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Abstract: Endothelin-1 (ET-1) is one of the most potent vasoconstrictors known to date. While its
plasma or serum concentrations are elevated in some forms of experimental and human hypertension,
this is not a consistent finding in all forms of hypertension. Matrix metalloproteinases -2 and -9
(MMP-2 and MMP-9), which degrade collagen type IV of the vascular basement membrane, are
responsible for vascular remodeling, inflammation, and atherosclerotic complications, including in
type 2 diabetes (T2D). In our study, we compared concentrations of ET-1, MMP-2, and MMP-9 in
pre-hypertensive (PHTN) and hypertensive (HTN) T2D patients with those of healthy normotensive
controls (N). ET-1, MMP-2, and MMP-9 were measured by ELISA. Concentrations of ET-1 in PHTN
and N were very similar, while those in HTN were significantly higher. Concentrations of MMP-2
and MMP-9 in PHTN and HTN were also significantly higher compared to N. An interesting
result in our study is that concentrations of MMP-2 and MMP-9 in HTN were lower compared to
PHTN. In conclusion, we showed that increased production of ET-1 in patients with T2D can lead
to long-lasting increases in blood pressure (BP) and clinical manifestation of hypertension. We also
demonstrated that increased levels of MMP-2 and MMP-9 in pre-hypertensive and hypertensive
patients with T2D mainly reflect the early vascular changes in extracellular matrix (ECM) turnover.

Keywords: pre-hypertension; type 2 diabetes; endothelin-1; matrix metalloproteinases-2; matrix
metalloproteinases-9; vascular remodeling

1. Introduction

Endothelin-1 is one of the most potent vasoconstrictors known in humans to date [1]. Although,
different types of cells, including cardiac myocytes, vascular smooth muscle cells (VSMCs), fibroblasts,
or epithelial cells are able to synthesize and release ET-1, the most important biological source is the
vascular endothelium [2]. ET-1 is secreted primarily from the endothelial cells and influenced of the
underlying VSMCs. Considering that approximately 80% of the total amount of ET-1 synthesized
by endothelial cells is released toward the basolateral side of cells, tissue levels are higher than
plasma levels. Thus, ET-1 acts primarily as a paracrine/autocrine peptide, and not as a circulating
hormone [3]. Except through impact on vascular tone, ET-1 is involved in the complex regulation of
BP through effects on renal hemodynamics and water-salt balance, influence on adrenal aldosterone,
and catecholamine production, it also participates in the central and baroreceptor regulation and
has positive inotropic effects on the heart [4]. In addition, ET-1 potentiates the action of other
vasoconstrictors, such as angiotensin II (Ang II), phenylephrine, and serotonin [5].
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The role of ET-1 and its receptors in the regulation of BP and in the pathogenesis of hypertension is
not clearly established. For instance, while the plasma or vascular levels are elevated in some forms of
experimental and human hypertension, this is not a consistent finding in all forms of hypertension [6,7].
Several reports suggested that patients with hypertension have elevated levels of ET-1. However,
many other studies reported no difference of ET-1 levels between normotensive and hypertensive
subjects [4]. An increased level of ET-1 has been demonstrated in some animal models of diabetes.
Similarly, elevated levels of ET-1 have been reported in patients with diabetes, a finding not confirmed
by all reports [8].

The role of MMPs in the process of vascular remodeling is extensively discussed [9–12]. Vascular
remodeling is permanent process of structural changes in the vessel wall in response to hemodynamic
stimulus [13]. In various forms of hypertension, including in human essential hypertension, resistance
arteries undergoing inward remodeling, while larger vessels show hypertrophy [14–16]. MMP-2 and
MMP-9, which degrade type IV collagen of the vascular basal membrane [17] are between most
investigated MMPs and they play an essential role in the remodeling process [12,18,19]. MMP-2 and
MMP-9 are secreted by a variety vascular and non-vascular cell types, such as endothelial cells,
podocytes, fibroblasts, and myofibroblasts, macrophages formed by monocytes, as well as by resident
tissue macrophages [20]. They are responsible for vascular remodeling, angiogenesis, inflammation,
and atherosclerotic complications [21]. MMP-2 may participate in the pathogenesis of hypertension
and through direct interaction with vasoactive peptides. For example, it could cleave big ET-1 to active
ET-1, which have higher vasoconstrictor activity [22].

