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Abstract: Background: The incidence of fungal infections, especially those caused by Candida yeasts,
has increased over the last two decades. However, the indicated therapy for fungal control
has limitations. Hence, medicinal plants have emerged as an alternative in the search for new
antifungal agents as they present compounds, such as essential oils, with important biological
effects. Published data demonstrate important pharmacological properties of the essential oil of
Cymbopogon nardus (L.) Rendle; these include anti-tumor, anti-nociceptive, and antibacterial activities,
and so an investigation of this compound against pathogenic fungi is interesting. Objective:
The aim of this study was to evaluate the chemical composition and biological potential of essential
oil (EO) obtained from the leaves of C. nardus focusing on its antifungal profile against Candida species.
Methods: The EO was obtained by hydrodistillation and analyzed by gas chromatography-mass
spectrometry (GC-MS). Testing of the antifungal potential against standard and clinical strains
was performed by determining the minimal inhibitory concentration (MIC), time-kill, inhibition of
Candida albicans hyphae growth, and inhibition of mature biofilms. Additionally, the cytotoxicity
was investigated by the IC50 against HepG-2 (hepatic) and MRC-5 (fibroblast) cell lines. Results:
According to the chemical analysis, the main compounds of the EO were the oxygen-containing
monoterpenes: citronellal, geranial, geraniol, citronellol, and neral. The results showed important
antifungal potential for all strains tested with MIC values ranging from 250 to 1000 µg/mL, except
for two clinical isolates of C. tropicalis (MIC > 1000 µg/mL). The time-kill assay showed that the
EO inhibited the growth of the yeast and inhibited hyphal formation of C. albicans strains at
concentrations ranging from 15.8 to 1000 µg/mL. Inhibition of mature biofilms of strains of C. albicans,
C. krusei and C. parapsilosis occurred at a concentration of 10ˆMIC. The values of the IC50 for the EO
were 96.6 µg/mL (HepG-2) and 33.1 µg/mL (MRC-5). Conclusion: As a major virulence mechanism
is attributed to these types of infections, the EO is a promising compound to inhibit Candida species,
especially considering its action against biofilm.
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1. Introduction

Candida species have been a problem in human clinical practice due to the significant increase in
cases of infection, especially in immunocompromised patients. The immune status of the host, the use
of broad-spectrum antibiotics and corticosteroids, transplants, long-term intravascular and urethral
catheters, and parenteral nutrition, are mentioned as risk factors in the development and increased
incidence of fungal infections [1].

Candida species can develop on mucous membranes of the human body; this is associated with
various types of diseases ranging from mucocutaneous overgrowth to disseminated infections [2].
Although the C. albicans is the prevalent species in candidemia, other species, such as C. krusei,
C. glabrata, C. tropicalis, and C. parapsilosis, have been observed [3].

The ability of Candida species to cause disease is mainly related to mechanisms involving different
virulence factors that include the morphological transition between yeast and hyphae, ability to
defend themselves against the host immune system, adhesion, biofilm formation on host tissue or on
medical devices, and production of harmful enzymes, such as hydrolytic proteases, phospholipases,
and hemolysin [4].

Several antifungal agents have been indicated in the treatment of these infections, including those
belonging to the polyenic, azole, and echinocandin classes; however, due to the indiscriminate use
of these antimicrobial medications and physiological characteristics of the fungus, there has been a
significant increase in resistance. Furthermore, the high toxicity, drug interactions, and insufficient
bioavailability of active ingredients contribute to therapeutic failure [5].

Essential oils (EOs) from plants may be alternative bioactive compounds with antifungal
properties because of the presence of secondary metabolites, such as tannins, terpenes, alkaloids,
and flavonoids, etc. [6,7].

The genus Cymbopogon of the Poaceae family has been investigated for its pharmacological
potential. Cymbopogon nardus (L.) Rendle, popularly known as citronella, is a grass cultivated in
subtropical and tropical regions of Asia, Africa, and America, including Brazil [8]. The EO of the leaves
of C. nardus is commonly used in perfumes, the production of cosmetics, and as an insect repellent.
The major chemical constituents are geraniol, citral, citronellal, and citronellol [9]. Studies have
demonstrated the antiviral [10], antibacterial [11], and antifungal activities [12] of this oil.

