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Abstract: The pituitary gland is part of hypothalamic-pituitary–gonadal axis, which controls
development, reproduction, and aging in humans and animals. In addition, the pituitary gland
is regulated mainly by hormones and neurotransmitters released from the hypothalamus and
by systemic hormones secreted by target glands. Aromatase P450, the enzyme responsible for
the catabolization of aromatizable androgens to estrogens, is expressed in different parts of body,
including the pituitary gland. Moreover, aromatase P450 is involved in sexual dimorphism where
alteration in the level of aromatase can initiate a number of diseases in both genders. On the other
hand, the direct actions of estrogens, mainly estradiol, are well known for stimulating prolactin
release. Numerous studies have shown that changes in the levels of estrogens, among other factors,
have been implicated in the genesis and development of prolactinoma. The pituitary gland can
produce estradiol locally in several types of endocrine cells, and it is possible that aromatase could be
responsible for the maintenance of the population of lactotroph cells and the modulation of the action
of central or peripheral regulators. Aromatase overexpression due to inappropriate gene regulation
has clinical effects such as the pathogenesis of prolactinomas. The present study reports on the
synthesis of pituitary aromatase, its regulation by gonadal steroids, and the physiological roles of
aromatase on pituitary endocrine cells. The involvement of aromatase in the pathogenesis of pituitary
tumors, mainly prolactinomas, through the auto-paracrine production of estradiol is reviewed.
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1. Introduction

Aromatase P450 is a complex protein belonging to family 19 of the P450 superfamily of enzymes,
termed CYP19. It is found throughout the phylum vertebrates and formed by two components,
cytochrome P450 and nicotinamide adenine dinucleotide phosphate (NADPH) cytochrome P450
reductase, located in the membranes of the endoplasmic reticulum; although the human gene is unique
compared to the rest of the other members of this superfamily [1,2]. In mammalian systems, Cyp19
uses C19 androgens as their substrate and enzymatically removes C19 to form a phenolic A-ring in
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the steroid. Depending on which androgens are attached to the prosthetic groups, the products of
androstenedione, testosterone, or 16-OH-androstenedione, are estrone, estradiol, or estriol, respectively.
The estrogens formed inside the cell interact with estrogen receptors, triggering alterations in
gene expression and in cellular functions [2–5]. Hence, steroids are implicated in many biological
processes including development, hypothalamic programming, sexual differentiation, reproductive
physiology, behavior, osmoregulation, metabolism, regulation of the hypothalamic–pituitary–gonadal
axis, and hypothalamic–pituitary–adrenal axis [6].

Aromatase is extremely critical as an estrogen biosynthetic enzyme. Physiologically, it participates
in functions such as glucose homeostasis, lipid homeostasis, brain function, follicular growth,
bone mineralization, epiphyseal closure, and the coordination of the ovulatory process [7], and has
also been found to be directly responsible for sexual dimorphism in the nervous system. Its expression
and activity varies in different parts of the body, and is highly active near gonads, adipose tissues,
skin, bone, brain, adrenal gland, liver, placenta, breasts, and hair follicles. It is known to be involved
in tumorigenesis and alterations in the level of aromatase can initiate a number of diseases in both
genders [2,8–12].

The conversion of androgen to estrogen by aromatase has two effects: on one hand it produces
an estrogen molecule and on the other it removes the androgen molecule. Although the amount of
estrogens synthesized by this way is quantitatively small, even less than 1%, it should be emphasized
that in terms of potency the hormonal activity of estrogens can be up to 1000 times greater that
of the androgens [1]. The amino acid sequence of aromatase P450 was described by Hickey and
co-workers [13]. This sequence results from the transcription and later translation of the aromatase
CYP 19 gene. Different isoforms of aromatase P450 have been reported [14]. These partially differ in
the carboxy-terminal amino acid sequence, which could account for some of the differences observed
by different authors in the tissue distribution of the enzyme.

