
 International Journal of 

Molecular Sciences

Article

Multi-Elemental Profiling of Tibial and Maxillary
Trabecular Bone in Ovariectomised Rats
Pingping Han 1,2,†, Shifeier Lu 1,†, Yinghong Zhou 1,*, Karine Moromizato 3, Zhibin Du 1,
Thor Friis 1 and Yin Xiao 1,*

1 Institute of Health and Biomedical innovation, Queensland University of Technology, Brisbane 4059,
Australia; p.han@uq.edu.au (P.H.); shifeier.lu@connect.qut.edu.au (S.L.); zhibin.du@qut.edu.au (Z.D.);
t.friis@qut.edu.au (T.F.)

2 Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering
and Nanotechnology, University of Queensland, St. Lucia 4072, Australia

3 Institute for Future Environments, Queensland University of Technology, Brisbane 4000, Australia;
k.harumimoromizato@qut.edu.au

* Correspondence: y26.zhou@qut.edu.au (Y.Z.); yin.xiao@qut.edu.au (Y.X.);
Tel.: +61-7-3138-6269 (Y.Z.); +61-7-3138-6240 (Y.X.); Fax: +61-7-3138-6030 (Y.Z. & Y.X.)

† Pingping Han and Shifeier Lu are co-first authors.

Academic Editor: Ihtesham ur Rehman
Received: 10 May 2016; Accepted: 3 June 2016; Published: 21 June 2016

Abstract: Atomic minerals are the smallest components of bone and the content of Ca, being the most
abundant mineral in bone, correlates strongly with the risk of osteoporosis. Postmenopausal women
have a far greater risk of suffering from OP due to low Ca concentrations in their bones and this is
associated with low bone mass and higher bone fracture rates. However, bone strength is determined
not only by Ca level, but also a number of metallic and non-metallic elements in bone. Thus, in this
study, the difference of metallic and non-metallic elements in ovariectomy-induced osteoporosis
tibial and maxillary trabecular bone was investigated in comparison with sham operated normal
bone by laser ablation inductively-coupled plasma mass spectrometry using a rat model. The results
demonstrated that the average concentrations of 25Mg, 28Si, 39K, 47Ti, 56Fe, 59Co, 77Se, 88Sr, 137Ba,
and 208Pb were generally higher in tibia than those in maxilla. Compared with the sham group,
Ovariectomy induced more significant changes of these elements in tibia than maxilla, indicating tibial
trabecular bones are more sensitive to changes of circulating estrogen. In addition, the concentrations
of 28Si, 77Se, 208Pb, and Ca/P ratios were higher in tibia and maxilla in ovariectomised rats than those
in normal bone at all time-points. The present study indicates that ovariectomy could significantly
impact the element distribution and concentrations between tibia and maxilla.
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1. Introduction

Osteoporosis (OP) is a progressive systemic skeletal disease affecting 200 million people
worldwide [1]. It is characterized by low bone mass and inferior strength that leads to increased fragility
and risk of bone fractures. Clinical research has shown there is an inverse relationship between serum
estrogen levels and the healing capacity of fractured long and axial bones that affects both women and
men [2–5]. In addition, estrogen deficiency may lead to jawbone resorption and delayed alveolar bone
wound healing in osteoporotic patients [6]. Ovariectomy (Ovx) induces “postmenopausal” OP in rats
and is a commonly-used experimental model to better understand the pathophysiological mechanisms
of OP. This model is characterized by continuous bone loss and an increased rate of bone turnover due
to estrogen deficiency [7–9].
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It has been observed that the impact of experimental Ovx on bone loss is site-dependent and that
the severity in bones varies according to different size, mass and density [10]. Further evidence has
demonstrated that trabecular bones are more sensitive to estrogen deficiency than other skeletal sites,
including porous maxillary bones [11]. Recent research has confirmed that Ovx leads to a significant
reduction of bone mass in femurs and tibia, which are formed by endochondral ossification, but
not in maxilla, which is formed by intramembranous ossification [12]. Most studies have tended to
focus on the bone loss in long bone and mandibular alveolar bone after Ovx, using three-dimensional
(3D) micro-computed tomography (µCT) [8], dual-energy X-ray absorptiometry (DEXA) [13], and
Raman spectroscopy [14]; however, the effects of Ovx on the bone remodelling in maxilla and tibia
remain unclear.

