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Abstract: Glioblastoma multiforme (GBM) is the most common form of malignant glioma.
Recent studies point out that gliomas exploit ion channels and transporters, including Na,
K-ATPase, to sustain their singular growth and invasion as they invade the brain parenchyma.
Moreover, the different isoforms of the β-subunit of Na, K-ATPase have been implicated in regulating
cellular dynamics, particularly during cancer progression. The aim of this study was to determine
the Na, K-ATPase β subunit isoform subcellular expression patterns in all cell types responsible for
microenvironment heterogeneity of GBM using immunohistochemical analysis. All three isoforms,
β1, β2/AMOG (Adhesion Molecule On Glia) and β3, were found to be expressed in GBM samples.
Generally, β1 isoform was not expressed by astrocytes, in both primary and secondary GBM,
although other cell types (endothelial cells, pericytes, telocytes, macrophages) did express this
isoform. β2/AMOG and β3 positive expression was observed in the cytoplasm, membrane and
nuclear envelope of astrocytes and GFAP (Glial Fibrillary Acidic Protein) negative cells. Interestingly,
differences in isoforms expression have been observed between primary and secondary GBM:
in secondary GBM, β2 isoform expression in astrocytes was lower than that observed in primary
GBM, while the expression of the β3 subunit was more intense. These changes in β subunit isoforms
expression in GBM could be related to a different ionic handling, to a different relationship between
astrocyte and neuron (β2/AMOG) and to changes in the moonlighting roles of Na, K-ATPase β

subunits as adaptor proteins and transcription factors.
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1. Introduction

Glioblastoma multiforme (GBM) is the most aggressive of malignant glioma. Even after
state-of-the art treatment, the median survival of patients is less than one year and outcomes give
overall survival (OS) as less than 10% at two years, decreasing to less than 2% at five years [1–3].
Heterogeneity of cells in GBM is a key factor for the low effectiveness of treatments [4]. GBM presents
epigenetically and genetically different cell sub-populations within a single tumor that contributes to
growth, progression and treatment failure. In fact, the term “multiforme” describes its heterogeneous
histopathological features [5]. Primary GBM arises suddenly in older patients after a brief clinical
history and is characterized by rapid progression and short survival time [6]. Secondary GBM
are more frequent in younger patients and evolve from a diffuse or an anaplastic astrocytoma [7].
GBM consists of the following cell types: glioma stem cells (GSCs), astrocytes, vascular cells
(endothelial and pericytes) [8,9], telocytes (a characteristic type of stromal cell, with thin prolongations
up to hundreds of microns, ranging from the optic to electronic microscopy resolving power [10,11]),
immune cells (glioma-infiltrating myeloid cells (GIMs) or tumor-associated macrophages (TAMs),
and remaining neurons.

Despite the cellular heterogeneity in GBM [9,12], there are cellular processes and gene families that
are common to every GBM cell and these could be used as probes for gaining a better understanding
of GBM biology, clinical prognosis and response to therapy. Recent studies point out that gliomas
exploit ion channels and transporters, including Na, K-ATPase, to sustain their singular growth and
invasion as they invade the brain parenchyma [13]. The interest in Na, K-ATPase in brain tumors
appeared soon after its discovery [14] and a decrease in its activity in gliomas was a striking finding.
However, since then further research on this topic in GBM has been limited.

Na, K-ATPase is a plasma membrane embedded protein in all animal cells. Through the hydrolysis
of an ATP molecule it transports three sodium ions out and two potassium ions into the cell, against
steep electrochemical gradients [15]. This system regulates the cellular ionic homeostasis and maintains
the electrochemical gradients required for ion channel function and secondary active transport [16].
Besides this, Na, K-ATPase is the receptor of cardiotonic glycosides. Recently, additional functions for
Na, K-ATPase in the cell have been proposed. Na, K-ATPase is a signal transducer and transcription
activator [17–21] affecting cell proliferation [22], and is involved in cell motility [23], and apoptosis [24].
A recent review describes the molecular basis of Na, K-ATPase involvement in cell proliferation
and hypertrophy, apoptosis, cell adhesion, cell migration, signal transduction pathways and sodium
pump-binding drugs [25].

