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Abstract: Natto, a fermented soybean product, has been consumed as a traditional food in Japan for
thousands of years. Nattokinase (NK), a potent blood-clot dissolving protein used for the treatment
of cardiovascular diseases, is produced by the bacterium Bacillus subtilis during the fermentation of
soybeans to produce Natto. NK has been extensively studied in Japan, Korea, and China. Recently,
the fibrinolytic (anti-clotting) capacity of NK has been recognized by Western medicine. The National
Science Foundation in the United States has investigated and evaluated the safety of NK. NK is
currently undergoing a clinical trial study (Phase II) in the USA for atherothrombotic prevention.
Multiple NK genes have been cloned, characterized, and produced in various expression system
studies. Recombinant technology represents a promising approach for the production of NK with
high purity for its use in antithrombotic applications. This review covers the history, benefit, safety,
and production of NK. Opportunities for utilizing plant systems for the large-scale production of
NK, or for the production of edible plants that can be used to provide oral delivery of NK without
extraction and purification are also discussed.

Keywords: nattokinase; oral; antithrombotic agent; cardiovascular disease; plant molecular farming;
gene expression

1. Introduction

Nattokinase (NK) is not related to any of the known kinases. NK is a serine protease purified
and extracted from natto (Figure 1A), a traditional Japanese food produced from the fermentation of
soybeans with the bacterium, Bacillus subtilis (natto) (Figure 1B,C). Natto is regarded as a fibrinolytic
miracle food (Figure 2). In 1980, Hiroyuki Sumi, a Japanese researcher at the Chicago University
Medical School, discovered that natto can dissolve artificial fibrin [1]. Sumi and his team extracted an
enzyme from natto that not only degraded fibrin but also a plasmin substrate. He named this novel,
fibrinolytic enzyme “nattokinase” [1].

NK can break down blood clots by directly hydrolyzing fibrin and plasmin substrate, converts
endogenous prourokinase to urokinase (uPA), degrades PAI-1 (plasminogen activator inhibitor-1), and
increases tissue plasminogen activator (t-PA) which supports fibrinolytic activity (Figure 3: Mechanism
of action) [2]. Unlike common fibrinolytic proteases, such as t-PA and uPA, which can produce
various side effects such as bleeding, NK exhibits little to no side effects. Studies also indicate
that an oral administration of NK can be absorbed by the intestinal tract [3,4]. NK exhibits strong
fibrinolytic activity after intraduodenal absorption. These characteristics make NK a versatile and
potent fibrinolytic enzyme that can be used to combat blood clots.
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Figure 1. Natto—a traditional Japanese food produced from soybeans fermented by Bacillus subtilis 
(natto). (A) Natto-Fermented Soy Beans; (B) B. subtilis (natto) isolated from natto; (C) Micrograph of 
gram stained cells of B. subtilis (natto) (1000×). 

 
Figure 2. Natto and nattokinase can dissolve fibrin (semi-transparent halo ring). (1–5) Natto-
fermented soy beans; (6) Slimy material characteristic of natto; (NK) Commercial nattokinase (100 µg) 
as a positive control; Non-fermented soybean and PBS (phosphate buffered saline) as negative 
controls. 

 
Figure 3. Mechanism of Action. Nattokinase dissolves blood clots by directly hydrolyzing fibrin and 
plasmin substrate. It converts endogenous prourokinase to urokinase (uPA). It also degrades 
plasminogen activator inhibitor (PAI-1) and increases the level of tissue plasminogen activator (t-PA). 
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2. Benefits of Nattokinase

Nattokinase is considered to be a safe, powerful, low cost, and all-natural supplement for
the treatment of heart and cardiovascular disease [5–7]. Animal [3,4,8] and human trials [9–11]
have demonstrated that NK provides support to the circulatory system by thinning the blood and
dissolving blood clots. When dogs were orally administered four NK capsules (2000 FU/capsule),
chemically-induced thrombi in the major leg vein were completely dissolved within five hours and
normal blood flood was restored [8]. A rat model of thrombosis in the common carotid artery also
demonstrated that NK-treated rats recovered 62% of arterial blood flow. NK exhibited considerably
stronger thrombolytic activity than the fibrinogenolytic and fibrinolytic enzymes, plasmin, or elastase;
which restored 15% and 0% of blood blow in the rat carotid artery, respectively [3].