It is well documented that organic and inorganic components both contribute to bone toughness
and rigidity. Clinical research has shown a strong correlation between OP and low Ca concentrations in
the bones of postmenopausal women which is associated with low bone mass and high bone fracture
rates [15,16]. This association has been confirmed in Ovx rats, where there is a gradual and significant
increase in serum Ca and P when compared to controls [17,18]. Moreover, there are a number of
reports that highlight the importance of atomic composition in bone. Environmental and occupational
exposure to cadmium (Cd) is linked to a significant decrease in bone mineral density, particularly
in men [19]. It is thought that Cd interferes with the renal enzymes that hydroxylate calcidiol to
calcitriol [20]. In a cohort of postmenopausal Indonesian women it was found that the concentrations
of B, Al, S, V, Co, Mo, Te, Ba, La, Ni, As, and Ca/P ratio were higher in those with OP compared to
age-matched controls with normal bone density [21]. Most of the previous literature has focused on
the relationship between environmental exposure to metals and bone mineral quality [22], whereas
the association between atomic minerals and bone remodelling at multiple skeletal sites has not yet
been assessed.

There are no reported studies that detail the differences of atomic mineral distribution in maxilla
and tibia of Ovx rats in a time-dependent manner. We hypothesized that there would be a significant
difference in the content of bone mineral elements between maxillary alveolar bone and tibia (long
bone) of Ovx rats over time. We tested this hypothesis using laser ablation inductively-coupled plasma
mass spectrometry (LA-ICP-MS). This is a powerful analytical tool for the quantification of trace
element concentrations, and has a spatial resolution ranging from 10 to 100 µm and a detection limit
ranging from parts per million to parts per billion [23,24].

The objective of this study was, therefore, to investigate the characteristics of atomic mineral
changes in maxillary and tibial bones arising from Ovx in female rats. LA-ICP-MS was applied
to compare the changes in various skeletal sites at defined time points over a period of 20 weeks
post-surgery. A total of 27 elements (B, Al, S, V, Co, Mo, Te, Ba, La, Ni, As, Na, Mg, P, K, Ca, Cr, Pd, Ag,
Mn, Fe, Cu, Zn, Rb, Sr, Pb, and Se) were analysed. The present study provides high resolution of the
atomic mineral compositions of bone in general and, more specifically, gives us a better understanding
of the association between atomic mineral composition and OP.

2. Results

2.1. The Effect of OVX on the Average Concentrations of Atomic Minerals in Tibia and Maxilla at Defined
Time Points

The average concentrations of 25Mg, 28Si, 39K, 47Ti, 56Fe, 59Co, 77Se, 88Sr, 137Ba, and 208Pb were
analysed by LA-ICP-MS in both tibia and maxilla at set time points (Table 1). In general, Ovx rats had
higher concentrations of all the evaluated elements in the tibia compared to maxilla at the individual
time points. In the tibia, the concentrations of 28Si, 39K, 77Se, and 208Pb were greater in osteoporotic
bones compared to the controls (Table 1; *, p < 0.05). Likewise, maxillary bones of Ovx rats had greater
concentrations of 28Si, 77Se, 88Sr, 137Ba, and 208Pb compared to controls (Table 1; *, p < 0.05). It was
also noteworthy that Ovx resulted in greater concentrations of 28Si, 77Se, and 208Pb in both tibia and
maxilla compared with the sham group over the time course.
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Table 1. The effect of Ovx on the average concentrations of atomic minerals on tibia and maxilla bones with time-course (* p < 0.05).