A functional pump is composed of a catalytic α (100–112 kDa), a regulatory β (45–55 kDa)
subunit and an optional γ (FXYD2) (6.5–10 kDa) subunit [26]. The Na, K-ATPase multigene family
is constituted by several isoforms. Four different members of the α subunit have been found in
humans [27]. FXYD contains at least seven isoforms in mammals [28]. Three different isoforms have
been identified of the β subunit: β1 (ATP1B1 gene), β2 (ATP1B2 gene) and β3 (ATP1B3 gene) [16,29].
All isoforms associate promiscuously to create a functional pump. Furthermore, β2 is an adhesion
molecule on glia (AMOG) involved in molecular interactions between neurons and glia [30].

Cardiotonic steroids, such as the hemisynthetic derivative of 2”-oxovoruscharin (UNBS1450),
have been proposed for the treatment of GBM patients who do not respond to chemotherapy and
whose tumors over-express the α1 isoform [31–33]. Furthermore, the effect of perillyl alcohol on the Na,
K-ATPase appears to be the basis for arresting cell migration and activating pro-apoptotic pathways in
human and murine glioma cell lines as well as in explanted tumor cells from a glioblastoma patient [34].

Na, K-ATPase β1 subunit isoform is expressed in almost all tissues and cells, while the expression
of the other β isoforms is more restricted to certain tissues and cells. The β2 isoform [35] is found in
skeletal muscle [36], and nervous tissues [37], whereas β3 is present in the testis, retina, optic nerve,
corpus callosum, dorsal root ganglia, sciatic nerve, liver, and lung [38–41]. Astrocytes express β1
and β2 isoforms [37,42–45], although β2 predominates when the cells are fully differentiated [46,47].
C6-glioblastoma cells showed expression of only the β3 isoforms [40].
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The β-subunits of Na, K-ATPase have been implicated in regulating cellular adhesion, particularly
during cancer progression [48–50], and several laboratories have shown differential expression,
altered subcellular localization and down regulation of the β subunits of the Na, K-ATPase in carcinoma
cells [51–54]. β2/AMOG isoform has been implicated in the oncobiology of GBM [55–57].

Specific antisera against cell- and function-specific markers (Table 1) allowed us to study the
involvement of β Na, K-ATPase subunit isoforms in the oncobiology and microenvironmental
heterogeneity of primary and secondary GBM. Specific immunoreactivity is present in virtually
all GBM cell kinds, showing a unique expression phenotype of β isoforms involved in the pathogenesis
and progression of GBM.

Table 1. Markers used in this study.

Antibody Specificity

SpETβ1 Na, K-ATPase β1 subunit isoform
SpETβ2 Na, K-ATPase β2 subunit isoform
RNTβ3 Na, K-ATPase β3 subunit isoform

Anti-GFAP Astrocytes
Anti-PCNA Proliferative cells
Anti-CD31 Endothelial cells/Monocyte derived macrophages
Anti-CD34 Macrophages

2. Results

2.1. Na, K-ATPase β1 Isoform Expression in GBM

In GBM samples, the β1 isoform presented no clearly defined pattern of expression. This isoform
was detected in some but not all tumor cells. The subcellular location differed among cells within
a given area, while some tumor cells were immunopositive for β1 at the cytoplasmic membrane
location (Figure 1A, white arrow) other cells presented immunostaining in a peri-nuclear localization
(Figure 1G). Immunoperoxidase staining on paraffin-embedded tissue sections was used to localize
Na, K-ATPase β1 isoform in samples from GBM patients. The immunoreactivity exhibited two
distinct patterns: at the edge of the tumor there was strong positive and fibrillary staining (Figure 2A);
β1 positive cells in the center of the section became less frequent and more globular (Figure 2D,
arrows). The interface between the two zones was easily detectable (Figure 2A, arrows). In areas
of blood vessel proliferation of, β1 positive pericyte-like cells were observed surrounding the
vessels (Figure 1M), while endothelial cells varied from β1 negative to slightly positive (Figure 2C,D
and Figure 5A, respectively).

In primary GBM, β1 expression in astrocytes was weak or absent (Figure 1A–C, yellow arrows
and white arrow respectively). GFAP (Glial Fibrillary Acidic Protein) negative cells showed a
variable β1-specific staining, mainly in plasma membrane and podosome/invadosome-like structures
(Figure 1A–C,G–I, white arrows).

