 by miR-146a/b modulates gastric cancer invasion and metastasis. FASEB J. 2013, 27, 4929–4939. [Google Scholar] [CrossRef] [PubMed]
  46. Tseng, C.W.; Lin, C.C.; Chen, C.N.; Huang, H.C.; Juan, H.F. Integrative network analysis reveals active microRNAs and their functions in gastric cancer. BMC Syst. Biol. 2011, 5, 99. [Google Scholar] [CrossRef] [PubMed]
  47. Xia, L.; Zhang, D.; Du, R.; Pan, Y.; Zhao, L.; Sun, S.; Hong, L.; Liu, J.; Fan, D. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells. Int. J. Cancer 2008, 123, 372–379. [Google Scholar] [CrossRef] [PubMed]
  48. Zhu, W.; Shan, X.; Wang, T.; Shu, Y.; Liu, P. miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. Int. J. Cancer 2010, 127, 2520–2529. [Google Scholar] [CrossRef] [PubMed]
  49. Cimmino, A.; Calin, G.A.; Fabbri, M.; Iorio, M.V.; Ferracin, M.; Shimizu, M.; Wojcik, S.E.; Aqeilan, R.I.; Zupo, S.; Dono, M.; et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA 2005, 102, 13944–13949. [Google Scholar] [CrossRef] [PubMed]
  50. Zhu, M.; Wang, M.; Yang, F.; Tian, Y.; Cai, J.; Yang, H.; Fu, H.; Mao, F.; Zhu, W.; Qian, H.; et al. miR-155–5p inhibition promotes the transition of bone marrow mesenchymal stem cells to gastric cancer tissue derived MSC-like cells via NF-kappaB p65 activation. Oncotarget 2016, 7, 16567–16580. [Google Scholar] [PubMed]
  51. Han, S.; Yang, S.; Cai, Z.; Pan, D.; Li, Z.; Huang, Z.; Zhang, P.; Zhu, H.; Lei, L.; Wang, W. Anti-Warburg effect of rosmarinic acid via miR-155 in gastric cancer cells. Drug Des. Dev. Ther. 2015, 9, 2695–2703. [Google Scholar]
  52. Li, H.; Xie, S.; Liu, M.; Chen, Z.; Liu, X.; Wang, L.; Li, D.; Zhou, Y. The clinical significance of downregulation of mir-124–3p, mir-146a-5p, mir-155–5p and mir-335–5p in gastric cancer tumorigenesis. Int. J. Oncol. 2014, 45, 197–208. [Google Scholar] [CrossRef] [PubMed]
  53. Liu, L.; Chen, Q.; Lai, R.; Wu, X.; Liu, F.; Xu, G.; Ji, Y. Elevated expression of mature miR-21 and miR-155 in cancerous gastric tissues from Chinese patients with gastric cancer. J. Biomed. Res. 2010, 24, 187–197. [Google Scholar] [CrossRef]
  54. Wang, M.; Gu, H.; Wang, S.; Qian, H.; Zhu, W.; Zhang, L.; Zhao, C.; Tao, Y.; Xu, W. Circulating miR-17-5p and miR-20a: Molecular markers for gastric cancer. Mol. Med. Rep. 2012, 5, 1514–1520. [Google Scholar] [PubMed]
  55. Cui, M.; Yue, L.; Fu, Y.; Yu, W.; Hou, X.; Zhang, X. Association of microRNA-181c expression with the progression and prognosis of human gastric carcinoma. Hepato GasTroenterol. 2013, 60, 961–964. [Google Scholar]
  56. Hashimoto, Y.; Akiyama, Y.; Otsubo, T.; Shimada, S.; Yuasa, Y. Involvement of epigenetically silenced microRNA-181c in gastric carcinogenesis. Carcinogenesis 2010, 31, 777–784. [Google Scholar] [CrossRef] [PubMed]
  57. Xu, Y.J.; Fan, Y. MiR-215/192 participates in gastric cancer progression. Clin. Transl. Oncol. Off. Publ. Fed. Span. Oncol. Soc. Natl. Cancer Inst Mex. 2015, 17, 34–40. [Google Scholar] [CrossRef] [PubMed]
  58. Brenner, B.; Hoshen, M.B.; Purim, O.; David, M.B.; Ashkenazi, K.; Marshak, G.; Kundel, Y.; Brenner, R.; Morgenstern, S.; Halpern, M.; et al. MicroRNAs as a potential prognostic factor in gastric cancer. World J. Gastroenterol. 2011, 17, 3976–3985. [Google Scholar] [CrossRef] [PubMed]
  59. Tsai, M.M.; Wang, C.S.; Tsai, C.Y.; Chen, C.Y.; Chi, H.C.; Tseng, Y.H.; Chung, P.J.; Lin, Y.H.; Chung, I.H.; Lin, K.H. MicroRNA-196a/-196b promote cell metastasis via negative regulation of radixin in human gastric cancer. Cancer Lett. 2014, 351, 222–231. [Google Scholar] [CrossRef] [PubMed]
  60. Mu, Y.P.; Tang, S.; Sun, W.J.; Gao, W.M.; Wang, M.; Su, X.L. Association of miR-193b down-regulation and miR-196a up-regulation with clinicopathological features and prognosis in gastric cancer. Asian Pac. J. Cancer Prev. 2014, 15, 8893–8900. [Google Scholar] [CrossRef] [PubMed]
  61. Li, H.L.; Xie, S.P.; Yang, Y.L.; Cheng, Y.X.; Zhang, Y.; Wang, J.; Wang, Y.; Liu, D.L.; Chen, Z.F.; Zhou, Y.N.; et al. Clinical significance of upregulation of miR-196a-5p in gastric cancer and enriched KEGG pathway analysis of target genes. Asian Pac. J. Cancer Prev. 2015, 16, 1781–1787. [Google Scholar] [CrossRef] [PubMed]
  62. Sakurai, K.; Furukawa, C.; Haraguchi, T.; Inada, K.; Shiogama, K.; Tagawa, T.; Fujita, S.; Ueno, Y.; Ogata, A.; Ito, M.; et al. MicroRNAs miR-199a-5p and -3p target the Brm subunit of SWI/SNF to generate a double-negative feedback loop in a variety of human cancers. Cancer Res. 2011, 71, 1680–1689. [Google Scholar] [CrossRef] [PubMed]
  63. Song, G.; Zeng, H.; Li, J.; Xiao, L.; He, Y.; Tang, Y.; Li, Y. miR-199a regulates the tumor suppressor mitogen-activated protein kinase kinase kinase 11 in gastric cancer. Biol. Pharm. Bull. 2010, 33, 1822–1827. [Google Scholar] [CrossRef] [PubMed]
  64. Zhao, X.; He, L.; Li, T.; Lu, Y.; Miao, Y.; Liang, S.; Guo, H.; Bai, M.; Xie, H.; Luo, G.; et al. SRF expedites metastasis and modulates the epithelial to mesenchymal transition by regulating miR-199a-5p expression in human gastric cancer. Cell Death Differ. 2014, 21, 1900–1913. [Google Scholar] [CrossRef] [PubMed]
  65. Zhang, Y.; Fan, K.J.; Sun, Q.; Chen, A.Z.; Shen, W.L.; Zhao, Z.H.; Zheng, X.F.; Yang, X. Functional screening for miRNAs targeting Smad4 identified miR-199a as a negative regulator of TGF-beta signalling pathway. Nucleic Acids Res. 2012, 40, 9286–9297. [Google Scholar] [CrossRef] [PubMed]
  66. Xue, T.M.; Tao, L.D.; Zhang, M.; Xu, G.C.; Zhang, J.; Zhang, P.J. miR-20b overexpression is predictive of poor prognosis in gastric cancer. OncoTargets Ther. 2015, 8, 1871–1876. [Google Scholar] [CrossRef] [PubMed]
  67. Chang, L.; Guo, F.; Wang, Y.; Lv, Y.; Huo, B.; Wang, L.; Liu, W. MicroRNA-200c regulates the sensitivity of chemotherapy of gastric cancer SGC7901/DDP cells by directly targeting RhoE. Pathol. Oncol. Res. 2014, 20, 93–98. [Google Scholar] [CrossRef] [PubMed]
  68. Dejana, E.; Tournier-Lasserve, E.; Weinstein, B.M. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev. Cell 2009, 16, 209–221. [Google Scholar] [CrossRef] [PubMed]
  69. Xu, Y.; Sun, J.; Xu, J.; Li, Q.; Guo, Y.; Zhang, Q. miR-21 Is a Promising Novel Biomarker for Lymph Node Metastasis in Patients with Gastric Cancer. Gastroenterol. Res. Pract. 2012, 2012, 640168. [Google Scholar] [CrossRef] [PubMed]
  70. Zhang, B.G.; Li, J.F.; Yu, B.Q.; Zhu, Z.G.; Liu, B.Y.; Yan, M. microRNA-21 promotes tumor proliferation and invasion in gastric cancer by targeting PTEN. Oncol. Rep. 2012, 27, 1019–1026. [Google Scholar] [PubMed]
  71. Yamanaka, S.; Olaru, A.V.; An, F.; Luvsanjav, D.; Jin, Z.; Agarwal, R.; Tomuleasa, C.; Popescu, I.; Alexandrescu, S.; Dima, S.; et al. MicroRNA-21 inhibits Serpini1, a gene with novel tumour suppressive effects in gastric cancer. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 2012, 44, 589–596. [Google Scholar] [CrossRef] [PubMed]
  72. De Val, S.; Black, B.L. Transcriptional control of endothelial cell development. Dev. Cell 2009, 16, 180–195. [Google Scholar] [CrossRef] [PubMed]
  73. Kiga, K.; Mimuro, H.; Suzuki, M.; Shinozaki-Ushiku, A.; Kobayashi, T.; Sanada, T.; Kim, M.; Ogawa, M.; Iwasaki, Y.W.; Kayo, H.; et al. Epigenetic silencing of miR-210 increases the proliferation of gastric epithelium during chronic Helicobacter pylori infection. Nat. Commun. 2014, 5, 4497. [Google Scholar] [CrossRef] [PubMed]
  74. Xiong, X.; Ren, H.Z.; Li, M.H.; Mei, J.H.; Wen, J.F.; Zheng, C.L. Down-regulated miRNA-214 induces a cell cycle G1 arrest in gastric cancer cells by up-regulating the PTEN protein. Pathol. Oncol. Res. 2011, 17, 931–937. [Google Scholar] [CrossRef] [PubMed]
  75. Liu, K.; Li, G.; Fan, C.; Diao, Y.; Wu, B.; Li, J. Increased Expression of MicroRNA-221 in gastric cancer and its clinical significance. J. Int. Med. Res. 2012, 40, 467–474. [Google Scholar] [CrossRef] [PubMed]
  76. Li, X.; Zhang, Y.; Zhang, H.; Liu, X.; Gong, T.; Li, M.; Sun, L.; Ji, G.; Shi, Y.; Han, Z.; et al. miRNA-223 promotes gastric cancer invasion and metastasis by targeting tumor suppressor EPB41L3. Mol. Cancer Res. 2011, 9, 824–833. [Google Scholar] [CrossRef] [PubMed]
  77. Zhu, L.H.; Liu, T.; Tang, H.; Tian, R.Q.; Su, C.; Liu, M.; Li, X. MicroRNA-23a promotes the growth of gastric adenocarcinoma cell line MGC803 and downregulates interleukin-6 receptor. FEBS J. 2010, 277, 3726–3734. [Google Scholar] [CrossRef] [PubMed]
  78. Ma, G.; Dai, W.; Sang, A.; Yang, X.; Gao, C. Upregulation of microRNA-23a/b promotes tumor progression and confers poor prognosis in patients with gastric cancer. Int. J. Clin. Exp. Pathol. 2014, 7, 8833–8840. [Google Scholar] [PubMed]