In patients with hypertension, it has been found that the plasma levels and activity of MMP-2 and
MMP-9 can be increased [23–25], decreased [26–28], or unchanged [13,29,30]. The difficulty in finding
precise correlations between activity/levels of MMPs in hypertension may depend largely on the
impact of antihypertensive medications [31], as well on the clinical stage of patients who are assessed.
Additionally, high blood glucose levels in diabetics induces disregulation of the MMPs/TIMPs system,
which significantly upsets the balance between synthesis and degradation of vascular extracellular
matrix (ECM) [32,33].

Based on the above, we tested serum concentrations of ET-1, MMP-2, and MMP-9 in pre-hypertensive
and hypertensive patients with T2D, to clarify if there link between their levels and BP values.

2. Results

2.1. Serum Concentrations of Endothelin-1 (ET-1) in the Groups

Concentrations of ET-1 were significantly higher in HTN 6.64 ˘ 5.36 pg/mL compared to PHTN
3.52 ˘ 2.29 pg/mL (F = 4.41, p < 0.05) and N 3.55 ˘ 1.78 pg/mL (F = 4.56, p < 0.05), but this difference
was not observed between PHTN and N (F = 0.00, p > 0.05). Concentrations of ET-1 in PHTN and N
are very similar, while those in HTN are significantly higher (Figure 1). These results show a possible
connection between increased circulating ET-1 levels and clinical manifestation of arterial hypertension
in patients with T2D. This is probably a consequence by dysmetabolic vascular changes leading to
increased production of ET-1 and intensification of its pro-oxidant/pro-inflammatory effects and
vasoconstrictor activity.
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Figure 1. Serum concentrations of Endothelin-1 (ET-1) in pre-hypertensive (PHTN)/hypertensive 
(HTN) patients with T2D and healthy normotensive controls (N). 

2.2. Serum Concentrations of Matrix Metalloproteinase-2 (MMP-2) in the Groups 

Concentrations of MMP-2 in PHTN 38.31 ± 9.12 ng/mL and HTN 36.22 ± 9.56 ng/mL were 
significantly higher compared to N 27.62 ± 6.94 ng/mL (F = 12.71, p < 0.002 and F = 8.41, p < 0.007) 
(Figure 2). Despite the fact that there were no statistical differences between PHTN and HTN  
(F = 0.39, p > 0.05), it is noteworthy that, in HTN, concentrations of MMP-2 are lower. This indicates 
that the balance between synthesis and degradation of ECM proteins in the vascular wall is 
developing dynamically over time. Probably, the expression of MMP-2 is induced at the beginning 
of the hypertensive process and its increased levels are mainly reflecting the early changes in ECM 
vascular turnover, provided that no significant vascular complications exist. 
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Figure 2. Serum concentrations of MMP-2 in PHTN, HTN, and N. 

2.3. Serum Concentrations of MMP-9 in the Groups 

Concentrations of MMP-9 in PHTN 49.60 ± 12.37 ng/mL and HTN 35.55 ± 10.25 ng/mL were 
significantly higher compared to N 21.86 ± 7.47 ng/mL (F = 59.35, p < 0.0001 and F = 19.78, p < 0.0002). 
There were also statistical differences between PHTN and HTN, as it should be noted that, in HTN, 

Figure 1. Serum concentrations of Endothelin-1 (ET-1) in pre-hypertensive (PHTN)/hypertensive
(HTN) patients with T2D and healthy normotensive controls (N).

2.2. Serum Concentrations of Matrix Metalloproteinase-2 (MMP-2) in the Groups

Concentrations of MMP-2 in PHTN 38.31 ˘ 9.12 ng/mL and HTN 36.22 ˘ 9.56 ng/mL were
significantly higher compared to N 27.62 ˘ 6.94 ng/mL (F = 12.71, p < 0.002 and F = 8.41, p < 0.007)
(Figure 2). Despite the fact that there were no statistical differences between PHTN and HTN (F = 0.39,
p > 0.05), it is noteworthy that, in HTN, concentrations of MMP-2 are lower. This indicates that the
balance between synthesis and degradation of ECM proteins in the vascular wall is developing
dynamically over time. Probably, the expression of MMP-2 is induced at the beginning of the
hypertensive process and its increased levels are mainly reflecting the early changes in ECM vascular
turnover, provided that no significant vascular complications exist.
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2.3. Serum Concentrations of MMP-9 in the Groups

Concentrations of MMP-9 in PHTN 49.60 ˘ 12.37 ng/mL and HTN 35.55 ˘ 10.25 ng/mL were
significantly higher compared to N 21.86 ˘ 7.47 ng/mL (F = 59.35, p < 0.0001 and F = 19.78, p < 0.0002).
There were also statistical differences between PHTN and HTN, as it should be noted that, in HTN,
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concentrations of MMP-9 were significantly lower (F = 11.95, p < 0.002) (Figure 3). MMP-9, similar
to MMP-2 is induced at the early stages of hypertension, and this is probably favorable to alleviate
the initial vascular tensile stress. Later, the effects of MMP-2 and MMP-9 are counterbalanced by
expression of tissue inhibitors of MMPs (TIMPs) and their concentrations began to decline.
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Figure 3. Serum concentrations of MMP-9 in PHTN, HTN, and N. 

3. Discussion 

The results of our study demonstrate that concentrations of ET-1 in PHTN are very similar with 
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effects of ET-1 in relation to BP, because increased levels correlated with contractions in aortas from 
young rats, but not from old rats [38]. An age-associated increase in arterial pressure is a clinical 
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3. Discussion

The results of our study demonstrate that concentrations of ET-1 in PHTN are very similar
with those in N. This is not surprising, because elimination of ET-1 from the blood occurs rapidly.
Additionally, the secretion of ET-1 from endothelial cells is polarized mainly toward the underlying
VSMCs, which leads to a minimal increase of its circulating levels [6] in PHTN. On the contrary, it
can be supposed that concentrations of ET-1 in HTN are significantly higher, which is supported
by our experimental data. To exclude the influence of age and sex as factors in the analysis of
the data is correct to clarify that concentrations of ET-1 do not show significant gender [34] and
age differences. A number of studies of Donato et al., show that in healthy adults, plasma ET-1
concentrations either increase modestly or do not change with aging [35]. According to other
authors, plasma ET-1 concentrations increase with age in some adults [36], as this process may
be reversible after chronic exercise training [37]. Experimental data in rodent models do not show
significant age-specific effects of ET-1 in relation to BP, because increased levels correlated with
contractions in aortas from young rats, but not from old rats [38]. An age-associated increase in arterial
pressure is a clinical hallmark of aging and results from joint effects of multiple factors, including,
intimal-medial thickening, arterial pro-inflammatory responses, and vasoconstriction from Ang II and
ET-1 effects [39]. Similar to our results, according to which plasma concentrations of ET-1 have been
significantly higher in hypertensive patients with T1D and T2D compared to controls, are reported by
Schneider et al. [40]. In keeping with this, it can be supposed that there is a possible connection between
increased circulating levels of ET-1 and the development of hypertension in patients with T2D. This is
probably the result of its enhanced vasoconstrictor, pro-oxidative, and pro-inflammatory action as a
consequence of diabetes-related vascular changes. ET-1 is linked to the pathogenesis of hypertension
by means of low-grade vascular inflammation [41,42] and oxidative stress at the vascular wall [43–45].
Low-grade inflammation localized in the vascular tissue is an important factor in the pathophysiology
of hypertension [46]. ET-1 can activate the macrophages, which result in the release of pro-inflammatory
and chemotactic mediators, such as TNF-α, IL-1, IL-6, and IL-8 [47–49]. Overexpression of ET-1 is
associated with an inflammatory response, increased activation of NF-κB and the expression of several
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proinflammatory cytokines, such as TNF-α, IL-1, and IL-6 [50]. In turn, this transcription factor,
and pro-inflammatory cytokines, can stimulate the production of ET-1 [51], and this could lead to
increased BP [52–54]. The relationship between oxidative stress in the vessel wall and the development
of hypertension is shown in many experimental models, including in human hypertension [55–58].
Various research supports the role of ET-1 in the formation of reactive oxygen species (ROS) and
its relationship with oxidative stress and endothelial dysfunction in humans. ET-1 stimulates the
production of ROS in human endothelial and vascular smooth muscle cell cultures [59,60], as well
as in isolated vessels [61–63]. It is assumed that the main mechanism for the increased production
of ROS in hypertension is increased expression of vascular NADPH oxidase [44,64–66]. Increased
production of ROS in the vascular wall leads to activation of NF-κB. This, in turn, stimulates the
synthesis of pro-inflammatory cytokines, chemokines, and adhesion molecules, which are associated
with the development of vascular inflammatory response [67]. Thus, inflammation and oxidative
stress form a vicious cycle in the development of endothelial dysfunction, which is implemented with
active participation of ET-1. Elevated ET-1 levels may suppress NO synthesis in the endothelium [68].
One general observation, made in almost all studies, investigating endothelin receptor blockade and
vascular function in animal models of hypertension, hypercholesterolemia, or atherosclerosis, is that
long-term treatment with ETA receptor antagonists, improves endothelium-dependent NO-mediated
vasodilation [69]. ET-1 causes insulin resistance and may participate in the pathogenesis of the
metabolic syndrome [68]. Blockade of ET-1 signaling, improves vasodilation in diabetes and reduces
insulin resistance [70]. Given the all vascular and extravascular effects of ET-1 taken together, we
hypothesize that increased production of ET-1 in patients with T2D can lead to a long-lasting increase
in blood pressure and clinical manifestation of hypertension.

In our study, we observed that, in PHTN, concentrations of MMP-2 and MMP-9 were significantly
higher compared to N. Similar results are reported by Derosa et al., who found that the levels of MMP-2,
MMP-9, and TIMP-1 are increased in patients with hypertension [23], as well as in patients with
T2D [71]. Increased concentrations of MMP-9 in hypertensive patients with T2D have been reported
earlier, also from other researchers [72–74]. An interesting result in our study is that concentrations of
both metalloproteinases in HTN were also significantly higher compared to N, but lower compared
to PHTN. In keeping with this, we hypothesize that MMP-2 and MMP-9 are induced at the early
stages of the hypertension, and this is probably favorable for alleviation of the initial vascular tensile
stress. Long-term effects of MMP-2 and MMP-9 in the vessel wall are counterbalanced by expression
of TIMPs and their concentrations begin to decline [75–77], and may even be reduced in comparison
to those of the control group. Reasons for this conclusion, given our data from a previous study
which showed that the concentrations of MMP-9 in patients with mild, and especially with severe,
hypertension are reduced significantly, compared to those of controls [78]. Similar results are reported
by Zervoudaki et al., who observed a significant decrease of plasma levels of MMP-2 and MMP-9
in patients with essential hypertension in comparison with normotensive persons [28]. Li-Saw-Hee
and coauthors also reported that the proteolytic activity of MMP-9 is suppressed in hypertensive
patients [27]. The reduced concentration of MMP-9 in hypertension is associated with a decrease in
the total activity of MMP-9, resulting in the accumulation of collagen in vascular wall of resistive
arteries, reduction in their elasticity, and progression of hypertension [11]. Discrepancies between the
data about MMP-2 and MMP-9 in different studies could be explained, considering that the balance
between synthesis and degradation of ECM in hypertension is changing dynamically over time, and
that production of MMPs are induced only for a certain period after the start of hypertension [76].
Elevated levels or activity of MMPs may indicate early changes in vascular ECM turnover, which
later leads to the increase in arterial stiffness [58]. In the debut of hypertension, increased MMP
expression is related to increasing arterial elasticity ex vivo [79] and in vivo [75]. Thus, the vascular
wall normalizes the tensile stress and, in the short term, counteracts the increased BP. At this stage,
MMPs are key players in ECM degradation. However, in the long-term, ECM proteins are synthesized
again and they form new connections each other. This violates the beneficial effects of the initial
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remodeling process and ultimately leads to increased arterial stiffness [12]. It should be noted that, in
comparison with the general population, atherosclerosis in patients with T2D is manifested earlier,
and it may be more generalized and severe. Significantly higher serum concentrations of MMP-2
and MMP-9 are found in patients with T2D and atherosclerosis [74]. Overexpression of MMP-2 and
MMP-9 in diabetic atherosclerotic plaques may increase their vulnerability which, in turn, increases
the risk of ischemic cardiovascular events [80]. Furthermore, a chronic increase in MMP activation is
central to age-associated arterial structural remodeling [81]. Throughout aging, the balance between
MMPs and their inhibitors is changing [82] and MMP-2/-9 expression and activity are increased in
vascular walls [83,84]. Typical vascular diseases such as hypertension and atherosclerosis also could
be viewed as accelerated arterial aging and they are also linked to increased MMP activation [81].
Violation of the physiological balance between MMPs/TIMPs has been confirmed in early stages of
diabetic retinopathy [73] and nephropathy [72,85]. Therefore, increased levels of MMP-2 and MMP-9
in pre-hypertensive and hypertensive patients with T2D, reflect mainly the early changes in ECM
vascular turnover, provided that there are no significant vascular complications.

4. Materials and Methods

4.1. Study Population and Design

The study was approved by the University Ethics Committee and conducted in accordance with
the Declaration of Helsinki. Written informed consent was obtained from all subjects. The study
population was consisted of 60 persons: 40 prehypertensive and hypertensive T2D patients treated
at the University Hospital Georgi Stranski, Pleven, and 20 healthy normotensive individuals.
Three groups were formed: Group I (n = 20): normotensive controls (N); Group II (n = 20):
pre-hypertension group (PHTN); and Group III (n = 20): hypertension group (HTN). Clinical
characteristics of each group are shown in Table 1.

Table 1. Clinical characteristics of the groups in whole study population.

Variables
All Groups (n = 60)

N PHTN HTN

(n = 20) (n = 20) (n = 20)

Men, n (%) 9 (45.0) 7 (35.0) 8 (40.0)
Women, n (%) 11 (55.0) 13 (65.0) 12 (60.0)

Mean age, years 1 35.4 (19.0–56.0) 60.2 (46.0–79.0) 66.9 (45.0–89.0)
Duration of T2D 1 N/A 2 9.8 (1.0–34.0) 12.1 (2.0–22.0)

HbA1c (%) 1 N/A 7.0 (5.4–13.3) 8.0 (5.3–11.4)
BMI, kg/m2 1 25.0 (22.0–28.0) 28.7 (24.0–35.0) 28.0 (24.0–34.0)
SBP, mmHg 1 119.0 (95.0–125.0) 136.6 (130.0–140.0) 156.7 (150.0–185.0)
DBP, mmHg 1 80.5 (70.0–85.0) 79.5 (70.0–90.0) 87.0 (75.0–100.0)
TC, mmol/L 1 3.9 (3.5–4.2) 5.3 (4.0–8.1) 5.2 (3.1–9.5)

LDL–C, mmol/L 1 2.5 (1.8–3.0) 3.3 (1.6–6.5) 3.0 (1.3–4.8)
HDL–C, mmol/L 1 1.2 (1.0–1.5) 0.9 (0.5–1.5) 0.9 (0.4–1.6)

TG, mmol/L 1 1.3 (1.2–1.5) 2.5 (1.3–4.8) 2.0 (1.0–4.0)
CRP, mg/L 1 1.1 (0.3–3.5) 8.0 (0.7–23.3) 8.3 (1.0–23.9)

1 Mean (range); 2 N/A, not available.

4.2. Immunological and Laboratory Testing

All laboratory determinations were obtained after a 12 h fast. To measure ET–1, MMP-2, MMP-9,
and other laboratory parameters, blood was drawn into serum tubes. Serum was obtained after
centrifugation at 1500 rpm for 15 min, and then stored at ´80 ˝C until assayed.



Int. J. Mol. Sci. 2016, 17, 1182 7 of 13

4.2.1. Immunological Testing

Indirect ELISA for Determination of ET-1

To measure ET-1, an ELISA kit from Biomedica Medizinprodukte GmbH and Co. KG,
Divischgasse 4, A-1210 Wien, Austria (cat. No. BI-20052) was used. According to the manufacturer’s
instructions, to each well-plate 50 µL tested sera or standard was added at various concentrations to
construct a calibration curve. Then 200 µL of detection antibody was added to each well and incubated
for 16–24 h at room temperature. After this period, plates were washed five times with 300 µL diluted
wash buffer per well. After the last wash, 200 µL of conjugate was added to each well and incubated
for 1 h at room temperature. The plate was washed again five times with 300 µL washing buffer, in
each well 200 µL substrate was added and incubated for 30 min in the dark. The reaction was stopped
with 50 µL of stop solution. The serum samples were assayed at 450 nm on an automatic micro-ELISA
plate reader (Ceres UV 900 C, BioTek Instruments Inc., Winooski, VT, USA) at the Immunological
Laboratory of Biology Department of Medical University, Pleven.

Indirect ELISA for Determination of MMP-2

To measure MMP-2, an ELISA kit from R and D Systems (cat. No. DMP2F0) (Minneapolis, MN,
USA) was used. According to the manufacturer’s instructions, 100 µL of assay diluent RD1-74 was
added to each well-plate , then 50 µL tested sera, diluted 1:10 with calibrator diluent RD5-32 (20 µL
serum + 180 µL calibrator diluent) or standards was added at various concentrations to construct
a calibration curve. After 2 h downtime at room temperature on a shaker, plates were washed three
times with 400 µL wash buffer per well. After the last wash 200 µL of conjugate was added to each well
and incubated for 2 h at room temperature on a shaker. The plate was washed again three times and in
each well 200 µL substrate solution was added. This was incubated for 30 min at room temperature in
the dark. The reaction was stopped with 50 µL of stop solution, and the color in the wells changed from
blue to yellow. Within 30 min the serum samples were assayed at 450 nm on an automatic micro-ELISA
plate reader (Ceres UV 900 C, BioTek Instruments Inc., Winooski, VT, USA) at the Immunological
Laboratory of Biology Department of Medical University, Pleven.

Indirect ELISA for Determination of MMP-9

To measure MMP-9 an ELISA kit from R and D Systems (cat. No. DMP900) (Minneapolis, MN,
USA) was used. According to the manufacturer’s instructions, to each well-plate 100 µL of assay
diluent RD1-34 was added, then 100 µL tested sera, diluted 1:100 with calibrator diluent RD5-10 (10 µL
serum + 990 µL calibrator diluent), or standards, was added at various concentrations to construct
a calibration curve. After 2 h downtime at room temperature on a shaker, plates were washed three
times with 400 µL wash buffer per well. After the last wash 200 µL anti-MMP-9 antibody conjugated
with peroxidase and was incubated for 1 h at room temperature on a shaker. The plate was washed
again three times was added and in each well 200 µL substrate solution was added. This was incubated
for 30 min at room temperature in the dark. The reaction was stopped with 50 µL of stop solution, and
the color in the wells changed from blue to yellow. Within 30 min the serum samples were assayed at
450 nm on an automatic micro-ELISA plate reader (Ceres UV 900 C, BioTek Instruments Inc., Winooski,
VT, USA) at the Immunological Laboratory of Biology Department of Medical University, Pleven.

4.2.2. Biochemical Assays

Enzymatic methods were used to measure of total cholesterol (TC), low-density lipoprotein
cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglyceride (TG). C-reactive
protein (CRP) and glycated haemoglobin (HbA1c) were measured by a turbidimetric immunoassay.
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4.3. Blood Pressure Classification and Measurements

4.3.1. Blood Pressure Classification

The definitions of pre-hypertension (PHTN) and hypertension (HTN) were adopted according
2013 European Society of Cardiology (ESC)/ European Society of Hypertension (ESH) Hypertension
Guidelines. PHTN, also known as high-normal BP was defined as systolic blood pressure (SBP)
between 130 and 139 mmHg and/or diastolic blood pressure (DBP) between 85 and 89 mmHg.
HTN was defined as SBPě 140 mmHg and/or DBPě 90 mmHg, or if the patients have been diagnosed
or had taken antihypertensive drugs at any time during the preceding six months. Normal BP was
defined as SBP between 120 and 129 mmHg and/or DBP between 80 and 84 mmHg.

4.3.2. Blood Pressure Measurements

BP was measured using a standard cuff mercury sphygmomanometer on the left arm in a sitting
position, after 5–10 min rest. All patients and control persons were subjected of three BP measurements.
The average of the last two of three consecutive measurements was considered as the baseline BP.

4.4. Physical Measurements

Body mass index (BMI) was calculated, using the standard metric BMI formula (kg/m2).
BMI between 18.5 and 24.9 was considered normal, 25 to 29.9 was considered overweight, and
equal to or higher than 30 was considered obese.

4.5. Statistical Methods

Statgraphics Centurion XVI software (Statpoint Technologies, Inc., Warrenton, VA, USA) was
used for statistical analyses. The significance of the differences between groups was assessed by
Fisher’s F-test (ANOVA). The data are represented as means ˘ SD and p < 0.05 was considered
statistically significant.

5. Conclusions

Hypertension is present in a high proportion of patients with T2D and enhances the risk of
cardiovascular disease. Our results support a possible pathogenetic role of ET-1 in hypertension
associated with T2D. We showed that increased serum concentrations of ET-1 in patients with T2D may
assist clinical manifestation of hypertension. Endothelin receptor antagonists (ERAs) are a promising
new and innovative drug class, which may have a particular role in the treatment of hypertension as
part of the metabolic syndrome or T2D. We also demonstrated that increased concentrations of MMP-2
and MMP-9 in pre-hypertensive and hypertensive patients with T2D may indicate early changes in
vascular ECM turnover which, over time, leads to the increase in arterial stiffness. Although, our
findings should be confirmed in a larger prospective study, they have an important clinical implication,
since it allows making an early assessment of patients with increased cardiovascular risk and allowing
the earliest possible start of antihypertensive treatment, when the vascular remodeling process is still
reversible. Further research is needed to investigate how glycemic control and antihypertensive drug
therapy can affect concentrations of ET-1, MMP-2, MMP-9, and TIMPs, and what the relationship is of
these molecules with the pathogenesis of hypertension in T2D.
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Abbreviations

BP Blood pressure
SBP Systolic blood pressure
DBP Diastolic blood pressure
T2D Type 2 diabetes
ET-1 Endothelin-1
Ang II Angiotensin II
MMP-2 Matrix metalloproteinase-2
MMP-9 Matrix metalloproteinase-9
MMPs Matrix metalloproteinases
TIMPs Tissue inhibitors of MMPs
VSMCs Vascular smooth muscle cells
ECM Extracellular matrix
PHTN Pre-hypertension group
HTN Hypertension group
N Normotensive controls
ROS Reactive oxygen species
NF-kB Nuclear factor-kappa B
TNF-α Tumor necrosis factor-alpha
IL-1 Interleukin-1
IL-6 Interleukin-6
IL-8 Interleukin-8
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