In secondary GBM, (Figure 1J–L), β1 immunoreactivity was predominantly located in the nuclear
envelope, and sometimes, nucleosol of GFAP negative cells (arrows). Most of GFAP positive astrocytes
did not show any β1-specific fluorescence signal. A morphologically heterogeneous pattern (multiform)
was noted in different areas of the GBM sections, with areas where β1 isoform positive cells appeared
mainly fibrillary (Figure 2), areas with β1-positive staining in the nuclear envelope of spherical cells
(Figure 1J) and pericyte-like cells near blood vessels with a light β1-positive staining in the plasma
membrane and the cytoplasm (Figure 1M).
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Figure 1. Double immunolocalization for GFAP (Glial Fibrillary Acidic Protein) (red) and Na-K-
ATPase β1 subunit isoform (green) in primary (A–I) and secondary (J–L) glioblastoma multiforme 
(GBM). (A–C): Yellow arrows point to β1/GFAP positive cells. Faint β1 positive staining is observed 
in the nucleus of the cell located in the right side of the image (enlarged in panels (D–F)). White arrow 
points to a GFAP-cell expressing β1 in plasma membrane, nucleus and podosome-like structures. (G–
I): β1+ immunostaining in cytoplasm, membrane and nuclear envelope of a giant cell. Arrow points 
to an invadosome β1+. The cell is filled by GFAP+ filaments. (J–O) Secondary GBM. β1 signal in the 
nuclear envelope and, sometimes, nucleosol of GFAP− cells (arrows). Note the brighter fluorescence 
signal for GFAP in secondary over primary GBM. (M–O) Arrows point β1+ stromal and 
microenvironment cells, GFAP-. 

Figure 1. Double immunolocalization for GFAP (Glial Fibrillary Acidic Protein) (red) and Na-K-ATPase
β1 subunit isoform (green) in primary (A–I) and secondary (J–L) glioblastoma multiforme (GBM).
(A–C): Yellow arrows point to β1/GFAP positive cells. Faint β1 positive staining is observed in the
nucleus of the cell located in the right side of the image (enlarged in panels (D–F)). White arrow
points to a GFAP-cell expressing β1 in plasma membrane, nucleus and podosome-like structures.
(G–I): β1+ immunostaining in cytoplasm, membrane and nuclear envelope of a giant cell. Arrow points
to an invadosome β1+. The cell is filled by GFAP+ filaments. (J–O) Secondary GBM. β1 signal
in the nuclear envelope and, sometimes, nucleosol of GFAP− cells (arrows). Note the brighter
fluorescence signal for GFAP in secondary over primary GBM. (M–O) Arrows point β1+ stromal
and microenvironment cells, GFAP−.
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Figure 2. Immunoperoxidase staining for Na, K-ATPase β1 isoform in secondary GBM. (A) Stronger 
expression in the edge of the section becoming less intense inwards. Arrows point to the interface 
between the two zones. (B) Enlargement of the interface line. Na, K-ATPase β1+ cells appear mainly 
fibrillary (B,C,E), but also as rounded cells (arrow in (D)). (C,E) endothelial cells (arrowheads) are β1− 
and vessels appear surrounded by β1+ fibers. 

2.2. Na, K-ATPase β2/AMOG Isoform Expression in GBM 

In primary GBM, β2/AMOG signal was mainly located in the plasma membrane and in the 
cytoplasm at a lesser intensity in GFAP+ astrocytes; in some instances, positive fluorescence was 
observed in nuclei (Figure 3A–C, yellow arrow) or in nuclear envelope (Figure 3A–C, white arrow). 
Moreover, GFAP negative and β2/AMOG positive cells were observed (Figure 3A–C, arrowhead), 
although β2 expression was less intense than that observed in astrocytes and localized mainly in the 
cytoplasm and in the nuclear envelope. Definitively, β2/AMOG fluorescence signal in astrocytes was 
higher than that for β1. 

In proliferating blood vessels, positive β2/AMOG staining was observed in endothelial cells and 
in other cells within the perivascular niche (Figure 3A). 

In secondary GBM Na, K-ATPase β2/AMOG isoform-specific labelling was of lower intensity 
than that observed in primary GBM and GFAP was more intense (Figure 3D,E).  
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Figure 2. Immunoperoxidase staining for Na, K-ATPase β1 isoform in secondary GBM. (A) Stronger
expression in the edge of the section becoming less intense inwards. Arrows point to the interface
between the two zones. (B) Enlargement of the interface line. Na, K-ATPase β1+ cells appear mainly
fibrillary (B,C,E), but also as rounded cells (arrow in (D)). (C,E) endothelial cells (arrowheads) are β1−

and vessels appear surrounded by β1+ fibers.