  79. Liu, X.; Ru, J.; Zhang, J.; Zhu, L.H.; Liu, M.; Li, X.; Tang, H. miR-23a targets interferon regulatory factor 1 and modulates cellular proliferation and paclitaxel-induced apoptosis in gastric adenocarcinoma cells. PLoS ONE 2013, 8, e64707. [Google Scholar] [CrossRef] [PubMed]
  80. Gong, J.; Cui, Z.; Li, L.; Ma, Q.; Wang, Q.; Gao, Y.; Sun, H. MicroRNA-25 promotes gastric cancer proliferation, invasion, and migration by directly targeting F-box and WD-40 Domain Protein 7, FBXW7. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2015, 36, 7831–7840. [Google Scholar] [CrossRef] [PubMed]
  81. Liu, T.; Tang, H.; Lang, Y.; Liu, M.; Li, X. MicroRNA-27a functions as an oncogene in gastric adenocarcinoma by targeting prohibitin. Cancer Lett. 2009, 273, 233–242. [Google Scholar] [CrossRef] [PubMed]
  82. Yan, Z.; Xiong, Y.; Xu, W.; Gao, J.; Cheng, Y.; Wang, Z.; Chen, F.; Zheng, G. Identification of hsa-miR-335 as a prognostic signature in gastric cancer. PLoS ONE 2012, 7, e40037. [Google Scholar] [CrossRef] [PubMed]
  83. Yang, B.; Huang, J.; Liu, H.; Guo, W.; Li, G. miR-335 directly, while miR-34a indirectly modulate survivin expression and regulate growth, apoptosis, and invasion of gastric cancer cells. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2015, 37, 1771–1779. [Google Scholar] [CrossRef] [PubMed]
  84. Kim, J.M.; Yoon, M.Y.; Kim, J.; Kim, S.S.; Kang, I.; Ha, J. Phosphatidylinositol 3-kinase regulates differentiation of H9c2 cardiomyoblasts mainly through the protein kinase B/Akt-independent pathway. Arch. Biochem. Biophys. 1999, 367, 67–73. [Google Scholar] [CrossRef] [PubMed]
  85. Lo, S.S.; Hung, P.S.; Chen, J.H.; Tu, H.F.; Fang, W.L.; Chen, C.Y.; Chen, W.T.; Gong, N.R.; Wu, C.W. Overexpression of miR-370 and downregulation of its novel target TGFbeta-RII contribute to the progression of gastric carcinoma. Oncogene 2012, 31, 226–237. [Google Scholar] [CrossRef] [PubMed]
  86. Ikeda-Kawakatsu, K.; Yasuno, N.; Oikawa, T.; Iida, S.; Nagato, Y.; Maekawa, M.; Kyozuka, J. Expression level of ABERRANT PANICLE ORGANIZATION1 determines rice inflorescence form through control of cell proliferation in the meristem. Plant Physiol. 2009, 150, 736–747. [Google Scholar] [CrossRef] [PubMed]
  87. Ding, L.; Xu, Y.; Zhang, W.; Deng, Y.; Si, M.; Du, Y.; Yao, H.; Liu, X.; Ke, Y.; Si, J.; et al. miR-375 frequently downregulated in gastric cancer inhibits cell proliferation by targeting JAK2. Cell Res. 2010, 20, 784–793. [Google Scholar] [CrossRef] [PubMed]
  88. Migliore, C.; Petrelli, A.; Ghiso, E.; Corso, S.; Capparuccia, L.; Eramo, A.; Comoglio, P.M.; Giordano, S. MicroRNAs impair MET-mediated invasive growth. Cancer Res. 2008, 68, 10128–10136. [Google Scholar] [CrossRef] [PubMed]
  89. Yoon, J.H.; Swiderski, P.M.; Kaplan, B.E.; Takao, M.; Yasui, A.; Shen, B.; Pfeifer, G.P. Processing of UV damage in vitro by FEN-1 proteins as part of an alternative DNA excision repair pathway. Biochemistry 1999, 38, 4809–4817. [Google Scholar] [CrossRef] [PubMed]
  90. Zhang, X.; Cui, L.; Ye, G.; Zheng, T.; Song, H.; Xia, T.; Yu, X.; Xiao, B.; Le, Y.; Guo, J. Gastric juice microRNA-421 is a new biomarker for screening gastric cancer. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2012, 33, 2349–2355. [Google Scholar] [CrossRef] [PubMed]
  91. Kang, C.D.; Do, I.R.; Kim, K.W.; Ahn, B.K.; Kim, S.H.; Chung, B.S.; Jhun, B.H.; Yoo, M.A. Role of Ras/ERK-dependent pathway in the erythroid differentiation of K562 cells. Exp. Mol. Med. 1999, 31, 76–82. [Google Scholar] [CrossRef] [PubMed]
  92. Guo, X.; Jing, C.; Li, L.; Zhang, L.; Shi, Y.; Wang, J.; Liu, J.; Li, C. Down-regulation of VEZT gene expression in human gastric cancer involves promoter methylation and miR-43c. Biochem. Biophys. Res. Commun. 2011, 404, 622–627. [Google Scholar] [CrossRef] [PubMed]
  93. Omura, T.; Shimada, Y.; Nagata, T.; Okumura, T.; Fukuoka, J.; Yamagishi, F.; Tajika, S.; Nakajima, S.; Kawabe, A.; Tsukada, K. Relapse-associated microRNA in gastric cancer patients after S-1 adjuvant chemotherapy. Oncol. Rep. 2014, 31, 613–618. [Google Scholar] [CrossRef] [PubMed]
  94. Davidson, G.; Shen, J.; Huang, Y.L.; Su, Y.; Karaulanov, E.; Bartscherer, K.; Hassler, C.; Stannek, P.; Boutros, M.; Niehrs, C. Cell cycle control of wnt receptor activation. Dev. Cell 2009, 17, 788–799. [Google Scholar] [CrossRef] [PubMed]
  95. Blanchet, E.; Annicotte, J.S.; Fajas, L. Cell cycle regulators in the control of metabolism. Cell Cycle 2009, 8, 4029–4031. [Google Scholar] [CrossRef] [PubMed]
  96. Moran-Jones, K.; Grindlay, J.; Jones, M.; Smith, R.; Norman, J.C. hnRNP A2 regulates alternative mRNA splicing of TP53INP2 to control invasive cell migration. Cancer Res. 2009, 69, 9219–9227. [Google Scholar] [CrossRef] [PubMed]
  97. Wang, T.; Ge, G.; Ding, Y.; Zhou, X.; Huang, Z.; Zhu, W.; Shu, Y.; Liu, P. MiR-503 regulates cisplatin resistance of human gastric cancer cell lines by targeting IGF1R and BCL2. Chin. Med. J. 2014, 127, 2357–2362. [Google Scholar] [PubMed]
  98. Saito, Y.; Suzuki, H.; Tsugawa, H.; Nakagawa, I.; Matsuzaki, J.; Kanai, Y.; Hibi, T. Chromatin remodeling at Alu repeats by epigenetic treatment activates silenced microRNA-512-5p with downregulation of Mcl-1 in human gastric cancer cells. Oncogene 2009, 28, 2738–2744. [Google Scholar] [CrossRef] [PubMed]
  99. Altunoglu, E.; Guntas, G.; Erdenen, F.; Akkaya, E.; Topac, I.; Irmak, H.; Derici, H.; Yavuzer, H.; Gelisgen, R.; Uzun, H. Ischemia-modified albumin and advanced oxidation protein products as potential biomarkers of protein oxidation in Alzheimer’s disease. Geriatr. Gerontol. Int. 2014, 15, 872–880. [Google Scholar] [CrossRef] [PubMed]
  100. Chu, D.; Zhao, Z.; Li, Y.; Li, J.; Zheng, J.; Wang, W.; Zhao, Q.; Ji, G. Increased microRNA-630 expression in gastric cancer is associated with poor overall survival. PLoS ONE 2014, 9, e90526. [Google Scholar] [CrossRef] [PubMed]
  101. Zhang, X.; Zhu, W.; Zhang, J.; Huo, S.; Zhou, L.; Gu, Z.; Zhang, M. MicroRNA-650 targets ING4 to promote gastric cancer tumorigenicity. Biochem. Biophys. Res. Commun. 2010, 395, 275–280. [Google Scholar] [CrossRef] [PubMed]
  102. Li, H.; Wu, W.K.; Zheng, Z.; Che, C.T.; Yu, L.; Li, Z.J.; Wu, Y.C.; Cheng, K.W.; Yu, J.; Cho, C.H.; et al. 2,3′,4,4′,5′-Pentamethoxy-trans-stilbene, a resveratrol derivative, is a potent inducer of apoptosis in colon cancer cells via targeting microtubules. Biochem. Pharmacol. 2009, 78, 1224–1232. [Google Scholar] [CrossRef] [PubMed]
  103. Duan, J.H.; Fang, L. MicroRNA-92 promotes gastric cancer cell proliferation and invasion through targeting FXR. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2014, 35, 11013–11019. [Google Scholar] [CrossRef] [PubMed]
  104. Tang, Y.; Zheng, J.; Sun, Y.; Wu, Z.; Liu, Z.; Huang, G. MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int. Heart J. 2009, 50, 377–387. [Google Scholar] [CrossRef] [PubMed]
  105. Zhang, H.H.; Wang, X.J.; Li, G.X.; Yang, E.; Yang, N.M. Detection of let-7a microRNA by real-time PCR in gastric carcinoma. World J. Gastroenterol. 2007, 13, 2883–2888. [Google Scholar] [PubMed]
  106. Yang, Q.; Jie, Z.; Cao, H.; Greenlee, A.R.; Yang, C.; Zou, F.; Jiang, Y. Low-level expression of let-7a in gastric cancer and its involvement in tumorigenesis by targeting RAB40C. Carcinogenesis 2011, 32, 713–722. [Google Scholar] [CrossRef] [PubMed]
  107. Briscoe, J. Making a grade: Sonic Hedgehog signalling and the control of neural cell fate. EMBO J. 2009, 28, 457–465. [Google Scholar] [CrossRef] [PubMed]
  108. Yoo, Y.D.; Choi, J.Y.; Lee, S.J.; Kim, J.S.; Min, B.R.; Lee, Y.I.; Kang, Y.K. TGF-beta-induced cell-cycle arrest through the p21(WAF1/CIP1)-G1 cyclin/Cdks-p130 pathway in gastric-carcinoma cells. Int. J. Cancer 1999, 83, 512–517. [Google Scholar] [CrossRef]
  109. Wu, X.M.; Shao, X.Q.; Meng, X.X.; Zhang, X.N.; Zhu, L.; Liu, S.X.; Lin, J.; Xiao, H.S. Genome-wide analysis of microRNA and mRNA expression signatures in hydroxycamptothecin-resistant gastric cancer cells. Acta Pharmacol. Sin. 2011, 32, 259–269. [Google Scholar] [CrossRef] [PubMed]
  110. Okada, E.; Murai, Y.; Matsui, K.; Isizawa, S.; Cheng, C.; Masuda, M.; Takano, Y. Survivin expression in tumor cell nuclei is predictive of a favorable prognosis in gastric cancer patients. Cancer Lett. 2001, 163, 109–116. [Google Scholar] [CrossRef]
