Figure S1 (Fujihara et al)

Figure S1. Histological sections of wild-type and Spata16-781/-781 testes.
Acrosomal formation was observed using CAG/Acr-EGFP transgenic mouse testis. Red signals indicate the acrosomal membrane protein SPACA1 by immunostaining. Nuclei were stained with Hoechst 33342 (blue). Scale bars: $100 \mu \mathrm{~m}$.

Figure S2 (Fujihara et al)

Figure S2. Observation of extracted cells from cauda epididymis in wild-type and Spata16-781-781 mice.
Acrosomal formation was observed using CAG/Acr-EGFP transgenic mouse testis. Red signals indicate the acrosomal membrane protein SPACA1 by immunostaining. Double-positive cells were haploid germ cells with acrosome, round spermatid and spermatozoa. The testicular remnants included round spermatids migrated from testis to the cauda epididymis in Spata16 $6^{-781 /-781}$ mice. Nuclei were stained with Hoechst 33342 (blue). Scale bars: $50 \mu \mathrm{~m}$.

Figure S3 (Fujihara et al)

Figure S3. Sequence similarity of the fourth intron of SPATA16.
Sequence alignment was used for the 1st to 200th nucleotides of fourth intron of SPATA16. Black indicates a match in humans and mice. 88% of the nucleotide sequence is identical between humans and mice.

Table S1 (Fujihara et al)

Table S1. List of primer sequences

Figure	Sequence (5' to 3')	Name
1A, 1B, 2D, 3D, 3E	GGAGCAGCTCTGGGGAAACCC	Spatal6, Pr.c/d
	CCAGTCGGCTGTCTGCGGC	
1A, 1B	AAGTGTGACGTTGACATCCG	Actb
	GATCCACATCTGCTGGAAGG	
1B	GGGAGTCAGTTAGGAGGTCTGATTACAGTAG	Dpy1912
	CTGAAATTTGCTTGGCTCAATGTATCCCAC	
	GGCTCGAGCCCGCTTCTC	Pickl
	GCCTTGGTTAGGGCCATAGGC	
	GTTATACTGACAAATGACTCAGCAGTCTTGG	Spacal
	CATAGAGCTCAGCTCGGACTGTATCTC	
2A	AGGTGAGCGCATGTGCAAGG	5'-arm
	GATATCTCTCCAGACATCTAAACACGG	
	GATACTCAGAAGCTGCCCAGTATGTTTGTTACAACTTTCTG	3'-arm
	TCTGGGGCTGAGAACATTAGC	
2B, 3B, 3C	GCCCACTCTGGTTAACTGGGACCC	Pr.a/b
	GGGTGCCAAGGACCCAAACTCAG	
2 C	CTACGTCAGTGCTGCCAAGTAGC	Point mutation
	CCATCATCACTAATGACCTCATGGCTGG	