The EO is a complex mixture of monoterpene and sesquiterpene hydrocarbons (10 and 15 carbon
atoms, respectively), and their oxygenated derivatives such as alcohols, aldehydes, and ketones,
phenylpropanoids, and other minor compounds [13]. EOs are also called volatile oils or ethereal oils,
as they have a high degree of evaporation when exposed to air at room temperature; this feature
confers the strong odor to plants, both to attract pollinators and to repel insects and herbivores [14].

EOs are important in several areas of science, especially in combatting pathogenic or opportunistic
microorganisms [15,16]. The presence of terpenes, as one of the chemical compounds in EO, contributes
to the complex constitution with the action against microorganisms being directly related to this
characteristic [17].

The antimicrobial potential demonstrated by terpenes (e.g., monoterpenes) is attributed to their
interference in the integrity and functioning of the cell membrane through induction of changes
in membrane potential, loss of cytoplasmic material and inhibition of the respiratory chain. Thus,
these characteristics of EO are relevant in the search of new antifungal agents [18].

Considering the fungal etiology of different diseases with great impact on public health,
and reports on the use of plants of the Cymbopogon genus in medical literature, the aim of this study
was to evaluate the chemical composition and biological potential of the EO of C. nardus. This study
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focuses on the exploration of the antifungal profile against Candida species in order to present this
compound as a possible antifungal or adjuvant agent.

2. Results and Discussion

2.1. Chemical Composition of Essential Oil

The qualitative and quantitative composition (GC-MS) of the EO is shown in Table 1.
Oxygen-containing monoterpenes were the major constituents (90.61%), with citronellal (27.87%),
geraniol (22.77%), geranial (14.54%), citronellol (11.85%), and neral (11.21%) as the main compounds.
These monoterpenes are derived from geranyl diphosphate and are biosynthetically related [19].

The retention time (tR) of citronellal was 11.2 min by GC-FID analysis. The equation and
R2 value obtained from the analytical curve for citronellal were y = 571,529.9016x ´ 102,555.3281
and 0.99976. The concentration of citronellal in the EO (GC-FID) was determined by means of the
external standardization method as 282.5 mg/mL. Considering the relative density of commercial EO
at 25 ˝C—0.897 g/mL (Sigma-Aldrich, St. Louis, MO, USA, 2016), the concentration of citronellal in
the EO can be expressed as 31% (m/m). This value is consistent with the value obtained in the GC-MS
analysis (28%).

Table 1. Composition of essential oil from the leaves of C. nardus.

Retention Time Compound Name AI 1 (Calculated) AI 2 (Literature) Concentration (%)

6.60 not identified – – 0.09
6.74 β-myrcene 992 988 0.09
7.08 n-octanal 1004 998 0.09
7.92 D-limonene 1029 1024 2.47
8.21 cis-ocimene 1037 1032 0.27
8.56 trans-ocimene 1048 1044 0.17
8.75 bergamal 1053 1051 0.37
9.40 not identified – – 0.17
10.40 linalool 1101 1095 0.53
10.57 α-pinene oxide 1105 1099 0.11
11.51 trans-rose oxide 1129 1122 0.14
12.16 neo-isopulegol 1145 1144 0.41
12.34 not identified – – 0.27
12.54 citronellal 1155 1148 27.87
12.95 not identified – – 0.25
13.69 not identified – – 0.33
14.16 cis-4-decenal 1195 1193 0.09
14.63 Decanal 1207 1201 0.46
15.60 β-citronellol 1230 1223 11.85
16.12 Neral 1242 1235 11.21
16.73 geraniol 1257 1249 22.77
17.38 geranial 1273 1264 14.54
20.82 citronellol acetate 1355 1350 0.31
22.08 geranyl acetate 1385 1379 0.26
23.45 β-cariophyllene 1419 1417 1.28
24.81 α-humulene 1453 1452 0.12
27.25 γ-cadinene 1514 1513 1.60
27.63 δ-cadinene 1524 1522 0.36
27.87 citronellyl butyrate 1530 1530 0.24
28.60 elemol 1550 1548 0.11
29.11 not identified – – 0.16

29.85 cariophyllene
oxide 1582 1582 0.55

32.08 trans-cadinol 1642 1638 0.16
32.54 α-muurolol 1654 1644 0.30
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Table 1. Cont.