  111. Gravante, G.; Ong, S.L.; Metcalfe, M.S.; Bhardwaj, N.; Maddern, G.J.; Lloyd, D.M.; Dennison, A.R. Experimental application of electrolysis in the treatment of liver and pancreatic tumours: Principles, preclinical and clinical observations and future perspectives. Surg. Oncol. 2011, 20, 106–120. [Google Scholar] [CrossRef] [PubMed]
  112. Zhang, Y.; Chen, Z.D.; Du, C.J.; Xu, G.; Luo, W. siRNA targeting survivin inhibits growth and induces apoptosis in human renal clear cell carcinoma 786-O cells. Pathol. Res. Pract. 2009, 205, 823–827. [Google Scholar] [CrossRef] [PubMed]
  113. Gobeil, P.A.; Yuan, Z.; Gault, E.A.; Morgan, I.M.; Campo, M.S.; Nasir, L. Small interfering RNA targeting bovine papillomavirus type 1 E2 induces apoptosis in equine sarcoid transformed fibroblasts. Virus Res. 2009, 145, 162–165. [Google Scholar] [CrossRef] [PubMed]
  114. Cai, M.; Wang, G.B.; Tao, K.X.; Cai, C.X. Apoptosis induction effect of siRNA recombinant expression vector targeting Livin and Survivin gene simultaneously on human colon cancer cells. Chin. J. Gastrointest. Surg. 2009, 12, 399–403. [Google Scholar]
  115. Foster, F.M.; Owens, T.W.; Tanianis-Hughes, J.; Clarke, R.B.; Brennan, K.; Bundred, N.J.; Streuli, C.H. Targeting inhibitor of apoptosis proteins in combination with ErbB antagonists in breast cancer. Breast Cancer Res. BCR 2009, 11, R41. [Google Scholar] [CrossRef] [PubMed]
  116. Kim, K.; Lee, H.C.; Park, J.L.; Kim, M.; Kim, S.Y.; Noh, S.M.; Song, K.S.; Kim, J.C.; Kim, Y.S. Epigenetic regulation of microRNA-10b and targeting of oncogenic MAPRE1 in gastric cancer. Epigenetics 2011, 6, 740–751. [Google Scholar] [CrossRef] [PubMed]
  117. Betin, V.M.; Lane, J.D. Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis. J. Cell Sci. 2009, 122, 2554–2566. [Google Scholar] [CrossRef] [PubMed]
  118. Zhou, X.; Xia, Y.; Li, L.; Zhang, G. MiR-101 inhibits cell growth and tumorigenesis of Helicobacter pylori related gastric cancer by repression of SOCS2. Cancer Biol. Ther. 2015, 16, 160–169. [Google Scholar] [CrossRef] [PubMed]
  119. Rubenstein, M.; Tsui, P.; Guinan, P. Treatment of prostate and breast tumors employing mono- and bi-specific antisense oligonucleotides targeting apoptosis inhibitory proteins clusterin and bcl-2. Med. Oncol. 2010, 27, 592–599. [Google Scholar] [CrossRef] [PubMed]
  120. Gao, J.; Zhang, R.L.; Zhou, C.Q.; Ma, Y.; Zhuang, G.L. RNA interference targeting of sphingomyelin phosphodiesterase 1 protects human granulosa cells from apoptosis. J. Obstet. Gynaecol. Res. 2009, 35, 421–428. [Google Scholar] [CrossRef] [PubMed]
  121. Huang, K.H.; Lan, Y.T.; Fang, W.L.; Chen, J.H.; Lo, S.S.; Li, A.F.; Chiou, S.H.; Wu, C.W.; Shyr, Y.M. The correlation between miRNA and lymph node metastasis in gastric cancer. BioMed Res. Int. 2015, 2015, 543163. [Google Scholar] [CrossRef] [PubMed]
  122. Hu, C.B.; Li, Q.L.; Hu, J.F.; Zhang, Q.; Xie, J.P.; Deng, L. miR-124 inhibits growth and invasion of gastric cancer by targeting ROCK1. Asian Pac. J. Cancer Prev. 2014, 15, 6543–6546. [Google Scholar] [CrossRef] [PubMed]
  123. Pei, L.; Xia, J.Z.; Huang, H.Y.; Zhang, R.R.; Yao, L.B.; Zheng, L.; Hong, B. Role of miR-124a methylation in patients with gastric cancer. Chin. J. Gastrointest. Surg. 2011, 14, 136–139. [Google Scholar]
  124. Hirasawa, K.; Jun, H.S.; Han, H.S.; Zhang, M.L.; Hollenberg, M.D.; Yoon, J.W. Prevention of encephalomyocarditis virus-induced diabetes in mice by inhibition of the tyrosine kinase signalling pathway and subsequent suppression of nitric oxide production in macrophages. J. Virol. 1999, 73, 8541–8548. [Google Scholar] [PubMed]
  125. Hashiguchi, Y.; Nishida, N.; Mimori, K.; Sudo, T.; Tanaka, F.; Shibata, K.; Ishii, H.; Mochizuki, H.; Hase, K.; Doki, Y.; et al. Down-regulation of miR-125a-3p in human gastric cancer and its clinicopathological significance. Int. J. Oncol. 2012, 40, 1477–1482. [Google Scholar] [PubMed]
  126. Nishida, N.; Mimori, K.; Fabbri, M.; Yokobori, T.; Sudo, T.; Tanaka, F.; Shibata, K.; Ishii, H.; Doki, Y.; Mori, M. MicroRNA-125a-5p is an independent prognostic factor in gastric cancer and inhibits the proliferation of human gastric cancer cells in combination with trastuzumab. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011, 17, 2725–2733. [Google Scholar] [CrossRef] [PubMed]
  127. Xu, Y.; Huang, Z.; Liu, Y. Reduced miR-125a-5p expression is associated with gastric carcinogenesis through the targeting of E2F3. Mol. Med. Rep. 2014, 10, 2601–2608. [Google Scholar] [CrossRef] [PubMed]
  128. Feng, R.; Chen, X.; Yu, Y.; Su, L.; Yu, B.; Li, J.; Cai, Q.; Yan, M.; Liu, B.; Zhu, Z. miR-126 functions as a tumour suppressor in human gastric cancer. Cancer Lett. 2010, 298, 50–63. [Google Scholar] [CrossRef] [PubMed]
  129. Liu, L.Y.; Wang, W.; Zhao, L.Y.; Guo, B.; Yang, J.; Zhao, X.G.; Hou, N.; Ni, L.; Wang, A.Y.; Song, T.S.; et al. Mir-126 inhibits growth of SGC-7901 cells by synergistically targeting the oncogenes PI3KR2 and Crk, and the tumor suppressor PLK2. Int. J. Oncol. 2014, 45, 1257–1265. [Google Scholar] [CrossRef] [PubMed]
  130. Li, X.; Wang, F.; Qi, Y. MiR-126 inhibits the invasion of gastric cancer cell in part by targeting Crk. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 2031–2037. [Google Scholar] [PubMed]
  131. Li, L.P.; Wu, W.J.; Sun, D.Y.; Xie, Z.Y.; Ma, Y.C.; Zhao, Y.G. miR-449a and CDK6 in gastric carcinoma. Oncol. Lett. 2014, 8, 1533–1538. [Google Scholar] [CrossRef] [PubMed]
  132. Zuo, Q.F.; Zhang, R.; Li, B.S.; Zhao, Y.L.; Zhuang, Y.; Yu, T.; Gong, L.; Li, S.; Xiao, B.; Zou, Q.M. MicroRNA-141 inhibits tumor growth and metastasis in gastric cancer by directly targeting transcriptional co-activator with PDZ-binding motif, TAZ. Cell Death Dis. 2015, 6, e1623. [Google Scholar] [CrossRef] [PubMed]
  133. Takagi, T.; Iio, A.; Nakagawa, Y.; Naoe, T.; Tanigawa, N.; Akao, Y. Decreased expression of microRNA-143 and -145 in human gastric cancers. Oncology 2009, 77, 12–21. [Google Scholar] [CrossRef] [PubMed]
  134. Kogo, R.; Mimori, K.; Tanaka, F.; Komune, S.; Mori, M. Clinical significance of miR-146a in gastric cancer cases. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011, 17, 4277–4284. [Google Scholar] [CrossRef] [PubMed]
  135. Zheng, B.; Liang, L.; Wang, C.; Huang, S.; Cao, X.; Zha, R.; Liu, L.; Jia, D.; Tian, Q.; Wu, J.; et al. MicroRNA-148a suppresses tumor cell invasion and metastasis by downregulating ROCK1 in gastric cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011, 17, 7574–7583. [Google Scholar] [CrossRef] [PubMed]
  136. Zhu, A.; Xia, J.; Zuo, J.; Jin, S.; Zhou, H.; Yao, L.; Huang, H.; Han, Z. MicroRNA-148a is silenced by hypermethylation and interacts with DNA methyltransferase 1 in gastric cancer. Med. Oncol. 2012, 29, 2701–2709. [Google Scholar] [CrossRef] [PubMed]
  137. Guo, S.L.; Peng, Z.; Yang, X.; Fan, K.J.; Ye, H.; Li, Z.H.; Wang, Y.; Xu, X.L.; Li, J.; Wang, Y.L.; et al. miR-148a promoted cell proliferation by targeting p27 in gastric cancer cells. Int. J. Biol. Sci. 2011, 7, 567–574. [Google Scholar] [CrossRef] [PubMed]
  138. Song, Y.X.; Yue, Z.Y.; Wang, Z.N.; Xu, Y.Y.; Luo, Y.; Xu, H.M.; Zhang, X.; Jiang, L.; Xing, C.Z.; Zhang, Y. MicroRNA-148b is frequently down-regulated in gastric cancer and acts as a tumor suppressor by inhibiting cell proliferation. Mol. Cancer 2011, 10, 1. [Google Scholar] [CrossRef] [PubMed]
  139. Zhang, Z.; Sun, J.; Bai, Z.; Li, H.; He, S.; Chen, R.; Che, X. MicroRNA-153 acts as a prognostic marker in gastric cancer and its role in cell migration and invasion. OncoTargets Ther. 2015, 8, 357–364. [Google Scholar]
  140. Tan, Z.; Jiang, H.; Wu, Y.; Xie, L.; Dai, W.; Tang, H.; Tang, S. miR-185 is an independent prognosis factor and suppresses tumor metastasis in gastric cancer. Mol. Cell. Biochem. 2014, 386, 223–231. [Google Scholar] [CrossRef] [PubMed]
  141. Fulda, S.; Kroemer, G. Targeting mitochondrial apoptosis by betulinic acid in human cancers. Drug Discov. Today 2009, 14, 885–890. [Google Scholar] [CrossRef] [PubMed]
  142. Chiang, Y.; Zhou, X.; Wang, Z.; Song, Y.; Liu, Z.; Zhao, F.; Zhu, J.; Xu, H. Expression levels of microRNA-192 and -215 in gastric carcinoma. Pathol. Oncol. Res. 2012, 18, 585–591. [Google Scholar] [CrossRef] [PubMed]
  143. Kurashige, J.; Kamohara, H.; Watanabe, M.; Hiyoshi, Y.; Iwatsuki, M.; Tanaka, Y.; Kinoshita, K.; Saito, S.; Baba, Y.; Baba, H. MicroRNA-200b regulates cell proliferation, invasion, and migration by directly targeting ZEB2 in gastric carcinoma. Ann. Surg. Oncol. 2012, 19, S656–S664. [Google Scholar] [CrossRef] [PubMed]
  144. Shinozaki, A.; Sakatani, T.; Ushiku, T.; Hino, R.; Isogai, M.; Ishikawa, S.; Uozaki, H.; Takada, K.; Fukayama, M. Downregulation of microRNA-200 in EBV-associated gastric carcinoma. Cancer Res. 2010, 70, 4719–4727. [Google Scholar] [CrossRef] [PubMed]