Element

Concentration

Time Points
NIST 610 Bone Pellets

Tibia Maxilla

Ovx (n = 6) Sham (n = 6) Ovx (n = 6) Sham (n = 6)

Mg 24 464.9 ˘ 5.36 155.88 ˘ 3.38 283 ˘ 23.53 1335 ˘ 199.42 166.57 ˘ 3.10 * 159.33 ˘ 2.19 8 weeks
2513 ˘ 91.19 * 1697.5 ˘ 210.78 174.37 ˘ 5.69 228.2 ˘ 5.36 12weeks
2810 ˘ 310 * 1115 ˘ 167.63 164.5 ˘ 9.19 174.86 ˘ 8.14 16 weeks

1794.5 ˘ 255.2 * 1310 ˘ 113.58 540 ˘ 78.1 * 358.4 ˘ 36.12 20 weeks
Si 28 326,975 ˘ 1027 3.03 ˘ 0.31 1410 ˘ 200.74 * 355.67 ˘ 23.54 2.35 ˘ 0.31 5.22 ˘ 0.41 8 weeks

1283.3 ˘ 137.8 * 473.33 ˘ 45.83 8.9 ˘ 1.04 * 2.77 ˘ 0.25 12weeks
1545 ˘ 164.15 * 440 ˘ 24.13 21.29 ˘ 3.54 * 2.34 ˘ 0.31 16 weeks
2670 ˘ 188.91 * 430 ˘ 42.43 45.15 ˘ 5.28 * 2.83 ˘ 0.29 20 weeks

K 39 487 ˘ 17.11 4.94 ˘ 0.34 62.09 ˘ 5.21 96.25 ˘ 17.31 9.48 ˘ 1.08 * 5.91 ˘ 0.56 8 weeks
968 ˘ 109.03 * 126.33 ˘ 15.45 26.14 ˘ 2.52 34.13 ˘ 4.07 12weeks

272.33 ˘ 25.65 * 170.25 ˘ 20.33 35.23 ˘ 5.37 * 25.95 ˘ 2.74 16 weeks
622 ˘ 50.91 * 237.5 ˘ 17.61 55.5 ˘ 7.06 * 42.2 ˘ 5.21 20 weeks

Ti 47 433.9 ˘ 1.53 0.45 ˘ 0.07 1.67 ˘ 0.18 * 0.77 ˘ 0.11 0.22 ˘ 0.02 0.30 ˘ 0.01 8 weeks
2.37 ˘ 0.31 * 0.62 ˘ 0.05 0.39 ˘ 0.03 0.31 ˘ 0.04 12weeks
3.53 ˘ 0.56 5.01 ˘ 0.45 0.29 ˘ 0.001 0.36 ˘ 0.02 16 weeks
2.1 ˘ 0.32 5.3 ˘ 0.51 0.45 ˘ 0.05 0.41 ˘ 0.05 20 weeks

Fe 56 456.4 ˘ 8.13 1.89 ˘ 0.23 31.05 ˘ 5.01 424.33 ˘ 10.26 1.86 ˘ 0.23 1.81 ˘ 0.25 8 weeks
1594 ˘ 152 * 464 ˘ 26.9 2.03 ˘ 0.15 2.46 ˘ 0.31 12weeks

1554 ˘ 152.1 * 623.33 ˘ 90.73 2.8 ˘ 0.63 2.78 ˘ 0.42 16 weeks
839.5 ˘ 55.9 1015 ˘ 91.9 3.86 ˘ 0.35 3.81 ˘ 0.34 20 weeks

Co 59 405.1 ˘ 6.12 0.12 ˘ 0.006 0.007 ˘ 0.0008 0.042 ˘ 0.005 0.0007 ˘ 0.0001 0.0018 ˘ 0.00035 8 weeks
0.068 ˘ 0.0016 * 0.022 ˘ 0.003 0.0042 ˘ 0.0001 * 0.0015 ˘ 0.00016 12weeks
0.064 ˘ 0.0039 * 0.034 ˘ 0.004 0.0019 ˘ 0.0002 0.029 ˘ 0.0024 16 weeks
0.028 ˘ 0.0037 0.048 ˘ 0.006 0.0088 ˘ 0.0012 0.031 ˘ 0.0043 20 weeks