Retention Time Compound Name AI 1 (Calculated) AI 2 (Literature) Concentration (%)

Monoterpene hydrocarbons 3.00
Oxygen containing monoterpenes 90.61

Sesquiterpene hydrocarbons 3.36
Oxygen containing sesquiterpenes 1.12

Other compounds 0.64
Total identified 98.73

1 Arithmetic retention indices [20] relative to C7-C30 n-alkanes calculated [21]; 2 Arithmetic retention
indices [20,21].

In a study performed by Wei and Wee [22] the concentration of citronellal, the major
compound (29.6%), was similar to this work. Koba et al. [23] and Trindade et al. [24] found higher
concentrations of citronellal at 35.5% and 37.75%, respectively. In Thailand, the concentrations
were different [13]: geraniol (35.7%), trans-citral (22.7%), cis-citral (14.2%), geranyl acetate (5.8%),
citronellal (5.8%), and citronellol (4.6%). In another recent study, the authors also obtained a different
chemical composition of EO with the main compounds being geraniol (25.9%), citronellal (3.7%),
and citronellol (3.1%) [25].

2.2. Minimal Inhibitory Concentration and Minimal Fungicidal Concentration of Essential Oil of C. nardus

The antifungal activity of the EO is shown in Table 2. The solvent and growth controls presented
satisfactory results. Thus, the antifungal activity was attributed to essential oil. The results show that
the EO had effective antifungal activity with a MIC range of 250–1000 µg/mL, including for isolates
resistant to fluconazole and amphotericin-B. The lowest MIC value (250 µg/mL) of the EO was seen
against C. krusei. Furthermore, the EO showed fungicidal activity against all fungi except two clinical
isolates of C. tropicalis that were resistant to the EO with MIC > 1000 µg/mL.

Table 2. Inimal inhibitory concentrations (MIC—µg/mL) and minimal fungicidal concentration
(MFC—µg/mL) of the essential oil of C. nardus against Candida species.

Candida Strains MIC EO * MFC EO * MIC AmB * MIC FLU *

CA-ATCC 90028 1000 1000 1 1
CA2 1000 1000 4 16
CA3 1000 1000 1 >64
CA4 1000 1000 4 8

CK-ATCC 6258 250 500 8 >64
CK2 500 500 8 >64
CK3 500 500 8 >64
CK4 250 250 4 >64

CG-ATCC 2001 500 1000 1 >64
CG2 500 1000 4 >64
CG3 500 1000 2 >64
CG4 1000 1000 2 >64

CT-ATCC 13803 500 1000 8 >64
CT2 >1000 >1000 8 >64
CT3 1000 >1000 4 >64
CT4 >1000 >1000 4 >64

CP-ATCC 22019 500 1000 4 8
CP1 1000 1000 4 32

CO-ATCC 96141 500 1000 8 32
CO1 1000 1000 8 64

FLU: fluconazole; AmB: Amphotericin-B; * values in µg/mL.
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Unlike conventional antimicrobial drugs, the literature does not present a standard of MIC
values (sensitive and resistant) for natural products against Candida species. A study performed
by Webster et al. [26] that evaluated antifungal activity of 14 medicinal plant extracts, found MIC
values equal to, or lower than, 1000 µg/mL. The authors believe that values equal to or lower
than 1000 µg/mL confirm sensitivity.

The values observed in this study were satisfactory, as the EO exhibited inhibitory action
against 90% of the strains tested. Although some strains were inhibited with the highest concentration
evaluated (1000 µg/mL), these data are relevant, since most of the strains are resistant to fluconazole
(MIC > 64 µg/mL), the main drug used in the medical practice [27].

Interestingly, the MIC values (500 to 250 µg/mL) of the EO against the C. krusei ATCC clinical
isolate are promising, due to the fact that this species presents intrinsic resistance to azoles [28].

The study carried out by Nakahara et al. [12] demonstrated that the EO inhibited filamentous
fungus from the environment, however, the methodology used to determine the MIC was different
from this study.

Recent research by Trindade et al. [24] showed the antifungal activity of the EO against ATCC
and clinical strains of C. albicans and C. tropicalisi, with MIC values ranging from 32 to 64 g/mL.
The differences found are expected because factors, such as climate, region, and the time of harvest of
C. nardus, in addition to the extraction method, can directly affect the characteristics and concentration
of chemical compounds [29].

The assay used to determine the MFC showed that the fungicidal properties of EO against Candida
species were capable of killing the fungal cells using the concentrations evaluated in this study.

The antifungal activity of terpenoids, one of the major groups of volatile secondary metabolites,
is known in the pharmaceutical field [17]. Thus, the antifungal activity of the EO in this present study
may be related to the monoterpenes identified in the GC-MS assay.

The anti-Candida potential of the terpenes, geraniol, and citronellol has been investigated
previously, with effective inhibitory activity against C. albicans [18] and filamentous fungi of the
Aspergillus species [30]. In addition, Mesa-Arango et al. [31] showed that oxygenated monoterpenes
in the citral chemotype, such as geraniol, citral and citronellal, have antifungal activity against
C. parapsilosis, C. krusei, Aspergillus flavus, and Aspergillus fumigatus.

2.3. Minimal Inhibitory Concentration and Minimal Fungicidal Concentration of Citronellal

The MIC and MFC of citronellal are shown in Table 3. Citronellal showed antifungal activity
against C. albicans ATCC, C. krusei (ATCC and clinical strain), and C. glabrata (ATCC and clinical strain).
The species C. tropicalis, C. parapsilosis, C. orthopsilosis, and C. albicans clinical strains were resistant
to citronellal, with MIC > 1000 µg/mL. Thus, in this present investigation, EO had better antifungal
activity compared to citronellal, probably owing to synergisms among the chemical compounds
present in the EO.

Table 3. Minimal inhibitory concentrations (MIC, µg/mL) and minimal fungicidal concentration (MFC,
µg/mL) of citronellal against Candida species.

Strains MIC Citronellal MFC Citronellal

CA-ATCC 90028 1000 1000
CA3 >1000 >1000

CK-ATCC 6258 500 1000
CK4 500 500

CG-ATCC 2001 500 1000
CG3 500 >1000

CT-ATCC 13803 >1000 >1000
CT3 >1000 >1000

CP-ATCC 22019 >1000 >1000
CP1 >1000 >1000
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2.4. Inhibition on Candida albicans Hyphae Growth

The results exhibited that the EO was able to inhibit the transition of C. albicans from yeast to the
hyphal form. Microscopic observation of EO-treated fungal cells revealed an absence of filamentous
cells in concentrations ranging from 1000 to 15 µg/mL (after 12 and 24 h) (Figure 1).
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Figure 1. Inhibitory effect of essential oil of C. nardus on the transition of C. albicans from yeast to the
hyphal form (photomicrographs by inverted light microscopic under 400ˆ magnification).

Some therapeutic approaches are used to combat C. albicans, including blocking the transformation
of yeast cells to filaments. This morphological change is considered to be a virulence factor, and,
the biological mechanism has been explored using several active ingredients against this fungal
species [32].

The ability of C. albicans to form hyphae is a risk factor in infections because hyphae play an
important role in further tissue invasion due to their ability to adhere to host epithelial and endothelial
cells [1]. Therefore, the results of this work are promising, since the EO was able to inhibit this
morphological transition.

Leite et al. [33] showed the action of citral, a mixture of two geometric isomers known as neral
and geranial, that are found at high concentrations in the EO used in this study. These authors found
that these components were able to inhibit pseudohyphae, chlamydospores, and blastoconidia at the
concentration of 128 µg/mL over 48 h.

The ability to EO to interfere in hyphal formation was demonstrated for different species of fungi.
Chen et al., [8] for example, proved that the oil was able to promote deformities in the hyphal structure
of the fungus Alternaria.

2.5. Time-Kill Assay

The results showed that the EO inhibited the fungal growth of the different Candida species
in a similar manner (Figures 2–7). The cell growth was constant until 24 h. After this, an
exponential growth—CFU/mL—was noted which remained proportional for a long time. The strains
CK-ATCC 6258, CK4, CG-ATCC 2001, GG3, CP1, CO-ATCC 96141, and CO1 presented a superior
inhibitory behavior than amphotericin-B over 48 h.

The current literature does not present data on time-kill assays evaluating this EO against Candida
species. Thus, this study has an innovator character. Ahmad and Viljon [25] observed synergic activity
of EOs from the genus Cymbopogon with silver ions against fungi.
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Figure 7. Time-kill curves of C. orthopsilosis ATCC 96141 and CO1 following exposure to the essential
oil of C. nardus and amphotericin-B. Control represents the untreated Candida cells.

2.6. Biofilm

Biofilms produced by C. albicans, C. parapsilosis, and C. krusei were treated with EO (10ˆ MIC).
The EO showed expressive anti-biofilm activity at different concentrations (Table 4). The percentage of
inhibition of biofilms by EO is demonstrated in Figure 8. The EO showed high inhibition of biofilms,
mainly against C. albicans ATCC (97.7%), CA3 (82.0%), C. parapsilosis ATCC (93.6%), CP1 (86.2%),
C. Krusei ATCC (65.0%), and CK4 (48.5%).
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Table 4. Anti-biofilm effect of the essential oil of C. nardus against C. albicans, C. krusei, and C. parapsilosis.

Strains EO (mg/mL)

CA-ATCC 90028 2.5
CA3 5

CK-ATCC 6258 2.5
CK4 2.5

CP-ATCC 22019 5
CP1 10
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The anti-biofilm potential of the EO was the main result of the present study. The elimination and
control of fungal biofilm is very hard, due to several types of molecular, structural, and specifically
physiological interactions [4]. Additionally, the mechanism of resistance presented by planktonic cells,
and the quorum-sensing processes (signaling molecules), the production of specific enzymes and
natural mutations can explain the increased resistance of biofilm to antimicrobial agents used in the
clinical practice [1].

Biofilm is an important virulence factor and the treatment for its control is concentration
dependent and can be high to inhibit the biofilm. The MIC to act against microbial biofilm ranges
from 10–100 times higher than that necessary against the planktonic form [34].

The current results show that the EO was able to eliminate mature biofilm of C. albicans and
C. parapsilosis at a concentration of 10ˆMIC. The scientific literature does not present any study of this
EO against mature biofilm. Thus, these results are important and contribute to control strategies to
eradicate mature biofilm.

2.7. Cytotoxic Evaluation

The concentrations of the EO and citronellal that inhibited cell vitality by 50% (IC50) are shown
in Table 5. Citronellal demonstrated a higher IC50 than the EO. The EO exhibited inhibitory effects
against HepG-2 and MRC-5 with IC50 values of 96.6 µg/mL and 33.1 µg/mL, respectively.
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Table 5. Cytotoxic activity of the essential oil of C. nardus (EO) and citronellal.

Cell Lines (EO) IC50 * Citronellal IC50 * (Control) IC50
a

HepG-2 96.6 100.9 >1000
MRC-5 33.1 51 >1000

* Values in µg/mL; a Dimethyl sulfoxide.

On comparing the results, the EO was less cytotoxic to HepG-2 than to MRC-5 cell lines.
This can be explained by the metabolizer action of HepG-2. Although lower IC50 values were found,
it is important to stress that amphotericin-B, the gold standard in the treatment of fungal diseases,
has toxic effects, such as nephrotoxicity, and has an acute reaction after intravenous infusions [5].
In vivo tests must be performed because factors, such as immune response, metabolism, and the
pharmacokinetics of the EO, are important.

3. Materials and Methods

3.1. Plant Material

The leaves of C. nardus (L.) Rendle were collected in July 2013, in the morning, from the Garden
of Toxic and Medicinal Plants: “Profa. Dra. Célia Cebrian de Araújo Reis” (Universidade Estadual
Paulista, Araraquara, São Paulo, Brazil). A voucher specimen (HRCB-60752) was deposited in the
Rioclarense Herbarium of the Institute of Biosciences (Universidade Estadual Paulista, Rio Claro,
São Paulo, Brazil).

3.2. Extraction of the Essential Oil from the Leaves of C. nardus

Fresh leaves of C. nardus (150 g) were submitted to hydrodistillation using a Clevenger-type
apparatus attached to a round bottom flask (3 L) with 1500 mL of deionized water. The residual water
in the EO was separated from the sample by freezing. The yield of the EO was 0, 7% (w/w). The EO
was stored under refrigeration until chemical analysis and biological tests.

3.3. Citronellal

The commercial (+/´)´ citronellal standard (ě95% purity) used was purchased from
Sigma-Aldrich Co. (St. Louis, MO, USA).

3.4. Gas Chromatography Analysis of Essential Oil from the Leaves of C. nardus

3.4.1. Gas Chromatography-Mass Spectrometry

Gas chromatography-mass spectrometry (GC-MS) analysis was performed using an Agilent®

GC-7890B/MSD-5977A gas chromatograph (mass detector: electron impact ionization; mass
quadrupole analyzer, (Agilent®, Santa Clara, CA, USA) fitted with a HP-5ms capillary column 5%
diphenyl-polydimethylsiloxane (30 m ˆ 0.25 mm, film thickness 0.25 µm—Agilent®). Helium was
used as the carrier gas at a flow rate of 1.00 mL/min (8.2 psi) and linear velocity of 36.6 cm/s.
Injector temperature: 250 ˝C; injection volume: 1 µL; splitting ratio: 1:100; oven temperature
program: 60–246 ˝C (3 ˝C/min, 62 min); transfer line temperature: 280 ˝C; detector temperature: 150 ˝C;
and ionization energy: 70 eV. EO was solubilized in hexane (chromatographic grade; Tedia®, Fairfield,
OH, USA) 1:100 (v/v). The identification of the EO components was based on the comparison of
acquired mass spectra (from chromatogram peaks) with reference spectra of the NIST mass-spectral
library version 2.0, 2012 (243,893 compounds) and data from the literature. Furthermore, arithmetic
retention indices [20] were calculated as described in [21] by linear interpolation relative to the
retention times (tR) of a series of n-alkanes (C7–C30); the obtained values were compared with
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published retention index values [21]. Relative amounts of EO components were calculated based on
the chromatogram peak area normalization method.

3.4.2. Gas Chromatography-Flame Ionization Detector

Gas chromatography-flame ionization detector (GC-FID) analysis was performed using a
Shimadzu® GC-2010 Plus gas chromatograph (flame ionization detector, Shimadzu®, Kyoto, Japan)
fitted with a RTX-5MS capillary 5% diphenyl-polydimethylsiloxane column (30 m ˆ 0.25 mm, film
thickness 0.25 µm, Restek®, Bellefonte, PA, USA). Nitrogen was used as the carrier gas adjusted to
a flow rate of 1.00 mL/min (8.2 psi) and linear velocity of 36.6 cm/s. Injector temperature: 250 ˝C;
injection volume: 1 µL; splitting ratio: 1:30; oven temperature program: 70 ˝C–180 ˝C (4 ˝C/min)
and 180 ˝C–250 ˝C (10 ˝C/min); total analysis time: 34.5 min; detector temperature: 280 ˝C. For the
analytical curve, (+/´)´ citronellal standard (Sigma-Aldrich®; ě95% purity) solutions were prepared
in hexane (chromatographic grade; Merck®): 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, and 5.0 mg/mL. EO was
solubilized in hexane (chromatographic grade; Merck®) 1:100 (v/v). All analyses were performed
in triplicate. The identification of citronellal in the EO was based on retention time (tR) and its
quantification was achieved according to the external standard method using an analytical curve.

3.5. Antifungal Activity

3.6. Fungal Strains

The strains—20 samples of Candida spp.—were obtained from the Laboratory of Microbiology,
Department of Infectious Diseases, Medicine School in Sao José do Rio Preto (FAMERP), São Paulo,
Brazil. These included three clinical isolates and one ATCC for each species: C. albicans (CA-ATCC 90028,
CA2, CA3, CA4); C. krusei (CK-ATCC 6258, CK2, CK3, CK4); C. glabrata (CG-ATCC 2001, CG2,
CG3, CG4); C. tropicalis (CT-ATCC 13803, CT2, CT3, CT4), parapsilosis complex—C. parapsilosis
(CP-ATCC 22019, CP1), and C. orthopsilosis (CO-ATCC 96141, CO1). C. albicans ATCC 10231 was
used to test for inhibition of hyphal growth.

The clinical strains were donated to the Microbiology Laboratory of the Medicine School in
Sao Jose do Rio Preto for the purposes of scientific research through a written consent of the donors.
The use of these strains was approved by the Human Research Ethics Committee of FAMERP, project
identification code 152/2006 (6 December2006), Medicine School in Sao José do Rio Preto (FAMERP).

3.7. Determination of Minimum Inhibitory Concentration

The evaluation of the antifungal activity by determining the MIC was performed by the microplate
dilution technique according to the protocol described in the M27-A3 document [35] with modifications.
The concentration of the EO and citronellal was 7.8 to 1000 µg/mL. The EO was dissolved in 10%
methanol and 2% Tween 80. A quantity of 0.1 mL was placed in a 96-well microtiter plate containing
Roswell Park Memorial Institute (RPMI) 1640 medium. Each well was inoculated with 0.1 mL of a
suspension containing 2.5 ˆ 103 CFU/mL of yeast.

Amphotericin B (AmB) (Sigma-Aldrich®) and fluconazole (FLU) (Sigma-Aldrich®) were used
as the positive controls. Additional controls also included the culture medium, yeast growth,
EO, and solvent. The microplates were incubated at 37 ˝C for 48 h. After incubation, 20 µL of
an aqueous 2% solution of 2,3,5-triphenyltetrazolium chloride (TTC) was added, the plates were
incubated at 37 ˝C for 2 h [32], and absorbance of the samples was measured by spectrophotometer
(Biospectro, SP22, Curitiba, Brazil). All tests were performed in triplicate.

According to obtained results of the EO MIC determination, the more sensitive strains (one ATCC
and one clinical strain of each species) were selected to evaluate the antifungal activity of citronellal.
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3.8. Determination of Minimum Fungicidal Concentration

An aliquot from each well that showed antifungal activity was plated in Petri dishes containing
Sabouraud Dextrose Agar (SDA)—DIFCO, to determine the minimum fungicidal concentration (MFC).
The assays were carried out in triplicate. MFC was defined as the lowest concentration of the EO and
citronellal that allowed no visible growth on the solid medium [32].

3.9. Inhibition of C. albicans Hyphae Growth

A microassay was developed to evaluate the inhibition effect on the growth of fungal strains.
Growth of C. albicans (ATCC 10231) from a 48 h culture was transferred to a microplate with
RPMI 1640 medium supplemented with fetal bovine serum (FBS) to obtain a final concentration
of 2.5 ˆ 103 yeast/mL. EO was added to the growth medium at concentrations ranging from 7.5
to 1000 µg/mL, and the cultures were incubated for 12 and 24 h at 37 ˝C. The hyphal formation of
C. albicans was observed through an inverted light microscope. Amphotericin B (16 µg/mL) was used
as a positive control [32].

3.10. Time-Kill Assay

The time-kill assay was performed according to Santos-Filho et al. [36], with modifications.
This assay tested one ATCC strain and one clinical strain of each Candida species (CA ATCC 90028,
CA3, CK ATCC 6258, CK4, CG ATCC 2001, CG3, CT ATCC 13803, CT3, CP ATCC 22019, CP1, CO
ATCC, and CO1). In brief, Sabouraud Dextrose broth (SDB)-DIFCO, containing 2.5 ˆ 103 CFU/mL
of Candida spp. and 2ˆMIC of EO were incubated at 37 ˝C and aliquots of 100 µL were removed at
different time intervals (0, 1, 2, 4, 8, 12, 24, 36 and 48 h). The aliquots were then diluted in a buffer
solution of sterile PBS 1:100, twice. Each EO-cell suspension was spread onto Sabouraud plates and
colonies were counted after 48 h incubation at 37 ˝C. Amphotericin B was used as a positive control.
Negative controls were established with cell suspensions without the addition of EO.

3.11. Biofilm Assay

The biofilm adhesion method was performed as described by Pitangui et al. [37], with modifications.
The CA ATCC 90028, CA3, CK ATCC 6258, CK4, CP ATCC 22019, and CP1 strains were selected
for the biofilm assay. Initially, 100 µL of inoculum (5.0 ˆ 108 cells/mL), suspended in 0.9% saline
solution, was added to the wells of microplates (96 wells) and incubated in a shaker at 80 rpm
at 37 ˝C for 2 h. After the pre-adhesion period, the supernatant was removed and 100 µL of RPMI
medium was added to each microplate well. Incubation continued at 37 ˝C for 48 h with the RPMI
renewed after 24 h. The supernatant was then removed, and the wells were washed with 100 µL
of 0.9% saline solution. Next, 100 µL of EO (10ˆ MIC) were added to each microplate well.
The microplates were incubated again for 24 h at 37 ˝C. Subsequently, the EO was removed and
the wells were washed with sterile saline solution (to eliminate the drug carryover effect). Solvent,
medium culture, and yeast growth were established as controls with the colorimetric indicator
2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[carbonyl(phenylamino)]-2H-tetrazolium hydroxide (XTT®,
Sigma-Aldrich®, Saint Louis, MO, USA).

3.12. Cytotoxic Activity

3.12.1. Cell Lines

HepG-2 (hepatic) (ATCC®HB-8065™, Fiocruz, Rio de Janeiro, Brazil) and MRC-5 (fibroblast)
(ATCC® CCl-171™, Fiocruz, Rio de Janeiro, Brazil) were used to determine cytotoxicity (IC50).
The cells were maintained in flasks with a 12.50 cm2 surface area containing 10 mL of culture
medium incubated at 37 ˝C in 5% carbon dioxide. The culture medium consisted of Dulbecco’s
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Modified Eagle Medium (DMEM, Vitrocell®, Campinas, São Paulo, Brazil) supplemented with 10%
FBS, gentamicin sulfate (50 mg/L, Sigma-Aldrich®), and amphotericin B (2 mg/L, Sigma-Aldrich®).

3.12.2. Cytotoxic Assay

The cytotoxic assay [38] consisted of collecting the cells using a solution of trypsin/
ethylenediaminetetraacetic acid (EDTA, Vitrocell®), centrifuging the solution (2000 rpm for 5 min) and
counting the number of cells in a Neubauer chamber followed by adjustment of the cell concentration
to 7.5 ˆ 104 cells/mL in DMEM. Then, 200 µL of this suspension was placed in each well of a 96-well
microplate to obtain a concentration of 1.5 ˆ 104 cells/well, and the microplates were then incubated
at 37 ˝C in 5% carbon dioxide for 24 h to facilitate cell attachment to the plate. The serial dilutions of
EO were prepared to obtain concentrations from 3.90 to 1000 µg/mL. These dilutions were added to
the cells after the removal of the medium and the non-adherent cells. Then, the cells were incubated for
an additional 24 h. The cytotoxicity of the compounds was determined by adding 30 µL of resazurin
and reading on a microplate reader (BioTek®, Winoosky, VT, USA) after 6 h of incubation using a
microplate and excitation emission filters with wavelengths of 530 and 590 nm, respectively. The IC50

was defined as the highest concentration of compound that allowed a viability of at least 50% of the
cells. All experiments were performed in triplicate. A solution of 5% dimethyl sulfoxide (DMSO) was
used as the control.

4. Conclusions

According to the results of this study, it is possible to conclude that the EO from C. nardus is a
promising source of active molecules with antifungal properties. The biological assays reported in this
investigation show that the EO inhibits ATCC and clinical strains of Candida species, including those
with resistance to drugs employed in medical practice. Additional to this simple inhibitory activity,
the EO is able to inhibit and control the main virulence factors attributed to the Candida species used
in this study, such as the formation and proliferation of hyphae of C. albicans and, more importantly,
the eradication of mature biofilms. Moreover, the EO exhibits better antifungal action than citronellal,
probably due to some synergistic effect among the EO components.
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