  145. Korpal, M.; Lee, E.S.; Hu, G.; Kang, Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 2008, 283, 14910–14914. [Google Scholar] [CrossRef] [PubMed]
  146. Park, S.M.; Gaur, A.B.; Lengyel, E.; Peter, M.E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008, 22, 894–907. [Google Scholar] [CrossRef] [PubMed]
  147. Xia, H.F.; He, T.Z.; Liu, C.M.; Cui, Y.; Song, P.P.; Jin, X.H.; Ma, X. miR-125b expression affects the proliferation and apoptosis of human glioma cells by targeting Bmf. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2009, 23, 347–358. [Google Scholar] [CrossRef] [PubMed]
  148. Zhou, X.; Xu, G.; Yin, C.; Jin, W.; Zhang, G. Down-regulation of miR-203 induced by Helicobacter pylori infection promotes the proliferation and invasion of gastric cancer by targeting CASK. Oncotarget 2014, 5, 11631–11640. [Google Scholar] [CrossRef] [PubMed]
  149. Zhou, X.; Li, L.; Su, J.; Zhang, G. Decreased miR-204 in H. pylori-associated gastric cancer promotes cancer cell proliferation and invasion by targeting SOX4. PLoS ONE 2014, 9, e101457. [Google Scholar] [CrossRef] [PubMed]
  150. Zhang, L.; Liu, X.; Jin, H.; Guo, X.; Xia, L.; Chen, Z.; Bai, M.; Liu, J.; Shang, X.; Wu, K.; et al. miR-206 inhibits gastric cancer proliferation in part by repressing cyclinD2. Cancer Lett. 2013, 332, 94–101. [Google Scholar] [CrossRef] [PubMed]
  151. Yang, Q.; Zhang, C.; Huang, B.; Li, H.; Zhang, R.; Huang, Y.; Wang, J. Downregulation of microRNA-206 is a potent prognostic marker for patients with gastric cancer. Eur. J. Gastroenterol. Hepatol. 2013, 25, 953–957. [Google Scholar] [CrossRef] [PubMed]
  152. Wada, R.; Akiyama, Y.; Hashimoto, Y.; Fukamachi, H.; Yuasa, Y. miR-212 is downregulated and suppresses methyl-CpG-binding protein MeCP2 in human gastric cancer. Int. J. Cancer 2010, 127, 1106–1114. [Google Scholar] [CrossRef] [PubMed]
  153. Chen, D.L.; Zhang, D.S.; Lu, Y.X.; Chen, L.Z.; Zeng, Z.L.; He, M.M.; Wang, F.H.; Li, Y.H.; Zhang, H.Z.; Pelicano, H.; et al. microRNA-217 inhibits tumor progression and metastasis by downregulating EZH2 and predicts favorable prognosis in gastric cancer. Oncotarget 2015, 6, 10868–10879. [Google Scholar] [CrossRef] [PubMed]
  154. Tie, J.; Pan, Y.; Zhao, L.; Wu, K.; Liu, J.; Sun, S.; Guo, X.; Wang, B.; Gang, Y.; Zhang, Y.; et al. miR-218 inhibits invasion and metastasis of gastric cancer by targeting the Robo1 receptor. PLoS Genet. 2010, 6, e1000879. [Google Scholar] [CrossRef] [PubMed]
  155. Gao, C.; Zhang, Z.; Liu, W.; Xiao, S.; Gu, W.; Lu, H. Reduced microRNA-218 expression is associated with high nuclear factor kappa B activation in gastric cancer. Cancer 2010, 116, 41–49. [Google Scholar] [CrossRef] [PubMed]
  156. Forger, N.G. Control of cell number in the sexually dimorphic brain and spinal cord. J. Neuroendocrinol. 2009, 21, 393–399. [Google Scholar] [CrossRef] [PubMed]
  157. Huertas, P.; Jackson, S.P. Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J. Biol. Chem. 2009, 284, 9558–9565. [Google Scholar] [CrossRef] [PubMed]
  158. Aguilo, J.I.; Garaude, J.; Pardo, J.; Villalba, M.; Anel, A. Protein kinase C-theta is required for NK cell activation and in vivo control of tumor progression. J. Immunol. 2009, 182, 1972–1981. [Google Scholar] [CrossRef] [PubMed]
  159. Cooks, T.; Arazi, L.; Efrati, M.; Schmidt, M.; Marshak, G.; Kelson, I.; Keisari, Y. Interstitial wires releasing diffusing alpha emitters combined with chemotherapy improved local tumor control and survival in squamous cell carcinoma-bearing mice. Cancer 2009, 115, 1791–1801. [Google Scholar] [CrossRef] [PubMed]
  160. Su, Y.Q.; Sugiura, K.; Eppig, J.J. Mouse oocyte control of granulosa cell development and function: Paracrine regulation of cumulus cell metabolism. Semin. Reprod. Med. 2009, 27, 32–42. [Google Scholar] [CrossRef] [PubMed]
  161. Guo, M.M.; Hu, L.H.; Wang, Y.Q.; Chen, P.; Huang, J.G.; Lu, N.; He, J.H.; Liao, C.G. miR-22 is down-regulated in gastric cancer, and its overexpression inhibits cell migration and invasion via targeting transcription factor Sp1. Med. Oncol. 2013, 30, 542. [Google Scholar] [CrossRef] [PubMed]
  162. Xingi, E.; Smirlis, D.; Myrianthopoulos, V.; Magiatis, P.; Grant, K.M.; Meijer, L.; Mikros, E.; Skaltsounis, A.L.; Soteriadou, K. 6-Br-5methylindirubin-3′oxime (5-Me-6-BIO) targeting the leishmanial glycogen synthase kinase-3 (GSK-3) short form affects cell-cycle progression and induces apoptosis-like death: Exploitation of GSK-3 for treating leishmaniasis. Int. J. Parasitol. 2009, 39, 1289–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  163. Bhutia, S.K.; Mallick, S.K.; Maiti, S.; Mishra, D.; Maiti, T.K. Abrus abrin derived peptides induce apoptosis by targeting mitochondria in HeLa cells. Cell Biol. Int. 2009, 33, 720–727. [Google Scholar] [CrossRef] [PubMed]
  164. Shen, W.W.; Wu, J.; Cai, L.; Liu, B.Y.; Gao, Y.; Chen, G.Q.; Fu, G.H. Expression of anion exchanger 1 sequestrates p16 in the cytoplasm in gastric and colonic adenocarcinoma. Neoplasia 2007, 9, 812–819. [Google Scholar] [CrossRef] [PubMed]
  165. Wu, J.; Zhang, Y.C.; Suo, W.H.; Liu, X.B.; Shen, W.W.; Tian, H.; Fu, G.H. Induction of anion exchanger-1 translation and its opposite roles in the carcinogenesis of gastric cancer cells and differentiation of K562 cells. Oncogene 2010, 29, 1987–1996. [Google Scholar] [CrossRef] [PubMed]
  166. Ryu, S.J.; Park, S.C. Targeting major vault protein in senescence-associated apoptosis resistance. Expert Opin. Ther. Targets 2009, 13, 479–484. [Google Scholar] [CrossRef] [PubMed]
  167. Contassot, E.; French, L.E. Targeting apoptosis defects in cutaneous T-cell lymphoma. J. Investig. Dermatol. 2009, 129, 1059–1061. [Google Scholar] [CrossRef] [PubMed]
  168. Liu, T.B.; Zou, S.B.; Chen, Z.Z. Apoptosis of human myeloid leukemia cell line HL-60 cells induced by siRNA targeting gene c-myc. J. Exp. Hematol. Chin. Assoc. Pathophysiol. 2009, 17, 331–334. [Google Scholar]
  169. Gong, J.; Li, J.; Wang, Y.; Liu, C.; Jia, H.; Jiang, C.; Luo, M.; Zhao, H.; Dong, L.; Song, W.; et al. Characterization of microRNA-29 family expression and investigation of their mechanistic roles in gastric cancer. Carcinogenesis 2014, 35, 497–506. [Google Scholar] [CrossRef] [PubMed]
  170. Zhu, E.D.; Li, N.; Li, B.S.; Li, W.; Zhang, W.J.; Mao, X.H.; Guo, G.; Zou, Q.M.; Xiao, B. miR-30b, down-regulated in gastric cancer, promotes apoptosis and suppresses tumor growth by targeting plasminogen activator inhibitor-1. PLoS ONE 2014, 9, e106049. [Google Scholar] [CrossRef] [PubMed]
  171. Xu, Y.; Zhao, F.; Wang, Z.; Song, Y.; Luo, Y.; Zhang, X.; Jiang, L.; Sun, Z.; Miao, Z.; Xu, H. MicroRNA-335 acts as a metastasis suppressor in gastric cancer by targeting Bcl-w and specificity protein 1. Oncogene 2012, 31, 1398–1407. [Google Scholar] [CrossRef] [PubMed]
  172. Ji, Q.; Hao, X.; Meng, Y.; Zhang, M.; Desano, J.; Fan, D.; Xu, L. Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer 2008, 8, 266. [Google Scholar] [CrossRef] [PubMed]
  173. Zhang, H.; Li, S.; Yang, J.; Liu, S.; Gong, X.; Yu, X. The prognostic value of miR-34a expression in completely resected gastric cancer: Tumor recurrence and overall survival. Int. J. Clin. Exp. Med. 2015, 8, 2635–2641. [Google Scholar] [PubMed]
  174. Luo, H.; Zhang, H.; Zhang, Z.; Zhang, X.; Ning, B.; Guo, J.; Nie, N.; Liu, B.; Wu, X. Down-regulated miR-9 and miR-433 in human gastric carcinoma. J. Exp. Clin. Cancer Res. CR 2009, 28, 82. [Google Scholar] [CrossRef] [PubMed]
  175. Xu, Y.; Jin, J.; Liu, Y.; Huang, Z.; Deng, Y.; You, T.; Zhou, T.; Si, J.; Zhuo, W. Snail-regulated MiR-375 inhibits migration and invasion of gastric cancer cells by targeting JAK2. PLoS ONE 2014, 9, e99516. [Google Scholar] [CrossRef] [PubMed]
  176. Shen, J.; Niu, W.; Zhou, M.; Zhang, H.; Ma, J.; Wang, L. MicroRNA-410 suppresses migration and invasion by targeting MDM2 in gastric cancer. PLoS ONE 2014, 9, e104510. [Google Scholar] [CrossRef] [PubMed]
  177. Sun, T.; Wang, C.; Xing, J.; Wu, D. miR-429 modulates the expression of c-myc in human gastric carcinoma cells. Eur. J. Cancer 2011, 47, 2552–2559. [Google Scholar] [CrossRef] [PubMed]
  178. Bou Kheir, T.; Futoma-Kazmierczak, E.; Jacobsen, A.; Krogh, A.; Bardram, L.; Hother, C.; Gronbaek, K.; Federspiel, B.; Lund, A.H.; Friis-Hansen, L. miR-449 inhibits cell proliferation and is down-regulated in gastric cancer. Mol. Cancer 2011, 10, 29. [Google Scholar] [CrossRef] [PubMed]