Zn 66 456 ˘ 5.56 3.52 ˘ 0.26 31.4 ˘ 0.71 152.2 ˘ 20.61 26.92 ˘ 4.41 8.96 ˘ 1.03 8 weeks
378.25 ˘ 51.02 * 173.25 ˘ 31.01 22.68 ˘ 2.98 35.1 ˘ 5.76 12weeks

722 ˘ 37.61 * 238 ˘ 36.13 26.81 ˘ 4.09 33.65 ˘ 1.93 16 weeks
246 ˘ 37.98 251.67 ˘ 36.16 42.75 ˘ 6.25 62.21 ˘ 7.35 20 weeks
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Table 1. Cont.

Element

Concentration

Time Points
NIST 610 Bone Pellets

Tibia Maxilla

Ovx (n = 6) Sham (n = 6) Ovx (n = 6) Sham (n = 6)

Se 77 108.8 ˘ 1.02 0.0075 ˘ 0.0015 0.1026 ˘ 0.013 0.367 ˘ 0.028 0.0037 ˘ 0.00051 * 0.0025 ˘ 0.00015 8 weeks
3.8 ˘ 0.516* 0.93 ˘ 0.152 0.0049 ˘ 0.00071* 0.0043 ˘ 0.00075 12weeks
2.8 ˘ 0.17* 0.7 ˘ 0.068 0.5986 ˘ 0.851* 0.145 ˘ 0.0135 16 weeks

0.71 ˘ 0.075* 0.85 ˘ 0.121 0.2825 ˘ 0.0335* 0.1542 ˘ 0.0125 20 weeks
Sr 88 515.95 ˘ 5.1 19.575 ˘ 1.87 2.475 ˘ 0.4 2.57 ˘ 0.19 3.63 ˘ 0.46* 2.59 ˘ 0.35 8 weeks

5.625 ˘ 0.41 13.43 ˘ 0.97 4.04 ˘ 0.27* 2.41 ˘ 0.25 12weeks
12.58 ˘ 0.75* 3.34 ˘ 0.28 4.21 ˘ 0.65* 3.31 ˘ 0.24 16 weeks
8.45 ˘ 1.51* 5.39 ˘ 0.23 3.76 ˘ 0.51* 3.46 ˘ 0.45 20 weeks

Ba 137 435.05 ˘ 7.95 8.83 ˘ 0.68 0.625 ˘ 0.09 0.68 ˘ 0.13 0.525 ˘ 0.048* 0.211 ˘ 0.032 8 weeks
1.53 ˘ 0.159 3.17 ˘ 0.57 0.952 ˘ 0.11* 0.875 ˘ 0.102 12weeks
7.62 ˘ 0.73 3.88 ˘ 0.48 1.02 ˘ 0.101* 0.737 ˘ 0.11 16 weeks
3.48 ˘ 0.329 3.18 ˘ 0.47 0.94 ˘ 0.13* 0.85 ˘ 0.15 20 weeks

Pb 208 426.17 ˘ 4.97 0.0072 ˘ 0.0011 2.89 ˘ 0.298* 1.66 ˘ 0.21 0.18 ˘ 0.0157* 0.012 ˘ 0.00729 8 weeks
3.617 ˘ 0.349* 1.46 ˘ 0.05 0.291 ˘ 0.0028* 0.129 ˘ 0.0255 12weeks

8.95 ˘ 0.89* 3.55 ˘ 0.49 0.397 ˘ 0.026* 0.273 ˘ 0.013 16 weeks
12.95 ˘ 0.49* 7.533 ˘ 1.059 2.11 ˘ 0.305* 0.3654 ˘ 0.0512 20 weeks
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2.2. Ca/P Ratios of Tibia and Maxilla

LA-ICP-MS was also used to determine if there were discernible changes to Ca and P
concentrations in the tibia and maxilla of Ovx- versus sham-operated rats. The trend was towards
an increase of the Ca/P ratio in Ovx animals in both tibia and maxilla over the time course compared
to the sham group at 12, 16, and 20 weeks after the surgery (Figure 1a,b). Tibial trabecular bones from
the Ovx rats had lower Ca/P ratio values compared to the maxilla from the same animals (Figure 1c).
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Figure 1. Ca/P ratios in tibia and maxilla. (a) The Ca/P ratios decreased dramatically in the Ovx-tibia
at 12 weeks but recovered towards week 20; (b) There was an increasing trend of Ca/P ratios in
the Ovx-maxilla compared to the samples from the sham group; (c) Tibial bones from the Ovx rats
had lower Ca/P ratios compared to the maxilla from the same animals. The Ca/P ratios remained
unchanged in the Ovx-maxilla (the ratios were normalised against matrix-matched reference materials).
*: Significant difference (p < 0.05) between Ovx-tibia and Sham-tibia; **: Significant difference (p < 0.05)
between Ovx-maxilla and Sham-maxilla.

2.3. The Concentrations of Toxic Atomic Minerals, 59Co and 208Pb, in Tibia and Maxilla

The average concentrations of 59Co and 208Pb in tibia and maxilla were evaluated in this study.
The concentrations of 208Pb were higher in both tibia and maxilla from the Ovx group than the sham
group over the time course (Figure 2a,b). More importantly, the concentration of 208Pb in tibia was
greater than that in the maxilla at all time points (Figure 2c). Higher concentrations of 59Co were
detected in tibial bones of the Ovx rats at both 12 and 16 weeks compared to the controls (Figure 3a).
Furthermore, there was a significantly greater concentration of 59Co in the maxilla at both 16 and
20 weeks in the Ovx group compared to the controls (Figure 3b), and the tibia of the Ovx animals had
a higher concentration of 59Co than the maxilla from the same animals over all time points (Figure 3c).
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Figure 3. The average concentrations of 59Co in tibia (a) and maxilla (b) at different time points
post-surgery. (a,b) At 16 week, there was a higher concentration of 59Co in both tibia and maxilla in
Ovx rats compared to the sham-operated rats; and (c) comparison of 59Co concentrations in tibia and
maxilla over a time course post-surgery. *: Significant difference (p < 0.05) between Ovx-tibia and
Sham-tibia; **: Significant difference (p < 0.05) between Ovx-maxilla and Sham-maxilla.
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2.4. The Effect of Ovx on the Concentrations of 66Zn, 88Sr, and 137Ba in Tibia and Maxilla

Ovx resulted in higher levels of 66Zn in tibia at 12 and 16 weeks compared to the controls
(Figure 4a). There was a higher concentration of 66Zn in the maxilla of the Ovx group at week eight,
whereas the maxilla of the control group had higher levels of 66Zn at the other time points (Figure 4b).
In both groups tibia had higher levels of 66Zn compared to the maxilla at each time point (Figure 4c).
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Figure 4. The average concentrations of 66Zn in both tibia (a) and maxilla (b) after normalisation at
different time points post-surgery. (a) Ovx resulted in higher concentration of 66Zn in tibia at 12 and
16 weeks; (b) there was a higher concentration of 66Zn in maxilla from the Ovx rats at eight weeks, while
the sham group had a higher 66Zn concentration at the other time points; and (c) the tibia had distinctly
higher concentration of 66Zn compared to the maxilla. *: Significant difference (p < 0.05) between
Ovx-tibia and Sham-tibia; **: Significant difference (p < 0.05) between Ovx-maxilla and Sham-maxilla.

The average concentration of 88Sr in the tibia of the Ovx group was greater at 16 and 20 weeks
after surgery compared to the controls (Figure 5a). The concentration of 88Sr was higher in maxillary
bones in Ovx rats at all time points compared to the sham group (Figure 5b,c).

The concentration of 137Ba was greater in the maxilla of the Ovx group at all time points compared
with controls (Figure 6b) and in both groups the concentration of 137Ba was greater in tibia than in
maxilla at all time points (Figure 6c).
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Figure 6. (a) The effect of Ovx on the concentrations of 137Ba in tibia and (b) maxilla at different time
points post-surgery. Ovx increased the concentration of 137Ba in maxilla across all the time points; and
(c) higher concentration of 137Ba was detected in tibia than in maxilla, peaking at week 16. *: Significant
difference (p < 0.05) between Ovx-tibia and Sham-tibia; **: Significant difference (p < 0.05) between
Ovx-maxilla and Sham-maxilla.
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3. Discussion

The relationship that exists between OP and the site-dependent distribution of atomic minerals
in bone still remains unclear and is especially the case for the tibia and maxilla. In this study, Ovx
rats were used as a model to mimic the bone loss characteristic of human OP caused by estrogen
deficiency [25]. This is the first study of its kind to investigate the effects of Ovx-induced estrogen
deficiency on the distribution of atomic mineral elements in tibial and maxillary trabecular bone
using LA-ICP-MS, with the aim of mapping the site-specific chemical compositions. These results
demonstrated that the concentrations of 25Mg, 28Si, 39K, 47Ti, 56Fe, 59Co, 77Se, 88Sr, 137Ba, and 208Pb
were, on average, greater in the tibia than in the maxilla, suggesting that tibial trabecular bones are
more sensitive to changes in estrogen levels than maxillary trabecular bones. We found that the
concentrations of 28Si, 77Se, 208Pb, and Ca/P ratios were higher in osteoporotic tibia and maxilla
compared to controls at all time-points. This suggests that these minerals may have a negative effect
on the balance between bone resorption and bone formation activity.

In order to establish how Ovx affect bone quality, researchers have tended to rely on the
conventional approaches, such as histomorphometry [8,26], µCT [8,27], DEXA [28] and Raman
spectroscopy [14]. These methods do, however, fail to reveal the distributions of the inorganic and
organic elements of bone. In this study, we employed LA-ICP-MS to determine the roles of key atomic
minerals in OP. LA-ICP-MS has a spatial resolution ranging from 10 to 100 µm [23] and a detection
range as low as parts per billion [24]. These properties make LA-ICP-MS a powerful tool with which
to quantify the elements of hard tissues and allow us to get a clearer picture of the bone mineralization
processes [29–31]. In this study, bovine bone pellets were used as matrix-matched reference materials
since such pellets have a consistent element distribution that makes them a homogenous reference
material. NIST 610 glass wafers were used as an internal standard.

The ratio of Ca to P in bone has been used as an indicator for OP. Increased Ca intake has been
shown to increase bone density [32], whereas consuming excess amounts of dietary P combined with
a low Ca intake, leads to secondary hyperparathyroidism and progressive decrease in bone mineral
contents [33]. In addition, a decreased Ca/P ratio is associated with increasing bone turnover [34].
It still remains controversial whether Ovx-induced estrogen deficiency has a direct effect on Ca/P ratios.
One study, which analysed differences in the levels of Ca, P, Fe, Cu, Zn, Ni, Ca/P, and Cu/Zn between
Ovx and controls at four and eight weeks post-surgery using X-ray fluorescence, found no significant
difference in these parameters [35]. However, another study showed a gradual but significant increase
in serum Ca and P level in Ovx rats [18]. In the present study, we applied LA-ICP-MS to investigate
the concentration of elements in resin-embedded tibia and maxilla with polished smooth surfaces.
Significantly, we found that Ovx-induced estrogen deficiency led to an increase in the Ca/P ratios in
both tibia and maxilla compared with the sham-operated rats in a time-dependent manner.

Up to 94% of the body burden of Pb is found in organic or inorganic forms in bone and have
half-lives spanning from years to decades [36]. Pb is reported to inhibit Ca absorption and cellular
function, and can induce OP by inhibiting the function of vitamin D [37]. Pb has been shown in vitro
to interfere with the functioning of the Ca binding protein osteonectin in osteoblasts-like ROS 17/2.8
cells [36]. We found that the concentration of 208Pb was significantly higher in both tibia and maxilla
in the Ovx group compared to the sham group over time. Interestingly, the concentration of 208Pb
was greater in tibia compared to the maxilla at every time point. A number of recent studies show
that an accumulation of Pb in bone disturbs cellular functions, which leads to the imbalance of bone
resorption and bone formation that is characteristic of OP [38–40].

We measured 59Co at higher concentrations in the tibia (Figure 4a) and maxilla of the Ovx group
compared to the controls at both 16 and 20 weeks (Figure 3b). The toxic effect of Co has been known
since the 1970s when clinicians began reporting complications associated with cobalt-containing
prosthetic devices [41,42]. Co has been shown to affect the redox state in the osteoblasts-like
cell line MG-63, which leads to increased protein oxidation [43,44]. In the osteosarcoma cell line
Saos2, Coexposure reduces the ratio of osteoprotegerin (OPG) to receptor activator of nuclear factor
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kappa B ligand (RANKL) [45]. OPG is a decoy receptor for RANKL and in vivo the ratio between
the two determines the activation and regulation of osteoclastogenesis [46]. In the present study, the
higher level of 59Co found in the Ovx group is likely to have led to increased osteoclast activity and
contributed to the imbalance between bone formation and resorption activity that was apparent by the
induced OP in these animals.

Zn and Sr are both essential elements for normal bone growth and metabolism. Zn, for example,
is incorporated in all six classes of metalloenzymes, including the important bone enzymes alkaline
phosphatase, whereas the tartrate-resistant acid phosphatase (TRAP) enzyme is inhibited by Zn [47].
Osteoporotic patients have significantly lower serum Zn concentrations and higher urine Zn
concentrations compared to osteoarthritic patients. The latter could be due to higher bone resorption
but it may also be due to lower renal Zn reabsorption which would result in an overall loss of Zn [48].
Our study showed evidence of a Zn deficiency in the maxillary bone of the Ovx rats and suggests
a causal relationship with the osteoporotic state of these animals. Sr has garnered considerable attention
as an anti-OP agent since it was discovered to have potent inhibitory effects on bone resorption [49].
In a study similar to ours, Ovx rats, when treated with the Sr salt S12911, maintained a bone dry
and ash weight similar to sham controls. Other measures of bone formation, such as plasma alkaline
phosphatase (ALP) and osteocalcin, were also elevated or even increased in Ovx rats following S12911
treatment [50]. In the present study, the level of Sr in osteoporotic tibial bone was generally higher
than in the osteoporotic maxillary bone. However, there was higher concentration of Sr detected
in the maxilla from the Ovx group compared with the sham group at all time points post-surgery.
This difference in the distribution between tibia and maxilla needs further investigation.

Ba is a divalent metal with properties similar to Ca and has no known biological role. In general,
Ba2+ ions are toxic or inhibitory to cellular processes and in humans the lethal dose of BaCl2 is
800–900 mg. The chemical property of Ba allows it to readily compete with and replace Ca in bone,
which may lead to OP. Environmental Ba in water or animal food can impair Ca metabolism [51]
and it has been estimated that there is a ten-fold skeletal accumulation of Ba from the second to
the eighth decade of life in humans [52]. Ba titanate is a piezoelectric ceramic that has been shown
to promote osteogenesis and which, paradoxically, appears to have good tissue compatibility [53].
Bone is naturally a piezoelectric material which is caused by collagen fibres slipping past one another.
This creates electrical dipoles that attract Ca2+ and PO4

3´ to opposite electrical charges and which
stimulate bone growth. The piezoelectric coefficient of hydroxy-apatite/barium titanate (HA/BT)
are comparable with those of cancellous bone and appears to have no cytotoxic effects [54]. In our
study we found a greater amount of Ba in osteoporotic bone compared to the controls and further
demonstrated that there was a higher concentration of 137Ba detected in tibia than in maxilla in every
time point. In the context of this study, this suggests that Ba was involved in the imbalance between
bone formation and bone resorption in the Ovx animals.