NK was reported to have an effect on both oxidative injury-mediated arterial thrombosis [12,13]
and inflammation-induced venal thrombosis [14]. When ferric chloride (FeCl3) was administered to
the injured arteries, it resulted in oxidative thrombosis and platelet adhesion. After treatment with NK,
however, thrombus formation and platelet aggregation were inhibited. The effects of NK are similar to
the well-known blood thinner, aspirin [13]. Unlike aspirin, which often triggers bleeding or gastric
ulcers, NK improves blood flow without any adverse effects. κ-Carrageenan-induced inflammatory
thrombi formation in rat tails was used to examine the effect of NK [14]. Twelve hours after gavage
administration of NK, higher levels of fibrin degradation product (FDP) fragments and D-dimers were
detected in blood samples. A greater than 50% decrease in thrombosis was observed in the blood
vessels of the rat tail by biopsy analysis.

Elevated levels of factor VII and VIII are associated with greater risk of cardiovascular disease
due to the potential of these factors to trigger a blood coagulation cascade. In a human trial, three
groups (healthy volunteers, patients with cardiovascular risk factors, and patients undergoing dialysis)
were orally administered two capsules of NK (2000 FU/capsule) on a daily basis. After two months,
a significant and similar decrease in factor VII, factor VIII, and fibrinogen was observed in all of the
groups. No adverse effects were detected during the two-month trial and heart rate, body weight, and
uric acid levels remained stable [15].

Nattokinase has a strong ability to breakdown thrombi and fibrin. Even a single dose of
NK has been reported to result in fibrinolysis via the cleavage of cross-linked fibrin [10]. In that
study, 12 healthy, young males were randomly administered a single capsule of NK (2000 FU). The
antithrombin concentration in their blood increased significantly two hours after the oral consumption
of the NK capsule. FDP fragments and D-dimers were observed four and six hours after NK
administration, respectively, and factor VIII activity declined four hours after NK ingestion. The
results of this study indicated that multiple different pathways may be involved in NK fibrinolysis
and anti-coagulation activity.

Both NK and lumbrokinase (derived from earthworms), unlike most proteins, are more resistant
to the highly acidic gastric fluids in the stomach and can be absorbed in the later sections of the
digestive tract. In 1995, Fujita and colleagues demonstrated that NK could be absorbed from the rat
intestinal tract in an intact form and degraded fibrinogen in plasma blood samples [3]. Subsequently,
in 2013, a research team in the United States detected intact NK in the serum of healthy humans after
they were administrated a single, oral dose of NK (2000 FU/100 mg) in a capsule [16]. Other studies
have also shown that oral administration of NK can enhance fibrinolytic activity in plasma [3,16]. The
mechanism by which NK is transported from the digestive tract into the circulatory system still needs
to be elucidated. NK can resist high temperature (50 ◦C) and pH (to 10), which certainly contributes to
the ability of this enzyme to remain intact in the gastrointestinal tract [6].

At present, commercial NK products (Figure 4) are widely-used in Japan, China, Korea, European
Union Countries, Canada, and the United States as a food supplement to thin blood, prevent blood
clots, and improve blood circulation. Studies also indicate that NK can ameliorate other diseases such
as hypertension [4], stroke [17], Alzheimer’s disease [18], and atherosclerosis [19]. The potential of
using NK to decrease atherothrombotic risk and slow the progression of atherosclerosis as well as
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cognitive decline is currently being assessed in a Phase II clinical trial (ClinicalTrials.gov Identifier:
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3. Nattokinase Safety Assessment

Natto (Figure 1A), a soybean product fermented by the bacterium, Bacillus subtilis (natto), has
been consumed as a traditional food in Japan for over a thousand years. Reports have suggested that
natto contributes significantly to the longevity of Japanese people [1,5]. The accumulation of lipofusin
(age pigment) is considered a hallmark of aging. In this regard, natto extract was reported to delay
lipofusin accumulation in the nematode, Caenorhabditis elegans. The lifespan of C. elegans was also
significantly prolonged by the Natto extract [20].