  179. Tsiftsoglou, A.S.; Bonovolias, I.D.; Tsiftsoglou, S.A. Multilevel targeting of hematopoietic stem cell self-renewal, differentiation and apoptosis for leukemia therapy. Pharmacol. Ther. 2009, 122, 264–280. [Google Scholar] [CrossRef] [PubMed]
  180. Flygare, J.A.; Vucic, D. Development of novel drugs targeting inhibitors of apoptosis. Future Oncol. 2009, 5, 141–144. [Google Scholar] [CrossRef] [PubMed]
  181. Wang, J.; Zhang, J.; Wu, J.; Luo, D.; Su, K.; Shi, W.; Liu, J.; Tian, Y.; Wei, L. MicroRNA-610 inhibits the migration and invasion of gastric cancer cells by suppressing the expression of vasodilator-stimulated phosphoprotein. Eur. J. Cancer 2012, 48, 1904–1913. [Google Scholar] [CrossRef] [PubMed]
  182. Zhao, X.; Dou, W.; He, L.; Liang, S.; Tie, J.; Liu, C.; Li, T.; Lu, Y.; Mo, P.; Shi, Y.; et al. MicroRNA-7 functions as an anti-metastatic microRNA in gastric cancer by targeting insulin-like growth factor-1 receptor. Oncogene 2013, 32, 1363–1372. [Google Scholar] [CrossRef] [PubMed]
  183. Wan, H.Y.; Guo, L.M.; Liu, T.; Liu, M.; Li, X.; Tang, H. Regulation of the transcription factor NF-kappaB1 by microRNA-9 in human gastric adenocarcinoma. Mol. Cancer 2010, 9, 16. [Google Scholar] [CrossRef] [PubMed]
  184. Konishi, H.; Ichikawa, D.; Komatsu, S.; Shiozaki, A.; Tsujiura, M.; Takeshita, H.; Morimura, R.; Nagata, H.; Arita, T.; Kawaguchi, T.; et al. Detection of gastric cancer-associated microRNAs on microRNA microarray comparing pre- and post-operative plasma. Br. J. Cancer 2012, 106, 740–747. [Google Scholar] [CrossRef] [PubMed]
  185. Tsujiura, M.; Ichikawa, D.; Komatsu, S.; Shiozaki, A.; Takeshita, H.; Kosuga, T.; Konishi, H.; Morimura, R.; Deguchi, K.; Fujiwara, H.; et al. Circulating microRNAs in plasma of patients with gastric cancers. Br. J. Cancer 2010, 102, 1174–1179. [Google Scholar] [CrossRef] [PubMed]
  186. Zhang, R.; Wang, W.; Li, F.; Zhang, H.; Liu, J. MicroRNA-106b~25 expressions in tumor tissues and plasma of patients with gastric cancers. Med. Oncol. 2014, 31, 243. [Google Scholar] [CrossRef] [PubMed]
  187. Su, Z.X.; Zhao, J.; Rong, Z.H.; Wu, Y.G.; Geng, W.M.; Qin, C.K. Diagnostic and prognostic value of circulating miR-18a in the plasma of patients with gastric cancer. Tumour Biol. J. Int. Soc. Oncodev. Biol. Med. 2014, 35, 12119–12125. [Google Scholar] [CrossRef] [PubMed]
  188. Tsujiura, M.; Komatsu, S.; Ichikawa, D.; Shiozaki, A.; Konishi, H.; Takeshita, H.; Moriumura, R.; Nagata, H.; Kawaguchi, T.; Hirajima, S.; et al. Circulating miR-18a in plasma contributes to cancer detection and monitoring in patients with gastric cancer. Gastric Cancer Off. J. Int. Gastric Cancer Assoc. Jpn. Gastric Cancer Assoc. 2015, 18, 271–279. [Google Scholar] [CrossRef] [PubMed]
  189. Chen, Q.; Ge, X.; Zhang, Y.; Xia, H.; Yuan, D.; Tang, Q.; Chen, L.; Pang, X.; Leng, W.; Bi, F. Plasma miR-122 and miR-192 as potential novel biomarkers for the early detection of distant metastasis of gastric cancer. Oncol. Rep. 2014, 31, 1863–1870. [Google Scholar] [PubMed]
  190. Li, C.; Li, J.F.; Cai, Q.; Qiu, Q.Q.; Yan, M.; Liu, B.Y.; Zhu, Z.G. MiRNA-199a-3p: A potential circulating diagnostic biomarker for early gastric cancer. J. Surg. Oncol. 2013, 108, 89–92. [Google Scholar] [CrossRef] [PubMed]
  191. Li, C.; Li, J.F.; Cai, Q.; Qiu, Q.Q.; Yan, M.; Liu, B.Y.; Zhu, Z.G. miRNA-199a-3p in plasma as a potential diagnostic biomarker for gastric cancer. Ann. Surg. Oncol. 2013, 20, S397–S405. [Google Scholar] [CrossRef] [PubMed]
  192. Valladares-Ayerbes, M.; Reboredo, M.; Medina-Villaamil, V.; Iglesias-Diaz, P.; Lorenzo-Patino, M.J.; Haz, M.; Santamarina, I.; Blanco, M.; Fernandez-Tajes, J.; Quindos, M.; et al. Circulating miR-200c as a diagnostic and prognostic biomarker for gastric cancer. J. Transl. Med. 2012, 10, 186. [Google Scholar] [CrossRef] [PubMed]
  193. Zhu, W.; Xu, H.; Zhu, D.; Zhi, H.; Wang, T.; Wang, J.; Jiang, B.; Shu, Y.; Liu, P. miR-200bc/429 cluster modulates multidrug resistance of human cancer cell lines by targeting BCL2 and XIAP. Cancer Chemother. Pharmacol. 2012, 69, 723–731. [Google Scholar] [CrossRef] [PubMed]
  194. Wang, B.; Zhang, Q. The expression and clinical significance of circulating microRNA-21 in serum of five solid tumors. J. Cancer Res. Clin. Oncol. 2012, 138, 1659–1666. [Google Scholar] [CrossRef] [PubMed]
  195. Ma, G.J.; Gu, R.M.; Zhu, M.; Wen, X.; Li, J.T.; Zhang, Y.Y.; Zhang, X.M.; Chen, S.Q. Plasma post-operative miR-21 expression in the prognosis of gastric cancers. Asian Pac. J. Cancer Prev. 2013, 14, 7551–7554. [Google Scholar] [CrossRef] [PubMed]
  196. Komatsu, S.; Ichikawa, D.; Tsujiura, M.; Konishi, H.; Takeshita, H.; Nagata, H.; Kawaguchi, T.; Hirajima, S.; Arita, T.; Shiozaki, A.; et al. Prognostic impact of circulating miR-21 in the plasma of patients with gastric carcinoma. Anticancer Res. 2013, 33, 271–276. [Google Scholar] [PubMed]
  197. Song, J.; Bai, Z.; Zhang, J.; Meng, H.; Cai, J.; Deng, W.; Bi, J.; Ma, X.; Zhang, Z. Serum microRNA-21 levels are related to tumor size in gastric cancer patients but cannot predict prognosis. Oncol. Lett. 2013, 6, 1733–1737. [Google Scholar] [PubMed]
  198. Xin, S.Y.; Feng, X.S.; Zhou, L.Q.; Sun, J.J.; Gao, X.L.; Yao, G.L. Reduced expression of circulating microRNA-218 in gastric cancer and correlation with tumor invasion and prognosis. World J. Gastroenterol. WJG 2014, 20, 6906–6911. [Google Scholar] [CrossRef] [PubMed]
  199. Song, M.Y.; Pan, K.F.; Su, H.J.; Zhang, L.; Ma, J.L.; Li, J.Y.; Yuasa, Y.; Kang, D.; Kim, Y.S.; You, W.C. Identification of serum microRNAs as novel non-invasive biomarkers for early detection of gastric cancer. PLoS ONE 2012, 7, e33608. [Google Scholar] [CrossRef] [PubMed]
  200. Chun-Zhi, Z.; Lei, H.; An-Ling, Z.; Yan-Chao, F.; Xiao, Y.; Guang-Xiu, W.; Zhi-Fan, J.; Pei-Yu, P.; Qing-Yu, Z.; Chun-Sheng, K. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer 2010, 10, 367. [Google Scholar]
  201. Li, N.; Tang, B.; Zhu, E.D.; Li, B.S.; Zhuang, Y.; Yu, S.; Lu, D.S.; Zou, Q.M.; Xiao, B.; Mao, X.H. Increased miR-222 in H. pylori-associated gastric cancer correlated with tumor progression by promoting cancer cell proliferation and targeting RECK. FEBS Lett. 2012, 586, 722–728. [Google Scholar] [CrossRef] [PubMed]
  202. Fu, Z.; Qian, F.; Yang, X.; Jiang, H.; Chen, Y.; Liu, S. Circulating miR-222 in plasma and its potential diagnostic and prognostic value in gastric cancer. Med. Oncol. 2014, 31, 164. [Google Scholar] [CrossRef] [PubMed]
  203. Li, B.S.; Zuo, Q.F.; Zhao, Y.L.; Xiao, B.; Zhuang, Y.; Mao, X.H.; Wu, C.; Yang, S.M.; Zeng, H.; Zou, Q.M.; et al. MicroRNA-25 promotes gastric cancer migration, invasion and proliferation by directly targeting transducer of ERBB2, 1 and correlates with poor survival. Oncogene 2015, 34, 2556–2565. [Google Scholar] [CrossRef] [PubMed]
  204. Huang, D.; Wang, H.; Liu, R.; Li, H.; Ge, S.; Bai, M.; Deng, T.; Yao, G.; Ba, Y. miRNA27a is a biomarker for predicting chemosensitivity and prognosis in metastatic or recurrent gastric cancer. J. Cell. Biochem. 2014, 115, 549–556. [Google Scholar] [CrossRef] [PubMed]
  205. Zhang, Z.; Liu, S.; Shi, R.; Zhao, G. miR-27 promotes human gastric cancer cell metastasis by inducing epithelial-to-mesenchymal transition. Cancer Genet. 2011, 204, 486–491. [Google Scholar] [CrossRef] [PubMed]
  206. Liu, H.; Zhu, L.; Liu, B.; Yang, L.; Meng, X.; Zhang, W.; Ma, Y.; Xiao, H. Genome-wide microRNA profiles identify miR-378 as a serum biomarker for early detection of gastric cancer. Cancer Lett. 2012, 316, 196–203. [Google Scholar] [CrossRef] [PubMed]
  207. Wu, J.; Li, G.; Yao, Y.; Wang, Z.; Sun, W.; Wang, J. MicroRNA-421 is a new potential diagnosis biomarker with higher sensitivity and specificity than carcinoembryonic antigen and cancer antigen 125 in gastric cancer. Biomark. Biochem. Indic. Expo. Response Susceptibility Chem. 2015, 20, 58–63. [Google Scholar] [CrossRef] [PubMed]
  208. Zhou, H.; Guo, J.M.; Lou, Y.R.; Zhang, X.J.; Zhong, F.D.; Jiang, Z.; Cheng, J.; Xiao, B.X. Detection of circulating tumor cells in peripheral blood from patients with gastric cancer using microRNA as a marker. J. Mol. Med. 2010, 88, 709–717. [Google Scholar] [CrossRef] [PubMed]
  209. Meder, B.; Backes, C.; Haas, J.; Leidinger, P.; Stahler, C.; Grossmann, T.; Vogel, B.; Frese, K.; Giannitsis, E.; Katus, H.A.; et al. Influence of the confounding factors age and sex on microRNA profiles from peripheral blood. Clin. Chem. 2014, 60, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