4. Materials and Methods

4.1. Animals

Sprague-Dawley female rats (three months old, n = 48) were used in the study, which had the
approval of the Animal Ethics Committees of Queensland University of Technology and Griffith
University. One group of rats underwent sham operations (Sham, n = 24) whereas the other group
underwent bilateral Ovx, n = 24, as described previously [8,55]. Briefly, ligatures were placed at the
end of fallopian tube to exteriorize the ovaries of the Ovx group. The sham operation consisted of
removing fat tissue near the ovaries of approximately the same size. At weeks eight, twelve, sixteen,
and twenty post-surgery, six rats from each group were sacrificed with an overdose of ketamine.
Tibial and maxillary bones were harvested from each animal and fixed in 4% paraformaldehyde
(PFA, Sigma-Aldrich, Castle Hill, NSW, Australia) for 24 h. The specimens were dehydrated in
a series of graded alcohols and embedded in an acrylic resin (Technovit 7200, Heraeus Kulzer GmbH,
Wehrheim, Germany).
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4.2. LA-ICP-MS Analysis for Tibia and Maxilla Bones

The atomic element distributions in the resin-embedded tibia and maxilla were analysed
using the glass matrices NIST SRM 612 and 610 (National Institute of Standards and Technology,
Gaithersburg, MD, USA) as external calibration standards. In this study, we used bovine bone pellets
as matrix-matched reference materials to further calibrate the element concentrations, as described
previously [56]. For LA-ICP-MS, we used an Agilent 8800 single collector, quadrupole ICP-MS (Agilent
Technologies Inc., Santa Clara, CA, USA) with a 193 nm wavelength excimer laser and 2-volume
Trueline ablation cell from ESI New Wave Research (Bozeman, MT, USA). Parameters, such as gas
flows and repetition rate, were optimized for laser ablation analysis. The resin samples and NIST
standards were secured in the laser sample chamber, in which Helium (He) was used as a carrier gas
and was repeatedly evacuated and back-filled with He to eliminate changes to the gas composition
(air + He) from the introduction system. The laser was set to a modest energy output generating
a fluence of 3.0 J/cm2, and a pulse rate of 10 Hz. A masked rectangular beam of 15 ˆ 150 µm was
moved parallel to the short dimension at 5 µm/s to create a track approximately 750 µm long and
15 µm deep in the tissues as shown in Figure 7. ICP-MS operating parameters were summarized in
Table 2. The time to cycle through the nine selected isotopes was 0.12 s. Scans of varying duration
were bracketed by 50 s of background (laser-off) data acquisition. Data were analysed and displayed
using IOLITE [57].
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Table 2. Operation parameters for LA-ICP-MS.

Parameters Values

RF power 1550 W
Sampling depth 5 mm

Sample (argon) flow 0.85 L/min
Isotopes measured 12C, 13C, 23Na, 29Si, 31P, 39K, 43Ca, 47Ti, 56Fe, 59Co, 66Zn, 77Se, 88Sr, 137Ba, 208Pb

Dwell time per isotope 0.02 s

After the samples were secured in the ablation chamber, the whole system was purged with
He carrier gas at 0.5 L¨ min´1 for 3 h prior to each measurement to minimise noise from the 13C
background. In addition, a background signal was collected during the first 30 s of analysis.

4.3. Data Analysis

The data were processed using the SPSS software (SPSS Inc., Chicago, IL, USA). The element
concentrations determined for each sample were displayed with mean ˘ SD (standard
deviation) values.

5. Conclusions

In summary, we applied LA-ICP-MS to investigate the profile of key atomic mineral elements in
osteoporotic rat bones and unveiled changes to the concentrations of mineral elements in both tibial
and maxillary bones in a site-specific and time-dependent manner. Our findings provide a fundamental
overview of metallic and non-metallic elements in Ovx-induced osteoporotic bone which will help the
understanding of bone strength.
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Abbreviations

ALP Alkaline phosphatase
µCT micro computed tomography
DEXA dual-energy X-ray absorptiometry
LA-ICP-MS laser ablation inductively coupled plasma mass spectrometry
OP osteoporosis
OPG osteoprotegerin
Ovx ovariectomy
RANKL receptor activator of nuclear factor kappa B ligand
TRAP tartrate-resistant acid phosphatase
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