2.2. Na, K-ATPase β2/AMOG Isoform Expression in GBM

In primary GBM, β2/AMOG signal was mainly located in the plasma membrane and in the
cytoplasm at a lesser intensity in GFAP+ astrocytes; in some instances, positive fluorescence was
observed in nuclei (Figure 3A–C, yellow arrow) or in nuclear envelope (Figure 3A–C, white arrow).
Moreover, GFAP negative and β2/AMOG positive cells were observed (Figure 3A–C, arrowhead),
although β2 expression was less intense than that observed in astrocytes and localized mainly in the
cytoplasm and in the nuclear envelope. Definitively, β2/AMOG fluorescence signal in astrocytes was
higher than that for β1.

In proliferating blood vessels, positive β2/AMOG staining was observed in endothelial cells and
in other cells within the perivascular niche (Figure 3A).

In secondary GBM Na, K-ATPase β2/AMOG isoform-specific labelling was of lower intensity
than that observed in primary GBM and GFAP was more intense (Figure 3D,E).
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Co-immunolocalization of β2/AMOG and the telocyte marker CD34 (cluster of differentiation
34) was observed in some cells surrounding proliferating blood vessels (Figure 2G,H); these cells also
expressed β3 (Figure 3, panel I).
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Figure 3. (A–F) Co-immunolocalization of Na, K-ATPase β2/AMOG (Adhesion Molecule On Glia)
isoform (green) and GFAP (red) in GBM. (A–C) primary GBM. β2+ staining is mainly located in plasma
membrane and less intense in cytoplasm of GFAP+ astrocytes. Some GFAP+ astrocytes show positive
fluorescence in nuclei (yellow arrow) or in nuclear envelope (white arrow). In GFAP negative cells,
β2/AMOG positive immunolocalization is present in cytoplasm and nuclear envelope (arrowheads).
(D–F) In secondary GBM, Na, K-ATPase β2/AMOG isoform-specific labelling is of lower intensity
than the observed in primary GBM and GFAP is more intense. (G,H) Positive immunostaining of
β2/AMOG isoform in CD34+ (cluster of differentiation 34) telocyte-like cells (arrows). (I) CD34+/β2+

telocyte-like cells also express β3 isoform, mainly located in the cytosol (β2 is found in cytosol and
more intense in plasma membrane and nuclear envelope).

2.3. Na, K-ATPase β3 Isoform Expression in GBM

Most GFAP positive astrocytes exhibited β3 subunit positive immunolabelling (Figure 4A–C,
white arrows) in the cytosol, nucleus and nuclear envelope. β3 positive labelling was also observed in
giant, spherical or spindle-shaped cells (Figure 4A–C, yellow arrow).

Co-labelling with RNTβ3 and CD31 antibodies evidenced the expression of this isoform in CD31+

pericyte-like cells (Figure 4D,E, yellow arrow), in CD31+ macrophages (Figure 4D,E, white arrows)
and in endothelial cells (Figure 5E).

PCNA+ (Proliferating Cell Nuclear Antigen) cells were β3 positive too, mainly in the nuclear
envelope, in cytoplasm and in plasma membrane (Figure 4G–I, arrows). In determined areas of GBM
samples, β3-specific fluorescence was brighter at the tumor front decreasing gradually to the interior
(Figure 4G,I); thus, the ratio β3/PCNA in these areas was higher in the front and lower within the
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tumor (Figure 4G–I). In other areas, the β3 signal was homogeneous and very intense, both in the
periphery and in the interior (Figure 5E).Int. J. Mol. Sci. 2017, 18, 2369  7 of 16 
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labelling in the nucleus and nuclear envelope (white arrows). Yellow arrow points to a giant spindle-
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secondary GBM shows positive β3 staining in cytosol and plasma membrane of CD31+ macrophages 
(white arrows) and in CD31+ pericytes (yellow arrow). (G–I) Co-localization of β3 isoform (green) 
and proliferating cell nuclear antigen (PCNA) (red). White arrows point to PCNA+ cells in which β3+ 
signal is observed in plasma membrane, cytoplasm and the nuclear envelope. Scale bar: 25 μm. 

2.4. Na, K-ATPase β-Isoforms Expression in Blood Vessel Cells and Perivascular Niche of GBM 

Figure 5 shows serial sections from the same GBM patient double immunostained for the 3 β-
subunit isoforms and the endothelial/macrophage/telocyte marker CD34 or the 
endothelial/monocyte-derived macrophage/pericyte marker CD31. β1 and β2 positive staining in 
endothelial cells was mainly located in the cytoplasm and nuclear envelope of endothelial cells 
(Figure 5A,C), while β3 was mainly located in the nucleus of such cells, with higher intensity 
compared to the other isoforms (Figure 5E). Moreover, a brighter fluorescence signal for the β3 
isoform was observed in the peripheral cells surrounding the blood vessel compared to those of β1 
and β2 immune staining (Figure 5). 

Figure 4. Double immunolocalization for GFAP (red) and Na, K-ATPase β3 subunit isoform (green)
in primary and secondary GBM. (A–C) In primary GBM, most GFAP+ astrocytes show β3 positive
labelling in the nucleus and nuclear envelope (white arrows). Yellow arrow points to a giant
spindle-shaped cell β3 positive. (C) A+C merge. (D–F) Co-localization of β3 isoform and CD31
marker in secondary GBM shows positive β3 staining in cytosol and plasma membrane of CD31+
macrophages (white arrows) and in CD31+ pericytes (yellow arrow). (G–I) Co-localization of β3
isoform (green) and proliferating cell nuclear antigen (PCNA) (red). White arrows point to PCNA+
cells in which β3+ signal is observed in plasma membrane, cytoplasm and the nuclear envelope.
Scale bar: 25 µm.

2.4. Na, K-ATPase β-Isoforms Expression in Blood Vessel Cells and Perivascular Niche of GBM

Figure 5 shows serial sections from the same GBM patient double immunostained for
the 3 β-subunit isoforms and the endothelial/macrophage/telocyte marker CD34 or the
endothelial/monocyte-derived macrophage/pericyte marker CD31. β1 and β2 positive staining
in endothelial cells was mainly located in the cytoplasm and nuclear envelope of endothelial cells
(Figure 5A,C), while β3 was mainly located in the nucleus of such cells, with higher intensity compared
to the other isoforms (Figure 5E). Moreover, a brighter fluorescence signal for the β3 isoform was
observed in the peripheral cells surrounding the blood vessel compared to those of β1 and β2 immune
staining (Figure 5).
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3. Discussion 

The physiological role of Na, K-ATPase in astrocytes is to remove the excess of K+ from the 
extracellular space after neuronal depolarization. However, transformed astrocytes in GBM harness 
ion channels and pumps, including Na, K-ATPase, to sustain their singular growth and invasion 
instead of regulation [58–60]. This study focuses on the Na, K-ATPase β subunit isoforms expression 
to determine their involvement in GBM oncobiology. 

Table 2 summarizes the cell- and subcellular-specific Na, K-ATPase β subunit isoforms 
expression in primary and secondary GBM. 

The three Na, K-ATPase β subunit isoforms (β1, β2, β3) were detected in both primary and 
secondary GBM. β1 expression was observed predominantly in the cell membrane and nucleus of 
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of astrocytes. In astrocytes of secondary GBM, β3 was also detected in cytosol and plasma membrane. 
Regarding expression levels, Na, K-ATPase β2 isoform expressed in astrocytes was lower in 

Figure 5. Serial sections from the same secondary GBM patient double immunostained for the
3 β-subunit isoforms (green) and the endothelial/macrophage/telocyte marker CD34 (cluster of
differentiation) or the endothelial/monocyte-derived macrophage/pericyte marker CD31 (red).
(A,B) light β1+ immunolabelling is present in the cytoplasm of CD34+ endothelial cells. (C) β2 positive
staining in the cytoplasm and nuclear envelope (arrow) of endothelial cells. (D) β2, CD34 and DAPI
merged image. (E) Nuclei of endothelial cells show a strong β3 immunostaining. Note the higher
staining intensity for the β3 isoform in peripheral cells surrounding the blood vessel, compared to β1
and β2 immune labeling. (F) β3, CD31 and DAPI merged image. Scale bar: 40 µm.

3. Discussion

The physiological role of Na, K-ATPase in astrocytes is to remove the excess of K+ from the
extracellular space after neuronal depolarization. However, transformed astrocytes in GBM harness
ion channels and pumps, including Na, K-ATPase, to sustain their singular growth and invasion
instead of regulation [58–60]. This study focuses on the Na, K-ATPase β subunit isoforms expression
to determine their involvement in GBM oncobiology.

Table 2 summarizes the cell- and subcellular-specific Na, K-ATPase β subunit isoforms expression
in primary and secondary GBM.

The three Na, K-ATPase β subunit isoforms (β1, β2, β3) were detected in both primary and
secondary GBM. β1 expression was observed predominantly in the cell membrane and nucleus of
GFAP negative cells, β2 in cytoplasm, plasma membrane and nuclei of astrocytes and β3 in the nuclei
of astrocytes. In astrocytes of secondary GBM, β3 was also detected in cytosol and plasma membrane.
Regarding expression levels, Na, K-ATPase β2 isoform expressed in astrocytes was lower in secondary
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GBM compared to primary GBM and β3 isoform expression was more intense in secondary GBM
compared to primary GBM.

Table 2. Cell- and subcellular-specific Na, K-ATPase β subunit isoforms expression in primary and
secondary GBM.

Primary GBM β1 β2 β3

Astrocytes −/+
c,n

++
c,n,m

++
n

Endothelial cells −/+
c

++
c,n

++
n

Pericytes ++
c,m

++
c,n

++
c,m

Telocytes ? +++
c,n

+++
c

TAMs ++
m

++
c,n

++
c,m

Tumor cells −/+
c,n,m

+
c,n,m

+++
c,n

Secondary GBM β1 β2 β3

Astrocytes − −/+
c,n,m

+++
c,n,m

Endothelial cells +
c,m

++
c,n

+++
n

Pericytes +/++
c,m ? ++

c,m

Telocytes − +++
c,n

+++
c,n

TAMs +
c,n,m

++
c,n

++
c,m

Tumor cells −/+
c,n

+
c,m,n

+++
n

−, negative; +, low; +, moderate; +++, high; −/+, variable from low to absent; ++/+, variable from moderate
to low; ?, indeterminate staining; m, membrane; c, cytoplasm; n, nucleus or nuclear envelope. TAMs: tumor
associated macrophages.

Na, K-ATPase β2 in a healthy brain is mainly expressed in astrocytes [61].
Conversely, other studies reported that in human gliomas β2/AMOG isoform was downregulated
in neoplastic cells astrocytes, and this decrease in expression was correlated with increasing tumor
grade and cell migration [56,57]. Moreover, we found that GFAP expression in secondary GBM was
more intense than that observed in primary GBM, suggesting that astrocytes in primary GBM are less
differentiated than those of secondary GBM. With this in mind, it would be logical to assume that
primary GBM astrocytes present an equal or lesser expression of β2 than secondary GBM astrocytes,
which has a slower progression. However, we found that in primary GBM the β2 isoform expression
was more intense than that observed in secondary GBM (Table 2).

The Na, K-ATPase β1 isoform studied in mammal brains is predominantly expressed in neurons,
and negligible in astrocytes [61]. We found in both primary and secondary GBM, that astrocytes did
not express β1 or expressed it weakly; this is consistent with the findings in the literature referred to in
the Introduction section. We also observed GFAP negative cells that expressed β1 subunit.

Regarding the oligodendrocyte-specific β3 isoform [40,61], we found positive expression in
most GBM cells, either GFAP positive or negative. In secondary GBM there were more cells
expressing β3 than in primary GBM, which may be due to a decrease in the β2 expression tied
to an increase of β3 expression. The presence of the β3 isoform and the low expression of the β1 and
β2 isoforms characteristic of astrocytes are consistent with an oligodendrocyte or oligodendrocyte
progenitor phenotype [40].
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Another important objective of this study was to correlate the mitotic index related to the
expression of isoforms by co-localization of those along with PCNA, the clamp subunit of DNA
polymerase δ marker of cell proliferation [62,63], and carry out further analysis by confocal microscopy.
No correlation was seen between sodium pump isoforms and PCNA protein expression in GBM cells,
that is, high expression of PCNA can be found in cells with either high or low expression levels of the
different β isoforms, and vice versa.

Other than in gliomas, abnormal expression of Na, K-ATPase β subunit isoforms has been
observed in many carcinomas. β1 and β2/AMOG mRNAs are decreased in renal, lung and
hepatocellular carcinomas [64], and expression levels of the corresponding proteins are decreased
in human clear cell renal cell carcinoma [51] and bladder carcinoma [65]. Previous work from
our laboratory [66] reported opposite patterns of β1 isoform expression in gastric and colon
adenocarcinomas in a recent study of subcellular expression of all α and β subunits isoforms in
colorectal cancer [67]. The level of expression and the location of the β subunit in epithelial cells
are important for maintaining their well-differentiated phenotype, which disappears during cancer
progression. Further studies suggest that the transcription factor Snail might be repressing the β1
isoform and E-cadherin expression in carcinomas, associating these events to epithelial-mesenchymal
transition (EMT) [65].

Variations in β isoforms expression patterns have been described in the regeneration of dorsal
root ganglia and sciatic nerve [68], resembling to a certain extent, changes reported in GBM.

With the purpose of finding an β2/AMOG neuronal receptor-protein, the Matchmaker
Two-Hybrid system from Clontech was used to pull-out β2/AMOG interacting factors [69,70].
“The two-hybrid assay is a sensitive in vivo method for identifying proteins that interact with
protein of interest and is well-suited for detecting weak or transient interactions”. Full-length
β2/AMOG prevented cell survival, thus, the protein was split into a carboxy-terminal fragment
and an amino-terminal fragment and independently used for screening for interacting proteins in a
Human Brain Matchmaker cDNA library (Clontech, Mountain View, CA, USA). 2.7 × 106 clones were
screened. Both carboxy and amino fragments allowed us to identify interacting proteins, including the
cytosolic proteins, endoplasmic reticulum proteins and intra-nuclear proteins [71].

Invadosome formation is a key process in tumor progression including cell growth, angiogenesis,
invasion and metastasis. A previous report from our laboratory noted the presence of
podosome/invadopodia-like structures in the progression of GBM [72], showing that, with only
one exception in the neurons, all described kinds of cells in GBM present podosome/invadopodia-like
structures, including GBM-CSC (Cances Stem Cells) and tumor-associated macrophages (TAMs).
Here we show evidence (Figure 1G–I and Figure 2D) of the presence of Na, K-ATPase β1 and β2
isoforms in podosome/invadopodia-like structures in the tumor invasion front, where GBM cells
migrate towards the neighboring normal tissue by extending membrane protrusions (invadopodia)
containing metalloproteinases (MMPs) [73]. However, a specific role for β isoforms in the invadosome
of any non-α-associated β-isoform needs to be investigated.

Figure 6, as a graphical summary, shows the possible functional fate of Na, K-ATPase β subunit
isoforms based on the results of this study and compared with current research. However, further
studies need to be performed in order to precisely define the moonlighting roles of the Na, K-ATPase
β isoforms as transcriptional co-activators or transduction signal adaptors and their potential use as
biomarkers of specific GBM staging and progression.
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Figure 6. Na, K-ATPase β subunit isoforms functional fates. (1) as a subunit of the plasma membrane
sodium pump αβ protomer [16]. (2) as a component of the cell de-differentiation and proliferation
regulatory path Src-B-Raf-MEK-ERK [25]. (3–4) transcriptional regulator as co-activator of RNA
polymerase II, embedded either in the nuclear envelope (3) or intranuclear (4). (5) in the cytosol,
ready to be disposed to the plasma membrane or, (6) to act as an adaptor of a transduction signal
canonical pathway or, (7) constituting a piece of the podosome/invadosome system.

4. Materials and Methods

4.1. Patients and Tumor Tissue

The study was approved by the Ethical Committee of Nuestra Señora de Candelaria University
Hospital (HUNSC); Santa Cruz de Tenerife, Canary Islands, Spain (no. 198/2008, approved on
16 September 2008) and the Ethics Committee of La Laguna University (La Laguna, Canary Islands,
Spain). All patients were treated in the HUNSC between years 2007 and 2017 and provided informed
consent for the diagnosis and research of tissue specimens before entering the study. Clinical and
pathology data were collected from 41 patients, 33 primary GBM (14 males and 19 females) and
8 secondary GBM (6 males and 2 female). GBM samples were taken after initial surgery before patients
received radiation or chemotherapy. Paraffin-embedded tissue samples and corresponding clinical
data were used ensuring patient’s anonymity.

4.2. Antibodies

Primary antibodies: rabbit polyclonal antibody SpETβ1 (anti-human-Na, K-ATPase β1 isoform)
(dilution 1:600); rabbit polyclonal antibody SpETβ2 (anti-human-Na, K-ATPase β2 subunit isoform)
(dilution 1:600) [74]; rabbit polyclonal antibody RNTβ3 (anti-Na, K-ATPase β3 subunit isoform)
(dilution 1:100) [40]; mouse monoclonal antibody clone PC10 against anti-proliferating cell nuclear
antigen (PCNA) (dilution, 1:100; #1486772 Roche Diagnostics GmbH, Mannheim, Germany);
mouse monoclonal anti-human cluster of differentiation (CD)31 (ready-to-use; #IR610 Dako, Glostrup,
Denmark); mouse monoclonal anti-Glial Fibrillar Acidic Protein (GFAP) (dilution 1:100; #G3896 Sigma,
Saint Louis, MO, USA). Secondary antibodies: fluorescein isothiocyanate (FITC)-conjugated goat pAb
against rabbit IgG (dilution 1:200; #F9887; Sigma-Aldrich, St. Louis, MO, USA); goat pAb against
mouse IgG DyLight® 650 (dilution 1:100; #ab97018; Abcam, Cambridge, UK).
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4.3. Image Analysis and Statistical Analysis

Tables were compiled by two independent observers that evaluated the specimens blindly.
Staining intensities were graded as strong (+++), moderate (++), weak (+) or absent (−). These cut-offs
were established by consensus between each investigator. In the cases where the scores were different
by more than one unit, the observers re-evaluated the specimens to reach a consensus. In other cases,
the means of the scores were calculated.

4.4. Immunohistochemistry

Immunoperoxidase staining of 10% formalin-fixed paraffin-embedded tissue sections was
performed using an ordinary avidin-biotin method. Briefly, after deparaffinization in xylene and
hydration in a graded series of alcohol baths, tissue sections were heated in sodium citrate buffer
(pH 6.0) at 120 ◦C for 10 min in an autoclave to achieve epitope retrieval. Non-specific sites were
blocked with 5% non-fat dry milk in Tris buffered saline (TBS) for 1 h at room temperature. To block
endogenous biotin, the Avidin/Biotin Blocking kit (#SP-2001, Vector Laboratories Inc., Burlingame,
CA, USA) was used according to the manufacturer instruction. Primary antibodies were incubated
over night at 4 ◦C. Endogenous peroxidase activity was blocked by incubating the slides with 3%
hydrogen peroxidase in methanol for 15 min. Biotin-conjugated anti-rabbit secondary antibody was
incubated for 2 h at 37 ◦C, and the specific antibody staining was amplified with the ABC Peroxidase
Staining kit (Thermo Fisher Scientific, Inc., Waltham, MA, USA). 3,3′-diaminobenzidine substrate
concentrate (#IHC-101F; Bethyl Laboratories Inc., Montgomery, TX, USA) was used to visualize
immunohistochemical reactions. Samples incubated without primary antibodies were used as a
negative control. Slides were counterstained with Harris hematoxylin solution DC (#253949, Panreac
Química SLU, Barcelona, Spain) to visualize cell nuclei and mounted with Eukitt mounting medium
(#253681, Panreac Química SLU, Barcelona, Spain). An optical light microscope (BX50; Olympus
Corporation, Tokyo, Japan) was used to visualize the results of the immunostaining.

4.5. Double Immunofluorescence Simultaneous Staining

Immunofluorescent staining of 10% formalin-fixed paraffin-embedded tissue sections was
performed as previously described [51]. Briefly, after deparaffinization in xylene and rehydrated
in a graded series of alcohol baths, tissue sections were heated in sodium citrate buffer (pH 6.0)
at 120 ◦C for 10 min in an autoclave to achieve epitope retrieval. Nonspecific sites were blocked
with 5% bovine serum albumin or normal donkey serum in Tris-buffered saline (TBS) for 1 h at
room temperature, tissue sections were then incubated simultaneously with a mixture of two distinct
primary antibodies (i.e., rabbit against human target 1, mouse against human target 2) overnight
at 4 ◦C. Slides were then incubated for 1 h at room temperature in the dark with a mixture of two
secondary antibodies raised in different species and conjugated to different fluorochromes. Slides were
mounted with ProLong®Diamond Anti-fade Mountant with DAPI (Molecular Probes®; Themo Fisher
Scientific, Inc., Waltham, MA USA) to visualize cell nuclei. Slides were analyzed using Olympus
FV1000 (Olympus Corporation, Tokyo, Japan) and Leica SP8 (Leica Microsystems, Wetzlar, Germany)
confocal microscopes.

5. Conclusions

Assuming that β2/AMOG is involved in physiological astrocyte-neuron adhesion and the changes
reported in this study on the quantitative and topological location of Na, K-ATPase β subunit isoforms,
we also propose a role for these proteins in the egoist transformation of the astrocyte from its duty as
neuron carer to GBM cancer cell.
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Abbreviations

ECM Extracellular matrix
EMT Epithelial-mesenchymal transition
FITC Fluorescein isothiocyanate
DAPI Diamond Anti-fade Mountant
GBM Glioblastoma multiforme
GIMs Glioma-infiltrating myeloid cells
Iba1 Ionized calcium binding adaptor molecule 1
IQGAP1 IQ motif containing GTPase-activating protein
MAP2 Microtubule-associated protein 2
PCNA Proliferating cell nuclear antigen
TAMs Tumor associated macrophages
TRITC Tetramethylrhodamine B isothiocyanate
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