  210. Zhang, W.H.; Gui, J.H.; Wang, C.Z.; Chang, Q.; Xu, S.P.; Cai, C.H.; Li, Y.N.; Tian, Y.P.; Yan, L.; Wu, B. The identification of miR-375 as a potential biomarker in distal gastric adenocarcinoma. Oncol. Res. 2012, 20, 139–147. [Google Scholar] [CrossRef] [PubMed]
  211. Imaoka, H.; Toiyama, Y.; Okigami, M.; Yasuda, H.; Saigusa, S.; Ohi, M.; Tanaka, K.; Inoue, Y.; Mohri, Y.; Kusunoki, M. Circulating microRNA-203 predicts metastases, early recurrence, and poor prognosis in human gastric cancer. Gastric Cancer Off. J. Int. Gastric Cancer Assoc. Jpn. Gastric Cancer Assoc. 2015. [Google Scholar] [CrossRef] [PubMed]
  212. Canepa, E.T.; Scassa, M.E.; Ceruti, J.M.; Marazita, M.C.; Carcagno, A.L.; Sirkin, P.F.; Ogara, M.F. INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life 2007, 59, 419–426. [Google Scholar] [CrossRef] [PubMed]
  213. Shou, W.; Dunphy, W.G. Cell cycle control by Xenopus p28Kix1, a developmentally regulated inhibitor of cyclin-dependent kinases. Mol. Biol. Cell 1996, 7, 457–469. [Google Scholar] [CrossRef] [PubMed]
  214. Pateras, I.S.; Apostolopoulou, K.; Niforou, K.; Kotsinas, A.; Gorgoulis, V.G. p57KIP2: “Kip”ing the cell under control. Mol. Cancer Res. MCR 2009, 7, 1902–1919. [Google Scholar] [CrossRef] [PubMed]
  215. Wu, Q.; Jin, H.; Yang, Z.; Luo, G.; Lu, Y.; Li, K.; Ren, G.; Su, T.; Pan, Y.; Feng, B.; et al. MiR-150 promotes gastric cancer proliferation by negatively regulating the pro-apoptotic gene EGR2. Biochem. Biophys. Res. Commun. 2010, 392, 340–345. [Google Scholar] [CrossRef] [PubMed]
  216. Cory, S.; Adams, J.M. The Bcl2 family: Regulators of the cellular life-or-death switch. Nat. Rev. Cancer 2002, 2, 647–656. [Google Scholar] [CrossRef] [PubMed]
  217. Qiao, L.; Wong, B.C. Targeting apoptosis as an approach for gastrointestinal cancer therapy. Drug Resist. Updates Rev. Comment. Antimicrob. Anticancer Chemother. 2009, 12, 55–64. [Google Scholar] [CrossRef] [PubMed]
  218. Ning, S.; Tian, J.; Marshall, D.J.; Knox, S.J. Anti-alphav integrin monoclonal antibody intetumumab enhances the efficacy of radiation therapy and reduces metastasis of human cancer xenografts in nude rats. Cancer Res. 2010, 70, 7591–7599. [Google Scholar] [CrossRef] [PubMed]
  219. Hosono, Y.; Osada, S.; Nawa, M.; Takahashi, T.; Yamaguchi, K.; Kawaguchi, Y.; Yoshida, K. Combination therapy of 5-fluorouracil with rapamycin for hormone receptor-negative human breast cancer. Anticancer Res. 2010, 30, 2625–2630. [Google Scholar] [PubMed]
  220. Talebi Bezmin Abadi, A.; Rafiei, A.; Ajami, A.; Hosseini, V.; Taghvaei, T.; Jones, K.R.; Merrell, D.S. Helicobacter pylori homB, but not cagA, is associated with gastric cancer in Iran. J. Clin. Microbiol. 2011, 49, 3191–3197. [Google Scholar] [CrossRef] [PubMed]
  221. Gilad, S.; Meiri, E.; Yogev, Y.; Benjamin, S.; Lebanony, D.; Yerushalmi, N.; Benjamin, H.; Kushnir, M.; Cholakh, H.; Melamed, N.; et al. Serum microRNAs are promising novel biomarkers. PLoS ONE 2008, 3, e3148. [Google Scholar] [CrossRef] [PubMed]
  222. Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef] [PubMed]
  223. Shimizu, Y.; Takamori, A.; Utsunomiya, A.; Kurimura, M.; Yamano, Y.; Hishizawa, M.; Hasegawa, A.; Kondo, F.; Kurihara, K.; Harashima, N.; et al. Impaired Tax-specific T-cell responses with insufficient control of HTLV-1 in a subgroup of individuals at asymptomatic and smoldering stages. Cancer Sci. 2009, 100, 481–489. [Google Scholar] [CrossRef] [PubMed]
  224. Wickliffe, K.; Williamson, A.; Jin, L.; Rape, M. The multiple layers of ubiquitin-dependent cell cycle control. Chem. Rev. 2009, 109, 1537–1548. [Google Scholar] [CrossRef] [PubMed]
  225. Hsu, H.J.; Drummond-Barbosa, D. Insulin levels control female germline stem cell maintenance via the niche in Drosophila. Proc. Natl. Acad. Sci. USA 2009, 106, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
  226. Ahn, H.S.; Shin, Y.S.; Park, P.J.; Kang, K.N.; Kim, Y.; Lee, H.J.; Yang, H.K.; Kim, C.W. Serum biomarker panels for the diagnosis of gastric adenocarcinoma. Br. J. Cancer 2012, 106, 733–739. [Google Scholar] [CrossRef] [PubMed]
  227. Zhang, Z.; Li, M.; Zhang, G.; Fang, P.; Yao, H.; Xiao, Z.; Chen, Z. Identification of human gastric carcinoma biomarkers by differential protein expression analysis using 18O labeling and nanoLC-MS/MS coupled with laser capture microdissection. Med. Oncol. 2010, 27, 296–303. [Google Scholar] [PubMed]
  228. Wang, Y.Y.; Ye, Z.Y.; Zhao, Z.S.; Li, L.; Wang, Y.X.; Tao, H.Q.; Wang, H.J.; He, X.J. Clinicopathologic significance of miR-10b expression in gastric carcinoma. Hum. Pathol. 2013, 44, 1278–1285. [Google Scholar] [CrossRef] [PubMed]
  229. Li, X.; Zhang, Y.; Ding, J.; Wu, K.; Fan, D. Survival prediction of gastric cancer by a seven-microRNA signature. Gut 2010, 59, 579–585. [Google Scholar] [CrossRef] [PubMed]
  230. Bandres, E.; Bitarte, N.; Arias, F.; Agorreta, J.; Fortes, P.; Agirre, X.; Zarate, R.; Diaz-Gonzalez, J.A.; Ramirez, N.; Sola, J.J.; et al. microRNA-451 regulates macrophage migration inhibitory factor production and proliferation of gastrointestinal cancer cells. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2009, 15, 2281–2290. [Google Scholar] [CrossRef] [PubMed]
  231. Lee, Y.S.; Dutta, A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev. 2007, 21, 1025–1030. [Google Scholar] [CrossRef] [PubMed]
  232. Saito, Y.; Liang, G.; Egger, G.; Friedman, J.M.; Chuang, J.C.; Coetzee, G.A.; Jones, P.A. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 2006, 9, 435–443. [Google Scholar] [CrossRef] [PubMed]
  233. Lujambio, A.; Calin, G.A.; Villanueva, A.; Ropero, S.; Sanchez-Cespedes, M.; Blanco, D.; Montuenga, L.M.; Rossi, S.; Nicoloso, M.S.; Faller, W.J.; et al. A microRNA DNA methylation signature for human cancer metastasis. Proc. Natl. Acad. Sci. USA 2008, 105, 13556–13561. [Google Scholar] [CrossRef] [PubMed]
  234. Sotiropoulou, G.; Pampalakis, G.; Lianidou, E.; Mourelatos, Z. Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell. RNA 2009, 15, 1443–1461. [Google Scholar] [CrossRef] [PubMed]
  235. Ebert, M.S.; Neilson, J.R.; Sharp, P.A. MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 2007, 4, 721–726. [Google Scholar] [CrossRef] [PubMed]
  236. Wang, Z. The principles of MiRNA-masking antisense oligonucleotides technology. Methods Mol. Biol. 2011, 676, 43–49. [Google Scholar] [PubMed]
  237. Elmen, J.; Lindow, M.; Schutz, S.; Lawrence, M.; Petri, A.; Obad, S.; Lindholm, M.; Hedtjarn, M.; Hansen, H.F.; Berger, U.; et al. LNA-mediated microRNA silencing in non-human primates. Nature 2008, 452, 896–899. [Google Scholar] [CrossRef] [PubMed]
  238. Kota, J.; Chivukula, R.R.; O’Donnell, K.A.; Wentzel, E.A.; Montgomery, C.L.; Hwang, H.W.; Chang, T.C.; Vivekanandan, P.; Torbenson, M.; Clark, K.R.; et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009, 137, 1005–1017. [Google Scholar] [CrossRef] [PubMed]
  239. Xiang, S.; Fruehauf, J.; Li, C.J. Short hairpin RNA-expressing bacteria elicit RNA interference in mammals. Nat. Biotechnol. 2006, 24, 697–702. [Google Scholar] [CrossRef] [PubMed]
  240. Cheng, J.; Zhou, Y.; Zuo, M.; Dai, L.; Guo, X. Application of dispersive liquid-liquid microextraction and reversed phase-high performance liquid chromatography for the determination of two fungicides in environmental water samples. Int. J. Environ. Anal. Chem. 2010, 90, 845–855. [Google Scholar] [CrossRef] [PubMed]
  241. Chen, L.; Lu, M.H.; Zhang, D.; Hao, N.B.; Fan, Y.H.; Wu, Y.Y.; Wang, S.M.; Xie, R.; Fang, D.C.; Zhang, H.; et al. miR-1207–5p and miR-1266 suppress gastric cancer growth and invasion by targeting telomerase reverse transcriptase. Cell Death Dis. 2014, 5, e1034. [Google Scholar] [CrossRef] [PubMed]
  242. Wu, Y.; Crawford, M.; Yu, B.; Mao, Y.; Nana-Sinkam, S.P.; Lee, L.J. MicroRNA delivery by cationic lipoplexes for lung cancer therapy. Mol. Pharm. 2011, 8, 1381–1389. [Google Scholar] [CrossRef] [PubMed]
  243. Yang, X.; Haurigot, V.; Zhou, S.; Luo, G.; Couto, L.B. Inhibition of hepatitis C virus replication using adeno-associated virus vector delivery of an exogenous anti-hepatitis C virus microRNA cluster. Hepatology 2010, 52, 1877–1887. [Google Scholar] [CrossRef] [PubMed]
  244. Ng, E.K.; Chong, W.W.; Jin, H.; Lam, E.K.; Shin, V.Y.; Yu, J.; Poon, T.C.; Ng, S.S.; Sung, J.J. Differential expression of microRNAs in plasma of patients with colorectal cancer: A potential marker for colorectal cancer screening. Gut 2009, 58, 1375–1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Table 1. Up-regulated miRNAs in tissues for GC.
Table 1. Up-regulated miRNAs in tissues for GC.