Pituitary adenomas are a diverse group of tumors arising from adenohypophyseal cells in the
pituitary gland. The proportion of adenomas associated with hormonal hypersecretion or showing
further progress is currently unknown. In general, the data on the prevalence of pituitary adenomas
are based on anatomical studies with results extracted from either serial autopsies or from magnetic
resonance imaging and suggest that the overall estimated prevalence is of 16.7% of all brain tumors [15].
However, local surveys published in Belgium [16] and the UK [17] propose that the prevalence of
pituitary adenomas has risen fourfold over the last decades as detected by the better screening
of these populations. Although they are considered benign, pituitary adenomas are the cause of
significant morbidity due to increased hormone secretion and to a possible compression of neighboring
structures [18–21].

Prolactin-secreting pituitary tumors are called prolactinomas and are highly prevalent along
with non-functioning pituitary tumors [22,23]. Their frequency varies with age and sex, being more
common in 20- and 50-year-old women than in men; however, later on the frequency of prolactinomas
is similar in both sexes [24]. One possible explanation for the increased prevalence of prolactinomas
in women may be related to the fact that clinical presentation in women is more evident, usually the
classical amenorrhea-galactorrhea syndrome, whereas men may ignore the symptoms of impotence
and decreased libido and the diagnosis is often made when signs of compression due to the tumor
develop [22].

Additionally, some patients with acromegaly are carriers of mixed adenomas, secreting growth
hormone and prolactin [25]. The initiation, development, and progression of adenomas is not well
known. However, many factors may influence the proliferation of prolactinomas, such as angiogenesis,
apoptosis, growth factors, oncogenes, tumor suppressor genes, and hormone receptors [26]. Studies in
animals and humans have demonstrated that estrogen stimulates pituitary tumor transforming gene
(PTTG) expression [27]. This gene, the first proto-oncogene to be identified, is weakly expressed
in normal tissues. However, it is widely detected in malignant cell lines and in most pituitary
tumors [28,29]; thus, estrogens are one of the factors involved in the pathogenesis of prolactinoma.
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Recently, after a systematic review, a large number of candidate genes thought to contribute
to tumorigenesis, invasion, recurrence, and hormonal hypersecretion in prolactinomas have been
revealed [23]. Of the over-expressed genes identified, HMGA2, HST, and SNAP25 showed a clear
association with prolactin hypersecretion and tumor formation. The under-expressed genes UGT2B7,
Let7, and miR-493 are primarily involved with steroid metabolism and cell cycle regulation, which may
contribute directly to the formation and progression of prolactinomas [23].

2. Aromatase Expression in Pituitary Gland

The pituitary is an endocrine gland that is affected by the secretion of gonadal steroids and is
involved in sexual differences that appear in life. The possibility that aromatase might be produced in
this organ and might exert its action at a local level is of particular relevance to this study.

In previous work deadling, with humans and rodents with normal or tumoral pituitaries,
we have described the immunohistochemical expression of aromatase in the pituitary gland [8,30,31].
Similar findings were confirmed later on in animal species and different brain structures [32–37].
The role played by the transformation of testosterone into estradiol with respect to the secretion of
the gland, remains to be fully elucidated. Although it could be debated whether the observations
reported in different studies might be developed in the hypothalamus, in the pituitary gland or in both
at the same time, such as the fact that the administration of aromatase inhibitors increases circulating
luteinizing hormone (LH) levels [38], there is evidence that suggests pituitary aromatase has a potential
physiological or pathophysiological importance [9].

We have demonstrated [31], by means of immunohistochemistry, that aromatase is expressed in
the rat pituitary gland as early as Day 17 of prenatal development, the cells positive for the enzyme
being more prominent and numerous at Day 19 up to birth. Postnatally, towards puberty (around
21 days), differences between males and females begin to appear. Thus, the immunohistochemical
expression of aromatase P450 in the adult rat pituitary gland is sexually dimorphic. Finally,
non-tumoral pituitary from male and female aged rats hardly express the enzyme [39]. By means of
immunohistochemistry, Western blotting, and in situ hybridization, it has been demonstrated that
gonadal steroids play an important role in the expression of aromatase in the pituitary gland of adult
rats. Moreover, treatment with aromatase inhibitors induces morphometric alterations and changes
in the cellular proliferation of some glandular pituitary cells and similar changes can be observed in
lactotroph cells or LH-positive gonadotroph cells in knock-out mice for aromatase [40,41].

Although the above findings are suggestive of a defined role for pituitary aromatase,
the immunohistochemical expression of the enzyme might not be related to a biological action at the
pituitary level. However, the observation of the strong correlation of immunocytochemical expression
in the same glandular cell for aromatase and estrogen-receptor α suggests that the enzyme would
exert a pituitary auto-paracrine effect, as is discussed in the review of Carretero and co-workers [42].

3. Estrogens, Prolactin and Aromatase

The relationship between estrogens, in particular estradiol, and prolactin have been well known
for some time. The direct actions of estrogens stimulating prolactin release are well documented in the
literature [43–45]. In fact, estradiol is an important regulator of prolactin synthesis [46]. The pituitary
lactotroph cells have an estrogenic receptor (ER), and there are estrogen-responsive cells [47,48].
Estrogens regulate transcription of the rat prolactin (PRL) gene in vivo [49] through at least two
independent mechanisms [50,51] that culminate with an increase in prolactin mRNA levels [46] and
that upregulate genes such as vascular endothelial growth factor (VEGF), transforming growth factor
β (TGFβ), and galanin [49–52]. Estrogen stimulate the pituitary vasoactive intestinal polypeptide
(VIP)-producing cells and it is a peptide that, in an auto-paracrine way, stimulates prolactin and
lactotroph cells [53].

The estrogen-treated rats are an interesting and well-studied model of pituitary hyperplasia.
The chronic treatment with estradiol elicits, in a first phase, clear signs of hyperactivity and hyperplasia



Int. J. Mol. Sci. 2017, 18, 2299 4 of 16

in lactotroph cells [54,55], hyperprolactinemia and reduction dopaminergic action at the pituitary level.
Ovariectomized and ERα-knockout animals have a significant reduction in pituitary PRL levels and the
number of lactotrophs cells, suggesting a requirement of estrogen for normal lactotroph function [52].
After the administration of estradiol to adult male rats, lactotroph cells acquire secretory properties and
morphological characteristics similar to those found in females, with larger cells that have hypertrophy
of the Golgi apparatus, rough endoplasmic reticulum including Nebenkern images, and increases in
exocitosis [56,57]. Moreover, estrogens modulate the transdifferentiation of pituitary prolactin and GH
cells [58]. In addition, other factors may be involved in these processes, such as interleukins [30,59],
dopamine [60,61], and thyrotropin-releasing hormone (TRH) [62,63].

The genomic and non-genomic effects of estrogens have also been reported, using rat
pituitary-derived cell lines such as GH3 [64,65]. The GH3 cell line, one of the models developed
to study prolactinomas in vitro, was generated by treating a rat with high doses of estrogens, in which
a prolactinoma developed [6].

Estradiol is known to rapidly activate many signaling molecules, including insulin-like growth
factor 1 receptor (IGF-IR), epidermal growth factor receptor (EGFR), and mitogen-activated protein
kinase (MAPK) in breast cancer cells. Blockade of estradiol synthesis with aromatase inhibitors
or antagonism of its action with anti-estrogens represents first-line treatments for patients with
estrogen-receptor-positive breast cancer [66].

The epidermal growth factor receptor (EGFR, ErbB, and HER) family comprises four subtypes
of families that are associated with transmembrane tyrosine kinase receptors. EGFR and HER2 are
expressed in normal anterior pituitary cells, including lactotrophs cells and induce prolactin release.
Moreover, EGFR/HER2 signaling regulates tumor growth and hormone production in lactotroph
tumors among others [67]. In EGFR- and HER2-overexpression transgenic models larger tumors appear
that respond to tyrosine kinase inhibitors [68]. Although the relation among aromatase, estrogens,
and EGFR have been studied in different tumors such as breast [69], endometrial [70], lung [71],
and liver [72] tumors, among others, the relationship between EGFR and aromatase in pituitary gland
or prolactinomas has not been well analyzed to date, but its participation should not be ruled out.

Pituitary aromatase is produced in different cell types, including normal and tumoral lactotroph
cells [8,35]. This is of particular relevance since the transformation of aromatizable androgens
into estradiol means that, in males the androgenic inhibitory effect on prolactin is transformed,
locally and/or intracellularly, into a stimulatory effect, allowing the population of lactotroph cells to be
high in this sex. The treatment of male rats with aromatase inhibitors elicits a decrease in the activity
and proliferation of lactotroph cells [41], and similar findings can be observed in aromatase knock out
(KO) mice [73].

4. Possible Involvement of Aromatase P450 in the Pathogenesis of Prolactinomas

As described above, estrogen synthesis is a process that does not necessarily derive from
peripheral sources but can be synthesized de novo in different tissues [74] from testosterone by the
action of aromatase [1,2,41]. Chronic treatment with estradiol induces, in a first phase, cell hyperplasia
prolactin, constituting, in a second phase, prolactinoma, depending on the duration of treatment [75].
In the same manner, numerous studies have shown that supraphysiological levels of estrogens,
among other factors, have been implicated in the genesis and development of prolactinomas and
VIPomas [25,27,29,76,77]. Thus, if one of the factors that has been implicated in the genesis of
prolactinomas is the estradiol, because the tumor develops following chronic treatment with the
steroid, and the pituitary produces estradiol by acting of aromatase, it is not unreasonable to consider
the possibility that the development of pituitary tumors, and in particular the development of
prolactinomas, could be related to the local production of estradiol from testosterone through the
action of aromatase (see Figure 1).

Although mutations or polymorphisms of the CYP19 have been described and their participation
on the regulation of postmenopausal circulating sex hormones [78] or in the development and
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prognosis of breast cancer [79], there is no evidence of genetic variations and the regulation of pituitary
prolactin secretion or the development and growth of prolactinomas.
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Figure 1. Schematic diagram of the relation among aromatase P450 and growth markers in
prolactinomas. Dopamine and steroids are regulators of prolactin production. Dopamine suppresses the
prolactin release (red arrow: inhibition), while estradiol is an important regulator of prolactin synthesis
(blue arrow: stimulation). The conversion of testosterone to estradiol is mediated by aromatase
(orange arrow: stimulation). When some markers present inadequate regulation or their intracellular
localization altered, they can lead to an overexpression of aromatase and trigger prolactinomas.
In prolactinoma, AIB1, Bcl-2, and proliferating cell nuclear antigen (PCNA) markers are increased and
Caspase-3 p53 and p27 are decreased (Modified of [73]).

In our laboratory, evidence has been found suggesting an important relationship between
the pathogenesis of prolactinomas and the overexpression of aromatase in the pituitary gland of
rodents and humans. For this reason, two series, one of 105 adenomas obtained from female
Sprague–Dawley rats of 24 months of age [10] and the other of 87 spontaneous adenomas from women
between 23 and 67 years old obtained from surgical treatment were analyzed [42]. In both cases,
immunoreactivity to the enzyme appeared in endothelial cells and glandular cells. Akinci et al. [80]
have detected the presence of aromatase levels higher in patients with prolactinoma than normal
pituitary tissues. Although no difference was found between men and women, aromatase expression
was shown to be higher in men with an invasive adenoma than in those without invasive adenoma.
Similarly, the association among aromatase and pituitary tumors has been described in both, men and
women [12,81]. The importance of the involvement of aromatase in the development of prolactinomas
is seen upon observing that mice KO for aromatase do not develop prolactinomas [73].

Contrary to what occurs for breast tumors, there are only a few studies analyzing the clinical
relevance of aromatase in prolactinomas, and the use of aromatase inhibitors is useful in the restoration
of gonadal function by testosterone in men with prolactinomas [81–84].

5. Balance among Cell Proliferation and Apoptosis in Prolactinomas

The maintenance of tissue homeostasis in the anterior pituitary gland results from a balance
between cell proliferation and death by mechanisms that are tightly regulated. Classically,
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the proliferative cell fraction in the anterior pituitary of adult animals is described as low, while it is
high during development [85,86]. The effects of estrogens on the pituitary gland are not only those
that are classically described as mitogenic, but anti-proliferative and pro-apoptotic actions are also
apparent [87].

After extensive studies were carried out regarding changes in proliferation and apoptosis in
pituitary tumors, higher apoptotic activity pituitary carcinomas compared with adenomas was
observed, indicating that apoptosis could be a useful prognostic marker [88]. However, other authors
found that apoptotic indices were not predictive of the growth rate of non-functioning pituitary
tumors [89,90]. These discrepancies may be due to the technique used to detect apoptotic cells in
each study. Kontogoergos et al. [88] showed that functioning adenomas had higher indices than
did non-functioning tumors, although the highest apoptotic indices were observed in corticotrope
adenomas, and in untreated adenomas, particularly prolactinomas.

The expression of Bcl2 and Bcl-2-like protein 4 (BAX), respectively, has been used as anti-apoptotic
and pro-apoptotic factors. In non-functioning adenomas as well as in PRL-secreting adenomas the
expression of Bcl-2 found decreased [80] and BAX protein was increased when associated with pituitary
tumor progression. In female rats, estrogens induce changes in the balance of pro- and antiapoptotic
Bcl-2 family proteins (Bcl-2 and BAX) and inhibition of the nuclear factor kappa-light-chain-enhancer
of activated B cells (NFκB) pathway [91,92]. In the male, 17β-estradiol exerts rapid apoptotic action in
lactotropes, somatotropes, or gonadotropes cells of pituitary gland. However, the effects of gonadal
steroids on the expression of Bcl-2 and BAX, in the anterior pituitary gland of male rats, have not been
modified [93].

Previous findings from our laboratory show that the expression of pituitary aromatase was
higher in male than in female rats [31], and aromatase expression in lactotropes is negatively
correlated with age and almost completely disappears in the pituitary gland of aged male rats [39].
Therefore, aromatase can locally generate high levels of estradiol that can act through auto-paracrine
mechanisms [7,36]. The in vitro and in vivo expression of aromatase is in the lactotroph cell of male
rats and is involved in the control of proliferation and prolactin release by transforming testosterone
to estradiol [41]. Moreover, the pituitary aromatase activity could be involved in the regulation of
the apoptosis of pituitary cells [93]. Other studies have shown that, in patients with acromegaly and
prolactinoma, aromatase was high, was negatively correlated with Ki-67 score, and was higher in the
pituitary of patients with complete postoperative remission than without remission [12].

6. Estrogenic Receptors, Prolactinomas, and AIB1

The biological effects of estrogens are mediated by their two nuclear receptors—estrogenic
receptor α (ERα) and estrogenic receptor β (ERβ)—both of which are necessary for hormone action
in target tissues [94]. They play an important mitogenic role, stimulating the proliferation of
lactotroph cells [29,95], acting directly on these cells. The presence of estrogen receptors in the
pituitary gland has been described in adult rats of both sexes as well as the direct action of estradiol
on pituitary cells [51,56,96]. The expression of ERα and ERβ are also present in human pituitary
adenomas [48,97,98]. However, in male rats, the expression of ERα is very high compared with ERβ in
the anterior pituitary [94].

In animals and human studies, estrogens induce the expression of pituitary tumor transforming
gene (PTTG), a proto-oncogene that regulates cell cycle progression, proliferation, differentiation,
repair, transformation, and angiogenesis [99]. This proto-oncogene is weakly expressed in normal
tissues; however, it is widely detected in malignant cell lines and in most pituitary tumors, including
prolactinomas [100,101]. Likewise, PTTG stimulates fibroblast growth factor 2 (FGF2) and vascular
endothelial growth factor (VEGF) production, accelerates tissue angiogenesis, and facilitates pituitary
tumor progression through local invasion of the surrounding tissues [99,102]. On the other hand,
AIB1, an important factor in the development of breast cancer [103], is overexpressed by the
action of 17-β-estradiol [104], and AIB1 may be an important diagnostic and therapeutic target in
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breast cancer [105]. The relation between ERα and AIB1 is well established [103,106,107], and the
over-expression of AIB1 could be related to the increases in the incidence of pituitary tumors in
mice [108].

Previous findings from our laboratory demonstrate that the overexpression of aromatase in
human prolactinomas was associated with the presence of the ERα and the overexpression of the
estrogenic mitogen coactivator AIB1 [30] and could be related to proliferative or anti-apoptotic roles of
AIB1 as has been described for others tumors [108–113]. One of the most interesting results observed
in these study was the presence of a different, cytoplasmic or/and nuclear, subcellular distribution of
AIB1: 17% showed reaction only in the cytoplasm, 24% presented it only in the nucleus, and 59% had
both cytoplasmic and nuclear reactions. As a translational coactivator, AIB1 develops its action in the
cell nucleus. In fact, in quiescent mammary epithelial cells or cell cultures devoid of growth factors,
it is located in the cell cytoplasm [96]; however, when the nuclear localization predominates, cells are
proliferated [98] in a manner similar to that in which the development of breast tumors occurs [114].

In cell lines, AIB1 can be observed in different subcellular compartments, cytoplasmic or
nuclear [115,116], a fact has been linked with its degradation. Cytoplasmic AIB1 has a half-life longer
than nuclear AIB1, suggesting the existence of cytoplasmic lysosomal degradation, although less
important than nuclear degradation, which is carried out by the MG132 proteasome [115]. Intranuclear
localization of AIB1 could be related to the activation of estrogen receptors, whereas cytoplasmic
localization AIB1 could be linked to an increase in half-life and activation AP-1. In the case of the
pituitary gland and in particular the prolactin cells, AP-1 is one of the most important mechanisms
in the activation of these cells [117]. Therefore, the nuclear localization of AIB1 in prolactinomas is
associated with the cellular proliferative status, whereas cytoplasmic-AIB1 is related to apoptosis [30].

7. P53 and P27 Proteins in Prolactinomas

The p53 protein is a nuclear phosphoprotein that acts as a tumor suppressor by inhibiting
cell cycle progression and the phosphorylation of retinoblastoma protein [118]. Its function is
altered, generally, by point mutations in the gene encoding it in over 50% of human cancers [119].
The relationship between estrogen receptor and p53 has already been corroborated [120–123]. It is
suggested that ERα directly interacts with p53, and this association could prevent the p53-mediated
apoptotic response [122]. ERα antagonizes the pro-apoptotic function of p53, promoting cancer
cell survival. Recently, in breast cancer cells, it has been shown that ERβ physically interacts with
p53, reduces ERα-p53 binding, antagonizes ERα-p53-mediated transcriptional regulation, and could
generate changes epigenetic in histone methylation [121]. P53 also inhibits the expression of aromatase
by binding to a p53 response element on the aromatase promoter to be repressed by prostaglandin E2
(PGE2). It was demonstrated that the loss of p53 leads to the stabilization of hypoxia-inducible factor
1-alpha (HIF1α) and metabolic regulator protein kinase M2 (PKM2) besides stimulates their interaction
with the aromatase promoter and induces an increase in aromatase expression and activity [124].

The presence of p53 in pituitary adenomas is well documented in the literature [26,88,125–128].
The importance of the role that p53 can play in the cytophysiology and the progression of pituitary
adenomas has become relevant since DNA damage in cells from pituitary tumor lines induces the
cell cycle arrest mediated by p53 and determines whether or not reparable damage occurs before
continuing with cell division [129,130]. Therefore, mutation, deletion, or p53 inactivation clearly favors
tumor progression.

There may be some relationship between factors involved in the development of prolactinomas
and the role played by p53 and Bcl-2. In the pituitary gland, the pituitary apoptosis associated with
increased p53 appears only at very low levels or the absence of estrogen [131]. On the other hand,
the apoptotic activity in the pituitary adenomas treated with bromocriptine depends on activation of
p53 and suppression of Bcl-2 [132]. Despite the fact that p53 expression is reported to be associated
with the tumor invasiveness in pituitary tumors, there are few reports on the role of p53-dependent
apoptosis in pituitary tumor therapy [133]. Additionally, the presence of p53 in invasive or large human
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pituitary adenomas [26,127] is controversial. However, it has been established that the expression of
p53 is very important when assessing the prediction of the behavior that follows human pituitary
adenomas [88,134], with a higher expression in recurrent adenomas compared to those that are
non-recurring [135] and adenomas bromocriptine-resistant [100]. In our laboratory, we found that
around 76% of prolactinomas were positive for p53, similar to results described previously by other
laboratories [125]. However, there are few studies analyzing the percentage of p53-positive pituitary
adenomas and, in general, the few studies that analyze this data refer mainly to pituitary adenomas in
general or pituitary tumor lines instead of prolactinomas in particular [26].

There are no descriptions relating to the intracellular localization of p53 with other biological
actions. Given that p53 is a protein that carries out its action in the nucleus, the arrest of p53 in
the cytoplasm of tumor cells could avoid its biological action on DNA binding to promoters that
regulate the cell cycle and apoptosis. We have seen that the pattern of reaction to p53 and in particular,
the intracellular localization of the reaction varies greatly from one tumor to another. Although 76% of
prolactinomas showed positive p53 cells, 58% of p53-positive prolactinomas showed some isolated
p53-positive cells. It is very important to consider that in the prolactinomas that showed many positive
p53 cells, the protein was arrested in the cytoplasm, and, although some cells could have a nuclear
reaction these cells were very low, always below 0.6% of the positive cells.

In pituitary tumor cell lines, bromocriptine-resistant p53 adopts a mutant conformation that
precludes its nuclear translocation and transcriptional activity [136]. However, mutations of p53 in
pituitary benign adenomas have not been described [26,137]. In most of the p53-positive human
prolactinomas, the protein is located in the cytoplasm of the cell and the intracellular localization of
the protein could be very important in the growth of the tumor. In addition, AIB1 and p53 could be
related to in the pathogenesis of prolactinomas because, in HeLa cells, p53 interacts with specific “rub”
regions of AIB1, and AIB1 can modulate p53 transactivation [138]. This is similar to what occurs in
other tumors, such as the correlation between the overexpression of AIB1 and p53 positivity in breast
cancer [106] or in colorectal cancer [139].

P27/(KIP1) is a cyclin-dependent kinase inhibitor that plays important roles in the regulation of
cell-cycle progression [134]. An increase in levels of p27/KIP1 protein typically causes cells to arrest
in the G1 phase of the cell cycle [140]. In different types of tumors, it has been revealed that growth
factors present outside epithelial cells, such as transforming growth factor beta (TFGβ), arouse p27
levels inside a cell [133]. Several studies found significantly lower p27/KIP1 levels in non-functioning
adenomas [141], although other research has exhibited higher proliferation rates in these tumors [142].
There is evidence that p27 protein expression decreases during development and progression in
pituitary adenomas, including prolactinomas, compared with the normal gland [90,133,143]. Recurrent
adenomas and malignant tumors showed a p27/KIP1 expression that was lower than non-recurrent
adenomas. However, different studies have failed to detect any mutations within the p27 gen [144].
The significance and mechanisms underlying reduced p27/KIP1 levels in pituitary tumors is uncertain.

Recently, Martins and co-workers [145] have confirmed p27 underexpression in pituitary
adenomas and have thus provided further evidence of the involvement of the post-translational
machinery, although this phenomenon cannot be explained either by the mis-expression of p27
translational regulators DKC1, RPS13, miR221, and miR222 or by DKC1 mutations directly. For the
moment, the participation of p27 in the development and evolution of prolactinomas is unclear and
requires further research.

8. Conclusions

Because aromatase is synthesized in the pituitary gland, it has been able to produce estradiol
locally in several types of endocrine cells. Our previous results suggest that aromatase is an
auto-paracrine regulatory factor by means of estrogens for the maintenance of the population of
lactotroph cells and that it modulates the action of central or peripheral regulators. Moreover,
its overexpression is present in prolactinomas. Estrogens are involved in the regulation of the
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proliferation and apoptosis, which play an important role in the maintenance of pituitary cell
populations, and implicated in the pathogeny of anterior pituitary tumors, especially prolactinomas.
The clinical relevance for the role of aromatase in the genesis and/or growth of prolactinomas, and the
consideration of aromatase as a therapeutic target, mainly in dopaminergic-resistant tumors, are fields
that need be explored.
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NADPH Nicotinamide adenine dinucleotide phosphate
LH Luteinizing hormone
PRL Prolactin
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TRH Thyrotropin-releasing hormone
IGF-IR Insulin-like growth factor 1 receptor
EGFR Epidermal growth factor receptor
MAPK Mitogen-activated protein kinase
BAX Bcl-2-like protein 4
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
ER Estrogenic receptor
PTTG Pituitary tumor transforming gene
VEGF Vascular endothelial growth factor
AIB1 Amplified in breast 1 protein
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