Although no adverse sides effects have been observed from the consumption of NK in various
human trials, including clinical trials, the safety profile for NK, including the effect of repeat doses,
acute toxicity, and genotoxicity, still needs to be thoroughly addressed. Comprehensive safety data,
assembled under Good Laboratory Practice (GLP)-compliant studies and reported in 2016, indicated
that neither clastogenic nor mutagenic activity was observed in vitro after NK treatment [11].

B. subtilis (Figure 1B,C), the bacterium responsible for the production of natto and the synthesis of
NK, is not a pathogenic bacterium. The inoculation of rats with B. subtilis (1.51× 109 CFU/mL) derived
from natto did not produce any signs of toxicity. Fourteen days after the treatment, no remaining viable
B. subtilis cells were observed in the lungs, liver, brain, or kidneys by histopathological examination.
No significant adverse signs or mortality were observed in an acute toxicity study within a 14-day
study period when rats were gavage administrated a single dose of NK (2000 mg/kg). When rats were
repetitively given single daily dose of NK (1000 mg/kg) for 90 days, no abnormal clinical observations
were detected relative to control groups.

In human clinical studies, no-adverse-effect-level (NOAEL) was found when healthy human
volunteers orally consumed NK (10 mg/kg) daily for 28 days [11]. Participants in the study exhibited no
significant changes in their urine, blood pressure, or pulse. The collective data found in toxicity studies
has provided a robust safety assessment for NK usage to both regulatory agencies and pharmaceutical
companies. Presently, the recommended usage for NK is for two capsules (100 mg/capsule) daily.
This dosage of NK has raised very low toxicological concerns based on the previously published
safety studies.
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4. Production and Purification of Nattokinase

The fermented soybean product, natto, is the main source for obtaining purified NK. A similar
enzyme has been extracted from other fermented soybean-based foods, such as Thai thua nao [21],
Chinese douchi [22], and Korean doen-jang [23].

The traditional process of fermenting soybeans to make natto is simple and straightforward, and
can be easily done at home. Bacillus subtilis (natto) is the starter used to make natto, commercially and
at home. B. subtilis (natto) can maintain activity at a pH of 6–12 and resist high temperatures up to
60 ◦C [24,25]. The B. subtilis strains present in current commercial NK products can maintain viability
and metabolic activity at room temperature for at least six months. Cooked soybeans are inoculated
with B. subtilis (natto) and incubated at room temperature to ferment for at least 24 h until the beans
are covered with a viscous and sticky substance produced by the bacterium and consisting of glutamic
acid polymers (Figure 1A). Commercial NK production practices optimize the fermentation conditions
to maximize the yield of NK produced by B. subtilis (natto), and include optimal temperature, pH,
and fermentation time [26,27]. A variety of nutrients, such as glycerol, yeast extract, soy peptone, or
shrimp shell powder have been examined for their ability to increase NK yield [28–30]. The optimal
feed strategy used in in fed-batch fermentation methods has significantly enhanced NK production,
relative to yields obtained by batch fermentation [31].

Compared to the simple fermentation process, downstream extraction and purification of NK
from natto slurry is difficult and inefficient. Several steps are required, including homogenization
with an organic solvent, salting out the proteins, protein ion-exchange chromatography and dialysis,
etc. Low NK activity recovery from these involved processes have driven researchers to investigate
more inexpensive, rapid, and efficient techniques for NK purification [24,32,33]. Garg and Thorat [34]
developed a three phase partitioning (TPP) technique to purify NK by combining t-butanol (1.5× to
crude extract) and ammonium sulphate (30% w/v) to precipitate the NK protein. The desired results
were obtained using an optimal pH (8.0) and temperature (37 ◦C). NK activity varies, however, when
different purification methods are used. In addition, there is also potential for the retention of excessive
byproducts in the final product than can cause an allergenic reaction [35].

The mild odor and stringy texture of natto is a major drawback to its use as a common food.
Outside of Japan, NK is generally consumed orally in capsules typically made of vegetable-based
materials for vegetarians. The presence of impurities in current NK products, however, prevents their
common use as therapeutic medicine for thrombosis. Current NK products have raised concerns
in the Federal Drug Administration (FDA) due to the requirement of high-levels of purity in single
component entities. Thus, recombinant technologies have been explored to increase the quantities and
purity of the NK being produced.

5. Analysis of the Nattokinase Gene and Protein

Nattokinase is encoded by the aprN gene, which was first cloned and sequenced from B. subtilis
(natto) [36]. The full length polypeptide contains a 29-residue signal peptide which directs protein
secretion through the cell membrane, and a 77-residue propeptide which plays a crucial role as an
intramolecular chaperone during the protein folding process; resulting in a 275-residue, mature and
functional NK peptide. The partial length of aprN gene is 0.8 kb in length (Figure 5A) and the mature
peptide has a molecular weight of 27.7 kDa (Figure 5B). Since the amino acid sequence of NK is
almost identical (99.3% homologous) to Subtilisin E, NK was also considered as a member of the
subtilisin serine protease family. Unlike subtilisin, however, NK has a very specific affinity for fibrin
degradation [37]. The D32-H64-S221 motif and N155 function as the catalytic triad and oxyanion hole
of NK, respectively [38,39]. These sites are critical for the protease hydrolysis process. Based on the
crystal structure of Subtilisin E, a 3D structural model of NK was constructed [38]. It indicated that the
overall active centers are negatively charged, suggesting that NK is more specific for positive-charged
substrates. 3D model predicted that the mechanism of NK was induced by attacking of hydroxyl rich
in catalytic environment and locating of S221 [38]. Site-directed mutagenesis and molecular dynamics
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simulation of a 3D model revealed that hydrogen bonds formed between residues, S33, D60, S62, and
T220 stabilize the transition state of the hydrolysis reaction. S125, L126, and G127 serve as substrate
binding sites. Three residues of S3 binding sites, G100, S101, and L126 are responsible for fibrinolytic
activity while they moderately affected substrate specificity [40].
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Figure 5. NK gene product and insoluble (inclusion-body) NK protein in Escherichia coli.
(A) PCR-derived NK gene product from B. subtilis (natto); (B) Lane 1: NK protein present in
crude medium extract; Lane 2 and 3: NK protein purified using a Ni-NTA (nickel-charged affinity
nitrilotriacetic acid) column.

In addition to B. subtilis strains, researchers have isolated NK from marine organisms [41] and
Pseudomonas sp. [42]. Sixteen NK gene sequences have been identified from various B. subtilis strains
and their sequences are available in the NCBI GenBank. Amino acid sequence alignment of mature
NKs demonstrates that they are highly homologous to each other; with some of the protein sequences
possessing 100% identity. For example, the amino acid sequence of AF368283.1 and JF921199.1 are 100%
identical. In addition, JN302072 and EF20828.1 also share the same amino acid sequences (Figure 6).
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6. Recombinant Nattokinase Production via Genetic Engineering

In order to increase NK yields and simplify the downstream purification process, the NK gene
has been cloned and expressed in various microbial host systems, including Escherichia coli [43–45],
B. subtilis [46–48], and Lactococcus lactis [49]. E. coli has been extensively investigated as the easiest
and cheapest host system to produce recombinant NK. Although NK can be expressed in E. coli, large
amounts of recombinant protein aggregate results in the formation of insoluble and inactive inclusion
bodies [43,44]. Recovery of bioactive NK from inclusion bodies is challenging. Most of the protein is
lost during solubilization and refolding of the protein contained in the inclusion body is challenging.
Liang et al. (2007) isolated an NK gene from Chinese douchi and fused it with a periplasmic secretion
signal, PelB, and a native NK signal peptide [44]. Active NK was successfully expressed in E. coli,
however, the fibrinolytic activity of the secreted, recombinant NK was considerably lower than NK
isolated from natto. B. subtilis is also an attractive host for the production of recombinant NK since it
has the capacity to produce secretory proteins. The –10 element (TACAAT) of the NK (PaprN) promoter
was substituted with the consensus –10 region (TATAAT) and successfully enhanced NK expression
(643 mg/L) in recombinant B. subtilis [50]. B. subtilis itself, however, produces a substantial number
and quantity of native extracellular proteases which can hydrolyze recombinant proteins. In this
regard, an extracellular-protease-deficient strain of B. subtilis has been used to produce enhanced
levels of NK [51]. In that study, the NK gene was expressed under the control of the acoA promoter in
B. subtilis WB800, a strain that lacks eight extracellular proteases. Although a high yield of 600 mg/L
NK was achieved, the technique was not suitable for large-scale industrial application which requires
the production of g/L to be economically feasible.

The use of eukaryotic expression systems for the production of NK have also been explored.
A modified Bac-to-Bac® baculovirus expression system was used to express and produce active soluble
NK in Spodoptera frugiperda insect cells [52]. The high production costs and longer duration needed
for expression (~two weeks) do not support the use of insect cells as an NK production system.
A yeast expression system was also investigated as an NK production system [53]. In contrast to
E. coli systems, yeast is able to perform post-translational modifications and possess the molecular
machinery needed to fold recombinant proteins. The yeast, Pichia pastoris, in combination with a
methanol-inducible promoter, has the ability to achieve a high density level during fermentation and
can produce large quantities of recombinant protein. A low NK yield, however, was reported using
a P. pastoris expression system; but the NK produced did exhibit fibrinolytic activity [53]. Methanol
oxidation can induce cell death, and methanol also raises combustion concerns in large-scale industrial
applications. Therefore, utilizing methanol to induce protein expression significantly limits the use of
P. pastoris for the commercial production of NK.

7. Plants as Potential Factories for Nattokinase Production

Plant molecular farming (PMF), which utilizes plant systems for the production of recombinant
human pharmaceutical proteins, has been investigated for over 30 years and is becoming an attractive
alternative for the production of recombinant proteins [54–56]. Various difficulties—such as low yield,
restrictive biosafety regulations, pollen contamination, and downstream processing challenges—have
hindered its practical application [55,57]. The rapid development of genetic engineering technology,
facilitated by bioinformatic, proteomic, and genomic advances are paving a pathway from the
laboratory to the industrial production of recombinant proteins. In 2012, carrot-derived recombinant
taliglucerase alfa (commercial name: ELELYSO™) became the first plant-based recombinant enzyme
approved by the FDA to treat Gaucher’s disease [58]. In 2014, the Ebola virus epidemic attracted
scientific attention worldwide and the need to develop a vaccine. The fatality rate from Ebola was
nearly 50%, which resulted in approximately 11,000 deaths during that epidemic. No effective therapy
was available for the treatment of Ebola, except ZMapp, a novel therapy utilizing a tobacco-expression
system [59]. Seven Ebola patients achieved 100% recovery after being administered ZMapp [55].
ZMapp was granted a fast-track clinical trial by the FDA in September, 2015. In light of the two
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highlighted successes (ELELUSO and ZMapp), researchers have vigorously investigated the use of
plants as factories for the production of human pharmaceuticals. Currently, over 20 plant-derived
recombinant therapeutic proteins are in clinical trials, and several have received FDA approval [55].

Nattokinase is an ideal candidate for PMF. One of the major concerns in using PMF to produce
pharmaceutical proteins, however, is plant glycosylation. Glycosylation of proteins is a normal
occurrence and is used to regulate protein function during plant growth and development [60].
Unfortunately, when plant-derived therapeutic proteins are administered by injection, plant-specific
glycan residues may invoke unwanted side effects in patients, such as immunogenicity [61,62]. Plant
products, however, do not induce an immunogenic response when they are consumed through the
digestive system. Presently, people consume genetically modified food on a regular basis. Since NK is
mainly administered orally, using transgenic plants to produce NK would not face problems associated
with immunogenic responses, and may find greater acceptance due to the benefits of the recombinant
protein on human health.

Using plant expression platforms for NK production could significantly reduce production costs
(Figure 7). The expenses associated with the use of plant systems is very low, representing 0.1% to
10% of the cost associated with bacterial or other eukaryotic cell expression systems [63,64]. There are
a variety of ways to produce NK in plant systems. A rapid method is the utilization of a transient
expression system, which can produce high levels of recombinant protein within a relatively short
period of time (four to seven days) [65–69]. Various virus-based transient vectors have been studied for
use in PMF systems. The bean yellow dwarf virus (BeYDV)-based DNA replicon system, developed in
the laboratory of Hugh Mason, is one of the well-known systems [70]. The BeYDV system produced
0.5 mg/g of Ebola antibody (ZMapp) in tobacco leaves [71]. In 2016, the BeYDV vector was optimized
by modifying its 5′ and 3′ untranslated regions. Use of the optimized vector significantly enhanced the
yield of recombinant protein (1.8 mg/L) in Nicotiana benthamiana leaves, which represented the highest
yields of ZMapp ever reported [72]. Wang and Lauren (2014) successfully expressed NK in tobacco
leaves utilizing the BeYDV system [73]. The plant-derived soluble NK produced using this system
dissolved fibrin and blood clots in vitro. The high levels of recombinant NK produced in this system,
however, also caused leaf necrosis. We have also expressed other blood-clot dissolving proteases,
such as lumbrokinase, human tissue plasminogen activator (t-PA), and vampire bat plasminogen
activator (DSPAs) in tobacco leaves [55]. In addition, all of the manufactured proteases caused plant
cell death; resulting in leaf necrosis. The role of proteases in programmed cell death in animal cells is
well known [74] and it is plausible that plant proteases may have a similar role.
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Transient expression is relatively straightforward and scalable. Recombinant protein, however, has
to be harvested in a timely manner; otherwise it is subject to proteolysis. Another approach to transient
expression that overcomes the problem of proteolysis, is to express the recombinant protein—such as
NK—in plant seeds. Recombinant proteins produced in this manner can be stored for long periods
of time (up to three years), and are easy to harvest and transport. Seed-based systems have been
investigated in rice [75], corn [76], Arabidopsis [77], tobacco [78], and soybean [79]. In transgenic rice
seeds, the yield of recombinant human serum albumin is 10.58% of the total soluble protein (TSP) [75].
Cellobiohydrolase II (Cel6A) targeted to maize endosperm, represents 30% of seed TSP. Recombinant
protein yield in soybean can reach 4% of TSP [80]. Since natural NK is produced from fermented
soybeans, it represents an ideal platform for recombinant NK production. Soy formulations—such as
soy milk, powder, or flour—are regularly fed to infants with little or no side effects. It is also possible
to use soy formulation technology for NK application, which would require little to no downstream
purification of recombinant NK from transgenic soybean seeds. We have expressed NK in tobacco
seeds utilizing a seed-specific promoter (Phas). Seed-derived NK has also been demonstrated to
dissolve fibrin (manuscript in preparation).

Downstream processing and purification of PMF-derived protein can be costly due to the presence
of the large amounts of endogenous proteins, phenolic compounds, alkaline agents, lignin, and waxes
produced by plants. Downstream processing costs have been estimated to represent 80%–90% of the
total PMF production costs. NK, however, could be produced in edible plants, such as cucumber or
tomato, with unprocessed plant material serving as the agent for oral delivery of the recombinant
protein. This would eliminate expensive downstream extraction and purification costs. Another
advantage of producing NK in plants is that plant cell walls, which are composed of complex
carbohydrates, can potentially encapsulate the recombinant product and prolong enzyme activity as
the protein passes through the gastrointestinal tract. As a result, NK activity would be protected before
it enters into the circulatory system.

8. Conclusions

Nattokinase exhibits exceptionally potent fibrinolytic activity. Natto, a soybean product fermented
by B. subtilis (natto) and rich in NK, has been served as a traditional food in Asia for hundreds of
years and has recently garnered increased interest in Western medicine. Various animal and human
trials have demonstrated that NK improves blood circulation and helps decrease the risk of a variety
of cardiovascular diseases without producing any adverse side effects. The unpleasant odor and
texture of natto limits its utilization as a dietary nutriment. Costly and complicated extraction and
purification processes have inhibited the general use of NK as a nutraceutical. Currently, NK is sold as
a dietary supplement in the United States, Canada, and Europe. It is available as a powder contained
within a vegetable-based capsule. Ongoing advances in genetic engineering are providing a promising
future for the economically-viable, large-scale production of high-quality NK using recombinant gene
technology. Among the available expression systems (E. coli, yeast, and animal cell), plant expression
represents a promising alternative system for the production of NK for direct consumption or further
downstream processing and purification.
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