Tissue OncomiRsSamplesCell FunctionsTarget (Official Gene Name)Clinical ApplicationReferences
let-7bSystematic integrative bioinformatics frameworkNDNDDiagnosis[16]
let-7gGCCLsChemosensitivityNDND[17]
miR-10bGCCLsMetastasisHOXD10ND[18,19,20]
miR-105GCTsNDNDDiagnosis[21]
miR-106aGCCLsCell cycleRB1
TIMP2
FAS
ND[22]
miR-106b-93-25 clusterGCTs
GCCLs
Apoptosis
Cell cycle
BIM
E2F1
CDKN1A
CDKN1B
CDKN1C
Diagnosis[23,24,25,26,27]
miR-107GCTs
GCCLs
Invasion
Metastasis
CDK6
DICER1
LNM
Tumor stage
Prognosis
[28,29,30]
miR-1271GCCLsNDIGFIR
MTOR
BCL2
ND[31]
miR-129GCTs
GCCLs
Cell proliferation
Cell cycle
SOX2
SOX4
CDK6
PDCD2
Prognosis
Diagnosis
[32,33,34,35]
miR-130aGCCLsMetastasis
Invasion
Cell proliferation
NDND[36]
miR-130bGCCLsApoptosis
Epigenetic regulation
Cell proliferation
RUNX3
BIM
ND[37]
miR-135aGCTsNDNDPrognosis[38]
miR-142-5pGCTsNDNDPoor Survival
Prognosis
[39]
miR-143GCTsNDNDTumor stage
Scirrhous type
Prognosis
[40]
miR-145GCTs
GCCLs
AngiogenesisCDH2
ETS1
Tumor stage
Scirrhous type
Prognosis
[41,42]
miR-146aGCCLsApoptosis
Cell proliferation
IRAK1
TRAF6
SMAD4
ND[43,44,45]
miR-148aGCCLsInvasion
Metastasis
Cell proliferation
Cell cycle
CDKN1BND[46]
miR-150GCTs
GCCLs
Apoptosis
Cell proliferation
EGR2Poor Survival
Prognosis
[23]
miR-15bGCCLsApoptosisBCL-2ND[47,48,49]
miR-155GCCLsApoptosisIKK-ε
SMAD4
FADD
PLIα
ND[50,51,52,53]
miR-16GCCLsChemosensitivity
Apoptosis
BCL-2ND[17,47,48,49]
miR-17GCCLsCell cycleCDKN1A
UBE2C
FBXO31
ND[54]
miR-181GCCLsNDNDND
miR-181b/cGCTs
GCCLs
Apoptosis
Chemosensitivity
NOTCH4
K-RAS
BCL-2
Differentiation
Invasive depth
Tumor stage
Prognosis
[17,47,48,55,56]
miR-192GCTsNDNDLNM
Prognosis
[57]
miR-195GCTsNDNDRecurrence[58]
miR-196aGCTs
GCCLs
Metastasis
Invasion
Migration
RADIXINInvasion depth
Serosal invasion
Lymphatic invasion
LNM
Distant metastasis
TNM stage
Peritoneal seeding
Gross type
Lauren subtype
Prognosis
[59]
miR-196aGCTs
GCCLs
NDNDDifferentiation[60]
miR-196a-5pGCTsNDNDLNM
TNM stage
Prognosis
[61]
miR-196bGCTs
GCCLs
Metastasis
Invasion
Migration
RADIXINInvasion depth
Serosal invasion
Lymphatic invasion
LNM
Distant metastasis
TNM stage
Peritoneal seeding
Gross type
Prognosis
[59]
miR-199aGCTs
GCCLs
Cell proliferation
Metastasis
SMARCA2
SMAD4
MAP3K11
ZHX1
Recurrence
Diagnosis
Relapse
[39,58,62,63,64,65]
miR-1952GCTsNDNDRelapse[58]
miR-20aGCTs
GCCLs
Cell cycleCDKN1ADiagnosis[23,24,25]
miR-20bGCTsNDNDPoor Survival
LNM
Distance metastasis
TNM stage
Prognosis
[23,66]
miR-200cGCTs
GCCLs
Metastasis
Chemoresistance
E-CDH
ZEB2
RHO E
ND[67]
miR-21GCTs
GCCLs
Apoptosis
Cell proliferation
Invasion
Cell cycle
Metastasis
Differentiation
RECK
PTEN
SERPINI1
PDCD4
NF-KB
CDKN1A
E2F5
CDKN1C
LNM
Prognosis
[68,69,70,71,72]
miR-210Hp-positive human gastric biopsies/Hp-negative controlsNDSTMN1
DIMT1
ND[73]
miR-211Systematic integrative bioinformatics frameworkNDNDDiagnosis[16]
miR-213GCTsNDNDDiagnosis[21]
miR-214GCTsNDNDPoor Survival
Invasion depth
Lymph node metastasis
Prognosis
[24,74]
miR-215GCTs
GCCLs
MetastasisALCAMPrognosis[71]
miR-221/222GCTs
GCCLs
Radioresistance
Cell cycle
CDKN1A
CDKN1B
CDKN1C
Prognosis[27,68]
miR-2214GCTsNDNDAdvanced GC
Prognosis
[75]
miR-223GCCLsInvasion
Metastasis
EPB41L3
FBXW7
HCDC4
STMN1
ND[76]
miR-23a/bGCTs
GCCLs
Invasion
Cell proliferation
IL6R
IRF1
LNM
TNM stage
Prognosis
[77,78,79]
miR-25GCTs
GCCLs
Invasion
Cell proliferation
Migration
CDKN1C
BCL2L11
FBXW7
LASTS2
RECK
LNM
Prognosis
[26,27,80]
miR-27aGCTs
GCCLs
Metastasis
Cell proliferation
APC
PHB
Lymph node metastasis
Prognosis
[23,81]
miR-335GCTsMetastasisNDRecurrence
Prognosis
[82,83]
miR-34GCTs
GCCLs
Chemosensitivity
Apoptosis
BCL-2Tumor stage
Prognosis
[17,47,48,55,56]
miR-342GCCLsChemosensitivityNDND[17]
miR-362GCCLsApoptosisNF-KBND[84]
miR-363GCCLsChemoresistanceNDND[17]
miR-370GCCLsMetastasisTGF-β-RIIND[85]
miR-375GCTs
GCCLs
Apoptosis
Inhibits Helicobacter
pylori-induced
gastric carcinogenesis
PDK1
YWHAZ
JAK2
STAT3
Poor Survival
Relapse/Recurrence
Prognosis
[39,74,86,87,88]
miR-382GCTs
GCCLs
AngiogenesisPTENND[89]
miR-421GCTs
GCCLs
NDBAX
BCL-2
Diagnosis[90,91]
miR-43cGCTs
GCCLs
Cell proliferation
Cell cycle
VEZTEpigenetic regulation
Prognosis
[92]
miR-442aGCCLsChemoresistanceNDND[93]
miR-451GCTs
GCCLs
Apoptosis
Radiosensitivity
MIFRecurrence[58,94,95,96]
miR-4512GCTsNDNDRelapse[39]
miR-4732-5pGCCLsChemoresistanceNDND[93]
miR-4758-3pGCCLsChemoresistanceNDND[93]
miR-503GCCLsNDIGFIR
BCL2
ND[97]
miR-512-5pGCCLsApoptosisMCL-1ND[98]
miR-514bGCTsNDNDDiagnosis[21]
miR-517GCCLsChemoresistanceNDND[17]
miR-518fGCCLsChemoresistanceNDND[17]
miR-519eGCCLsChemoresistanceNDND[17]
miR-520aGCCLsChemoresistanceNDND[17]
miR-520d/hGCCLsChemoresistanceHDAC1ND[17]
miR-520d-3pGCTs
GCCLs
Cell proliferation
Migration
Invasion
EPHA2ND[99]
miR-548NGCTsNDNDDiagnosis[21]
miR-630GCTs
GCCLs
InvasionNDLNM
Distant metastasis
TNM stage
Prognosis
[100]
miR-650GCTsNDNDLymph node Metastasis
Prognosis
[101]
miR-708GCTsNDNDDiagnosis[16]
miR-9GCCLsCell proliferation
Cell cycle
CDX2ND[102]
miR-92GCCLsCell proliferation
Invasion
FXRND[103]
miR-92aGCTsNDE2F1
HIPK1
Tumor growth
Prognosis
[93,104]
miR-93GCCLsApoptosisBIM
DAB2
ND[23,24,25]
Chemoresistance drugs were cisplatin, 5-fluorouracil and hydroxy camptothecin. GCTs: Gastric cancer tissues, GCCLs: Gastric cancer cell lines, ND: not determined.
Table 2. Down-regulated miRNAs in tissues for GC.
Table 2. Down-regulated miRNAs in tissues for GC.
Tissue Tumor Suppressor miRsSamplesCell FunctionsTarget (Official Gene Name)Clinical ApplicationReferences
Let-7aGCCLsCell proliferation
Cell cycle
Invasion
RAB40C
HMGA2
CDC34
CCR7
ND[105,106,107]
Let-7fGCCLsMetastasisMYH9ND[108]
Let-7gGCTsNDNDDiagnosis
Invasion depth
Lymph node metastasis
Poor Survival
Chemoresistance
Prognosis
[24,109,110]
miR-1GCTsNDNDTumor stage
Prognosis
[111]
miR-9GCTs
GCCLs
Cell proliferation
Metastasis
ETS1
NFKB1
CCND1
CUL4A
CDX2
ND[102,112,113,114]
miR-10bGCTs
GCCLs
Cell proliferationMAPRE1
CCND1
ND[19,115,116]
miR-101GCTs
GCCLs
MetastasisEZH2
COX2
MCL1
FOS
ND[117,118,119,120]
miR-1207-5pGCTs
GCCLs
NDNDLNM
Lymphovascular invasion
Stromal reaction type
TNM stage
Prognosis
[121]
miR-124GCCLsCell proliferation
Invasion
ROCK1ND[122]
miR-124aGCCLsCell cycleCDK6ND[123]
miR-1246, miR-302a and miR-4448GCCLsNDDYRK1AND[124]
miR-125a-3pGCTs
GCCLs
NDNDInvasion
LNM
Liver metastasis
Tumor stage
Tumor size
Peritoneal dissemination
Prognosis
[125]
miR-125a-5pGCTs
GCCLs
Cell proliferation
Metastasis
Invasion
Migration
ERBB2
E2F3
Invasion depth
Liver metastasis
Tumor stage
Tumor size
Poor Survival
Prognosis
[24,126,127]
miR-125-5pGCTsNDNDPoor Survival
Prognosis
[126]
miR-126GCTs
GCCLs
Cell cycle
Cell proliferation
Metastasis
Invasion
Migration
CRK
PI3KR2
PLK2
Lymph node metastasis
Prognosis
[128,129,130]
miR-126GCTsNDNDAdvanced GC[128]
miR-126GCCLsChemoresistanceNDND[109]
miR-129GCCLsProliferation
Cell cycle
CDK6ND[131]
miR-129-1-3pGCCLsMigrationNDND[34]
miR-129-2GCTs
GCCLs
Cell proliferationSOX4Epigenetic regulation
Differentiation
[35]
miR-141GCCLsInvasion
Cell proliferation
Metastasis
NDND[132]
miR-142-5pGCTsNDNDRelapse[39]
miR-143GCCLsCell proliferationAKTND[133]
miR-145GCCLsCell proliferationIRS1ND[133]
miR-146aGCTs
GCCLs
Invasion
Migration
EGFR
IRAK1
Lymph node metastasis
Venous invasion
Poor Survival
Prognosis
[24,134]
miR-148aGCTs
GCCLs
NDNDAdvanced GC[135]
miR-148aGCTs
GCCLs
MetastasisDNMT1
CDKN1B
ROCK1
Distant metastasis
Organ invasion
Peritoneal invasion
Prognosis
[46,135,136,137]
miR-148bGCTs
GCCLs
Cell proliferationCCKBRND[138]
miR-148GCTs
GCCLs
NDNDLymph node metastasis
Prognosis
[135]
miR-15bGCTs
GCCLs
ChemoresistanceNDND[47]
miR-153GCTs
GCCLs
Migration
Invasion
NDLNM
Prognosis
[139]
miR-155GCTs
GCCLs
Cell proliferation
Invasion
Migration
C-MYCND[130]
miR-16GCTs
GCCLs
ChemoresistanceNDND[47]
miR-181cGCTs
GCCLs
Cell proliferationNOTCH4
KRAS
Transcriptional activation[56]
miR-185GCTs
GCCLs
NDNDPrognosis
TNM stage
[140]
miR-19bGCTs
GCCLs
NDNDDiagnosis[104,141]
miR-192GCTs
GCCLs
NDNDTumor sizes
Borrmann type
Prognosis
[142]
miR-193bGCTs
GCCLs
Invasion
Metastasis
NDDifferentiation
Lauren type
Tumor stage
Prognosis
[60]
miR-196aGCTs
GCCLs
ChemoresistanceNDND[109]
miR-20aGCTs
GCCLs
NDNDTumor stage
Prognosis
[111]
miR-200bGCTs
GCCLs
Invasion
metastasis
NDND[143]
miR-200 familyGCTs
GCCLs
EMT
Chemoresistance
Cell proliferation
Invasion
Migration
Apoptosis
ZEB1
ZEB2
CDH1
BCL2
XIAP
ND[109,144,145,146]
miR-203GCTs
GCCLs
Cell proliferation
Invasion
ABL1ND[147,148]
miR-204GCTs
GCCLs
Cell proliferation
Invasion
EZR
SOX4
ND[149]
miR-206GCTs
GCCLs
NDCCND2Venous invasion
LNM
Hematogenous recurrence
PStage
Prognosis
[150,151]
miR-212GCTs
GCCLs
Cell proliferationMECP2ND[152]
miR-215GCTs
GCCLs
NDNDBorrmann type
Tumor sizes
pT stage
Prognosis
[142]
miR-217GCTs
GCCLs
Differentiation Distant Metastasis
Invasion
NDTumor size
TNM stage
Prognosis
[153]
miR-218GCTs
GCCLs
Metastasis
Invasion
ROBO1
COX2
NFkB
ECOP
VOPP1
Lymph node metastasis
Transcriptional activation
Prognosis
Advanced gastric cancer
Prognosis
[154,155,156,157,158,159,160]
miR-22GCTs
GCCLs
NDSP1LNM
Distant metastasis
Tumor stage
Prognosis
[151,161]
miR-223GCTs
GCCLs
MetastasisSTMN1ND[162,163]
miR-24GCCLsCell cycleAE1ND[164,165]
miR-27aGCTs
GCCLs
NDNDTumor stage
Lymph node metastasis
TNM stag
Prognosis
[111]
miR-29aGCTs
GCCLs
Cell proliferation
Cell cycle
Metastasis
P42.3
CDC42
ND[166,167,168]
miR-29cGCTs
GCCLs
NDNDVenous invasion
TNM stage
Prognosis
[169]
miR-30bGCTs
GCCLs
ApoptosisPAI-1ND[170]
miR-31GCTs
GCCLs
ChemoresistanceNDND[109]
miR-335GCTs
GCCLs
Metastasis
Cell invasion
BCL-W
SP1
Lymph node metastasis
Prognosis
Invasion of lymphatic vessels
[171]
miR-338GCTs
GCCLs
ChemoresistanceNDND[109]
miR-34aGCTs
GCCLs
NDBCL2
PDGFR
YY1
Lymph node involvement
TNM stage
Differentiation
Recurrence
Prognosis
[172,173]
miR-34GCTs
GCCLs
Cell proliferationBCL2
NOTCH1
HMGA2
C-MYC
SIRT1
TNM stage
Transcription
Epigenetic regulation
Prognosis
[111,172]
miR-370GCTs
GCCLs
NDNDDiagnosis[31]
miR-375GCTs
GCCLs
Apoptosis
Cell proliferation
PDK1
YWHAZ
JAK2
ERBB2
STAT3
TP53
ND[86,174,175]
miR-410GCTs
GCCLs
migration
invasion
MDM2ND[176]
miR-423-5pGCTs
GCCLs
NDNDTNM stage
Prognosis
[111]
miR-429GCTs
GCCLs
Cell proliferation
Apoptosis
C-MYC
BCL2
XIAP
Lymph node metastasis
Prognosis
[177]
miR-433GCTs
GCCLs
NDGRB2Diagnosis
Invasion depth
Lymph node metastasis
Poor Survival
Prognosis
[24,86,109,110,174]
miR-449GCTs
GCCLs
Cell proliferation
Apoptosis
Cell cycle
GEMININ
P42.3
CCNE2
GMNN
MET
CCNE3
SIRT1
CDK6
ND[131,166,178]
miR-451GCTs
GCCLs
Cell proliferationMIFPoor Survival
Prognosis
[24,94]
miR-486GCTs
GCCLs
Cell proliferationOLFM4ND[179,180]
miR-512-5pGCTs
GCCLs
Cell proliferationMCI-1ND[98]
miR-520d-3pGCTs
GCCLs
NDNDInvasion depth
LNM
Tumor stage
Prognosis
[99]
miR-610GCTs
GCCLs
Invasion
Metastasis
NDND[181]
miR-7GCTs
GCCLs
Invasion Metastasis
Chemoresistance
NDND[109,182]
miR-9GCTs
GCCLs
Cell proliferation
Cell cycle
RAB34
CDX2
NFKB1
Diagnosis[24,172,183]
miR-98GCTs
GCCLs
ChemoresistanceNDND[109]
Chemoresistance drugs were cisplatin, 5-fluorouracil and hydroxy camptothecin. GCTs: Gastric cancer tissues, GCCLs: Gastric cancer cell lines, ND: not determined.
Table 3. Up-regulated circulating miRNAs for GC.
Table 3. Up-regulated circulating miRNAs for GC.
Circulating OncomiRsSamplesMethodsSensitivitySpecificityAUCTarget (Official Gene Name)Clinical ApplicationReferences
miR-1164 GC
127 HC
Microarray + qRT-PCR79.386.50.879NDDiagnosis[111]
miR-106a90 GC
27 HC
Microarray + qRT-PCR48.290.20.684NDDiagnosis[184]
miR-106a69 GC
30 HC
Microarray + qRT-PCR85.5800.879NDDiagnosis[185]
miR-106b69 GC
30 HC
Microarray + qRT-PCRNDND0.72NDDiagnosis[185]
miR-106b40 Pre GC
20 Post GC
qRT-PCRNDNDNDNDTNM stage
Diagnosis
Prognosis
[186]
miR-1790 GC
27 HC
Microarray + qRT-PCR48.290.20.743NDDiagnosis[184]
miR-17-5p79 Pre GC
30 Post GC
6 Relapse GC
qRT-PCRNDNDNDNDDiagnosis
Poor Survival
Differentiation
TNM stages
Prognosis
[54]
miR-18a82 GC
65 HC
qRT-PCRNDNDNDNDPoor Survival
LNM
Pathological grade
Prognosis
[54,187]
miR-18a104 GC
65 HC
qRT-PCRNDNDNDNDDiagnosis[188]
miR-19212 GC
12 HC
qRT-PCRNDND0.732NDDiagnosis
Distant metastasis
No Distant metastasis
[189]
miR-199a-3p30 EGC
70 HC
Microarray + qRT-PCR0.760.740.818NDDiagnosis[190,191]
miR-20a79 Pre GC
30 Post GC
6 Relapse GC
qRT-PCRNDNDNDNDPoor Survival
Differentiation
TNM stages
Prognosis
[54]
miR-20a164 GC
127 HC
Microarray + qRT-PCR79.386.50.879NDDiagnosis[111]
miR-200c67 GC
15 HC
qRT-PCR65.41000.715BCL2
XIAP
Diagnosis
LNM
Poor Survival
Prognosis
[192,193]
miR-21174 GC
39 HC
Microarray + qRT-PCR56.794.90.81NDDiagnosis[194]
miR-2169 GC
42 Pre GC
42 Post GC
qRT-PCRNDNDNDRECK
PTEN
SERPINI1
Venous invasion
Poor Survival
Prognosis Differentiation
LNM
Poor Survival
Prognosis
[68,71,195,196]
miR-21103 GC
103 HC
qRT-PCRNDNDNDNDDiagnosis
Prognosis
[197]
miR-21868 GC
56 HC
qRT-PCRNDNDNDECOPMetastasis
Tumor stage
Poor Survival
Prognosis
[155,198]
miR-22182 GC
46 Dysplasia
128 SG or CAG
qRT-PCRNDNDNDCDKN1B
CDKN1C
PTEN
Differentiation
Poor Survival
Prognosis
[27,199,200]
miR-22182 GC
82 HC
qRT-PCR82.458.8NDNDDiagnosis[199]
miR-222114 GC
36 CAG
56 HC
qRT-PCR66.188.30.85CDKN1B
CDKN1C
PTEN
RECK
Diagnosis
LNM
TNM stages
Serosal Invasion
Poor Survival
Prognosis
[27,200,201,202]
miR-2570 GC
70 HC
qRT-PCRNDNDNDCDKN1C
BCL2L11
FBXW7
LNM
TNM stage
Poor Survival
Prognosis
[26,27,80,203]
miR-2540 Pre GC
20 Post GC
qRT-PCRNDNDNDNDTNM stage
Diagnosis
Prognosis
[186]
miR-27a82 GCqRT-PCRNDNDNDPHB
APC
Metastasis
Poor Survival
Recurrent
Prognosis
[81,204,205]
miR-27a164 GC
127 HC
Microarray + qRT-PCR79.386.50.879NDDiagnosis[111]
miR-34164 GC
127 HC
Microarray + qRT-PCR79.386.50.879NDDiagnosis[111]
miR-376c82 GC
82 HC
46 dysplasia
128 SG
or CAG
qRT-PCR82.458.8NDNDDiagnosis Differentiation
Poor Survival
Prognosis
[199]
miR-37861 GC
61 HC
qRT-PCR87.570.70.861NDDiagnosis[206]
miR-42190 GC
90 HC
qRT-PCRNDNDNDNDDiagnosis[207]
miR-423-5P164 GC
127 HC
Microarray + qRT-PCR79.386.50.879NDDiagnosis[111]
miR-45156 GC
30 HC
Microarray + qRT-PCR961000.96NDDiagnosis[208]
miR-48656 GC
30 HC
Microarray + qRT-PCR86970.92NDDiagnosis[208]
miR-74482 GC
82 HC
46 dysplasia
128 SG
or CAG
qRT-PCR82.458.8NDNDDiagnosis Differentiation
Poor Survival
Prognosis
[199]
miR-9340 Pre GC
20 Post GC
qRT-PCRNDNDNDNDTNM stage
Diagnosis
Prognosis
[186]
AG: chronic atrophic gastritis; GC: Gastric cancer; HC: Healthy control; LNM: Lymph node metastasis; Pre: pre-operative; Post: post-operative; SG: superficial gastritis; qRT-PCR: Quantitative reverse transcriptase polymerase chain reaction; AUC: Area under curve; ND: not determined.
Table 4. Down-regulated circulating miRNAs for GC.
Table 4. Down-regulated circulating miRNAs for GC.
Circulating Tumor Suppressor miRsSamplesMethodsSensitivitySpecificityAUCTarget (Official Gene Name)Clinical ApplicationReferences
miR-12212 GC
12 HC
qRT-PCRNDND0.808NDDistance metastases
Poor Survival
Prognosis
No Distant metastasis
Diagnosis
[189]
miR-195-5p20 GC
190 HC
qRT-PCRNDNDNDNDPrognosis[209,210]
miR-203154 GC
22 HC
qRT-PCRNDNDNDNDGender
Lymphatic invasion
Venous invasion
Peritoneal metastasis
Distance metastasis
LNM
Liver metastasis
TNM stage
Poor Survival
Prognosis
[211]
miR-21868 GC
56 HC
qRT-PCRNDNDNDECOPMetastasis
Tumor stage
Poor Survival
Prognosis
[155,198]
miR-375NAMicroarray + qRT-PCR0.850.800.835NDPrognosis[210]
GC: Gastric cancer; HC: Healthy control; Pre: pre-operative; Post: post-operative; qRT-PCR: Quantitative reverse transcriptase polymerase chain reaction; AUC: Area under curve; ND: not determined.

Share and Cite

MDPI and ACS Style

Tsai, M.-M.; Wang, C.-S.; Tsai, C.-Y.; Huang, H.-W.; Chi, H.-C.; Lin, Y.-H.; Lu, P.-H.; Lin, K.-H. Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer. Int. J. Mol. Sci. 2016, 17, 945. https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17060945

AMA Style

Tsai M-M, Wang C-S, Tsai C-Y, Huang H-W, Chi H-C, Lin Y-H, Lu P-H, Lin K-H. Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer. International Journal of Molecular Sciences. 2016; 17(6):945. https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17060945

Chicago/Turabian Style

Tsai, Ming-Ming, Chia-Siu Wang, Chung-Ying Tsai, Hsiang-Wei Huang, Hsiang-Cheng Chi, Yang-Hsiang Lin, Pei-Hsuan Lu, and Kwang-Huei Lin. 2016. "Potential Diagnostic, Prognostic and Therapeutic Targets of MicroRNAs in Human Gastric Cancer" International Journal of Molecular Sciences 17, no. 6: 945. https://0-doi-org.brum.beds.ac.uk/10.3390/ijms17060945

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop