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Abstract: Approximately 1 billion people smoke worldwide, and the burden placed on society by
primary and secondhand smokers is expected to increase. Smoking is the leading risk factor for
myriad health complications stemming from diverse pathogenic programs. First- and second-hand
cigarette smoke contains thousands of constituents, including several carcinogens and cytotoxic
chemicals that orchestrate chronic inflammatory responses and destructive remodeling events. In the
current review, we outline details related to compromised pulmonary and systemic conditions related
to smoke exposure. Specifically, data are discussed relative to impaired lung physiology, cancer
mechanisms, maternal-fetal complications, cardiometabolic, and joint disorders in the context of
smoke exposure exacerbations. As a general unifying mechanism, the receptor for advanced glycation
end-products (RAGE) and its signaling axis is increasingly considered central to smoke-related
pathogenesis. RAGE is a multi-ligand cell surface receptor whose expression increases following
cigarette smoke exposure. RAGE signaling participates in the underpinning of inflammatory
mechanisms mediated by requisite cytokines, chemokines, and remodeling enzymes. Understanding
the biological contributions of RAGE during cigarette smoke-induced inflammation may provide
critically important insight into the pathology of lung disease and systemic complications that
combine during the demise of those exposed.

Keywords: receptor for advanced glycation end-products (RAGE); secondhand smoke; disease;
exposure

1. Introduction

1.1. Global Burden

Currently, it is estimated that there are nearly 1 billion smokers worldwide (WHO Fact Sheet
No 339). Of this enormous number, approximately 80% live in either low- or middle-income countries
where the effects or burdens of tobacco-related illness and death are the most substantial. Furthermore,
while the current worldwide population of smokers is estimated at 1 billion, current projections predict
that this number will rise to 1.6 billion in the next twenty-five years [1]. With such an inordinate
number of smokers world-wide, roughly 6 million people are expected to die each year because of
tobacco exposure (WHO Fact Sheet No 339). Of this number, over 600,000 people will die prematurely
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as a result of exposure to secondhand smoke (SHS). Unfortunately, while these numbers themselves
are galling, rampant tobacco use throughout the world has also had societal ramifications as exposure
is believed to contribute to over $500 billion in damages annually [2].

Because it appears that smoking prevalence will continue to rise despite its inherent dangers
and costs, research is expanding in order to better understand the consequences of these trends. The
intent of this review is to highlight significant health outcomes that result from SHS exposure and
suggest a generally unifying mechanistic theme underlying the biological consequences of exposure.
Mounting evidence suggests that the signaling effects of receptors for advanced glycation end-products
(RAGE) during exposure to primary and SHS may contribute to inflammatory disease establishment
and progression. RAGE is expressed in a variety of cell types including endothelial and vascular
smooth muscle cells, fibroblasts, macrophages/monocytes, osteoprogenitor cells, endothelium, and
epithelium [3] (personal communication). Of note, RAGE is most abundantly expressed in the lung,
the tissue in which it was initially discovered. Although RAGE is predominantly expressed in the lung,
it is detectable in a variety of tissues including the heart, brain, placenta, liver, kidney, pancreas, small
intestine, and colon [4,5]. This review will highlight the current understanding related to a subset
of smoke-related pathologies and conclude with evidence that supports a role for RAGE in disease
manifestation. The biochemical assessments performed to date have linked many tobacco-related
substances with negative health consequences [6]; however, much remains to be discovered.

1.2. Tobacco Smoke

Tobacco smoke contains over 4000 chemical substances [6], and a large portion of these
entities have been correlated with damaging health outcomes. The combustion of tobacco smoke
produces numerous compounds observed in both gaseous and particulate fractions. Many of these
compounds are toxic components that have been demonstrated to induce inflammation, cause
irritation, asphyxiation, and even carcinogenesis. Recent studies have suggested that at least 45
of these substances are known carcinogens [7]. Some of the key toxins produced by tobacco smoke
include benzene (leukemogen) [8], formaldehyde (an irritant and carcinogen) [9], benzo[a]pyrene
(carcinogen) [10], carbon monoxide and cyanide (asphyxiants) [11], acrolein (an irritant) [12], and
polonium (a radioactive carcinogen) [13,14]. Additionally, combustion of tobacco products creates a
non-enzymatic reaction of reducing sugars and amino groups to create compounds known as advanced
glycation end-products (AGEs) [15]. Such tobacco-derived AGEs are formed by Malliard chemical
pathways and are the key ligand that perpetuates pro-inflammatory RAGE signaling [16]. AGEs
that bind RAGE have been implicated in a large and diverse group of diseases including respiratory
inflammatory diseases [17], cardiovascular disease [18], cancer [19], diabetes [20], neurodegenerative
disorders [21], placental dysfunction [22,23], osteoarthritis [24], and general inflammation [25].
In mechanistic terms, AGE-RAGE interaction initiates a cascade of events that results in the induction
of chronic inflammation and impaired cell survival [26,27].

While significant damage is induced by active smoking, research has demonstrated that
individuals exposed to passive smoking (or secondhand smoke, SHS) are at risk for developing
significant health problems [6,28]. Indeed, literature suggests that SHS may even expose individuals
to higher levels of certain deleterious compounds than those observed in mainstream smoke.
SHS for example is shown to have higher levels of PAHs [29,30], tobacco-specific nitrosamines
(TSNA) [31–33], aromatic amines [34], aza-arenes [29,35], carbon monoxide [36–38], nicotine [39,40],
ammonia [41], pyridine [42,43], and gas phase components of acrolein, benzene, toluene, and isoprene
1,3-butadiene [44]. Recently, thirdhand smoke has also been implicated as a potent source of exposure
to the toxins found in cigarettes [45]. Thirdhand smoke is obtained when tobacco smoke constituents
become deposited on surfaces and such deposits may undergo oxidation and other diverse chemical
processes that result in the synthesis of carcinogenic species including TSNAs [46]. In fact, it has been
speculated that the dangers associated with thirdhand smoke may be even more profound than active
smoking [47] due to the process in which thirdhand smoke is generated. As these deposited substances
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are a product of time and isolation, thirdhand smoke poses real dangers for both active smokers and
nonsmokers alike.

2. Health Outcomes and Comorbidities

2.1. Chronic Obstructive Pulmonary Disease

Chronic obstructive pulmonary disease (COPD) is one of the leading causes of mortality and
morbidity and currently estimated to affect roughly 5% of the world’s population or about 329 million
individuals (WHO, The top 10 Causes of Death Fact Sheet 2012). The data overwhelmingly implicate
primary or active smoking as the greatest risk factor for developing COPD [48]; however, exposure to
environmental tobacco smoke is also highly associated with increased risk for COPD in individuals
who have never smoked [49]. Globally, COPD is projected to be the third leading cause of death by
2020. Economists have estimated that the economic burden (including both direct and indirect costs)
resulting from COPD was $2.1 trillion in 2010, but believe that this will rise to $4.3 trillion by 2030 [50].
Direct costs alone have been estimated to be in the $49.9 billion range, suggesting a greater need for
preventative measures, as well as improvements in earlier diagnosis and more cost effective treatment.

Without question, pharmacological and nonpharmacological interventions have contributed to
improved outcomes as they relate to the management of COPD [51,52]. However, as the worldwide
prevalence of COPD is predicted to increase, so will the urgency of improved comprehensive therapy.
Inflammation intensifies as COPD progresses [53] and does not “burn out” as do many other chronic
inflammatory diseases [54]. Therefore, there is a pressing need for the development of new molecular
targets and associated therapies, particularly as no existing treatment has been shown to reduce
disease progression. New therapies for COPD may arise from improvements in existing drugs
(for example, longer acting β2-agonists and anticholinergics) or from the development of novel
therapies when underlying disease processes are better understood. Despite recent advances in the
understanding of COPD molecular pathogenesis [55], there is clearly a need for more research into
its basic mechanisms. Even so, there are still several reasons why drug development in COPD has
been difficult. Animal models of COPD for early drug testing are not very satisfactory [56,57]. Animal
models have contributed important details related to understanding immune mechanisms; however,
drugs aimed at ameliorating symptoms observed in animal models often fail in Phase II trials. One
plausible explanation may be that mucus is not produced in the bronchial tree of mice, so mucous
exacerbations in COPD cannot be modeled well [58]. Furthermore, human COPD is coincident with
variable pathologies at different stages of COPD severity, whereas the three main current animal
models merely imitate a subset of COPD characteristics following exposure to noxious stimuli, tracheal
instillation of elastases, or genetic modifications.

The characterization of innovative drugs with promise is periodically met with uncertainty
because of the culminating requirement of multi-year, long-term trials. Confounding trial design is
the notion that COPD patients are often disqualified from participating due to notable comorbidities
including diabetes and heart disease. Finally, new treatments are also slow to develop because
there remains disagreement in the field as to optimal biomarkers in a patient’s sputum or blood
necessary to evaluate acute amelioration and long-term therapeutic capacity. Despite these limitations,
a lucid understanding of disease progression during primary and SHS exposure is essential in refining
patient care.

In terms of the pathophysiology, COPD is typically characterized by airflow obstruction that
is minimally reversible. This airflow obstruction is due to chronic inflammation and permanent
pulmonary airspace enlargement as well as the loss of elastic recoil caused by apoptosis that destroys
alveolar walls observed in emphysema. Persistent inflammation in COPD patients is characteristic
not only in the airways, but in the respiratory parenchyma and pulmonary vasculature as well, and
results in disruption of normal lung function specifically through remodeling of the distal pulmonary
airspaces. Because chronic inflammation is a major defining characteristic of the disease, extensive
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research surrounding pro-inflammatory molecular mechanisms have been conducted. The key aim
of such research focuses on the attenuation or removal of chronic inflammation that overcomes
natural protective mechanisms and the resulting tissue damage seen with COPD. Contributors to this
inflammation-related process include imbalances between proteases/antiproteases, oxidative stress,
elevated apoptotic indexes, and enhanced neutrophil, macrophage, and T lymphocyte extravasation.

Recent reports have corroborated previous findings that neutrophils are increased in sputum of
patients with COPD along with increased interleukin-6 (IL-6) signaling [59]. Substantial evidence has
implicated primary or active smoking as a major contributor to the recruitment of these neutrophils;
however, mounting evidence now suggests that secondhand smoke may have a similar effect on
neutrophils [60] that is likely mediated through similar interleukin signaling [61,62]. Under normal
physiological conditions, neutrophils employ proteases and small cationic peptides to attack invading
bacteria, viruses, and harmful exogenous material such as particulates found in tobacco smoke. Yet, in
chronic inflammatory conditions, neutrophils become major destructors of the alveolar elastic matrix.
These neutrophils also release enzymes and other mediators that cleave collagen into fragments that
may further activate inflammatory cells [63]. One potent signaling factor that has been demonstrated to
drive neutrophilic infiltration is the chemoattractant interleukin-8 (IL-8) which is produced by exposed
and damaged epithelium and endothelium [64,65]. Additionally, other chemoattractants that have
been shown to induce neutrophil migration include chemokine CXC motif ligands 1, 2, 5, 8 (CXCL-1,
2, 5, 8) [66–68], leukotriene B4 (LTB4) [68], IFN-Υ [69], IL-1β [70,71], and TNF-α [72]. Current data
increasingly suggest that these potent inflammatory chemoattractants are elevated with exposure to
SHS [73,74]. While neutrophils are predominant mediators of chronic inflammation, they are not the
only important pro-inflammatory mediator. Macrophages have also been shown to participate in the
propagation of inflammation through the release of chemoattractants, and are elevated in the airways,
parenchymal bronchoalveolar lavage fluid (BALF), and sputum [75–77] from affected patients. Studies
involving the exposure of mice to SHS have demonstrated increased macrophages in response to
SHS [78]. Furthermore, as these adaptive immunity cells play such a vital role in chemoattraction, it is
unsurprising that research suggests macrophage recruitment closely corresponds with the severity
of the disease [79]. Like neutrophils, macrophages migrate to injured lung tissue and enhance the
release of TNF-α, IL-8, CXC chemokines, monocyte chemotactic peptide-1 (MCP-1), LTB4, and other
pro-inflammatory molecules [55]. Finally, it should be noted that research indicates that T-cells may
act as important intermediaries in the development of emphysema [80]. In a comparison of normal
patients and those with smoke-induced COPD, diseased patients demonstrated elevated levels of CD3
and CD8 [80], two cytotoxic t-cell subgroups that organize apoptotic pathways used to kill infected
or damaged cells. CD8 in particular was shown to be highly correlated with increasing severity in
emphysema patients [80]. A recent analysis of mice subjected to SHS resulted in increased levels of
CD4 and CD8; conversely, inhibition of these cells prevented airspace enlargement, inhibited cytokine
release, and reduced apoptotic signaling [81]. Mechanistically, it is likely that CD8 subtly interacts in
conjunction with CD4, a T-helper cell whose activation releases cytokines and helps orchestrate the
migration and activity of other inflammatory cells. These T-cell mediated processes seemingly disrupt
autoimmune regulation, thus enhancing perpetual inflammation.

2.2. Cancer

It is estimated that cigarette smoking contributes to 30% of all cancer deaths in developed
countries [82]. Tobacco smoke is believed to be responsible for 70% of lung cancers deaths [83]
(approximately 1.3 million deaths each year [84]) and 42% of esophageal and oral cavity cancer
deaths [85]. Furthermore, tobacco smoke is believed to contribute significantly to the development
of cancers of the larynx, urinary bladder, and pancreas, and to a lesser extent to cancers of the
kidney, stomach, cervix, and myeloid leukemia [86]. Current evidence largely implicates active
smoking as a major risk factor in cancer development; however, mounting evidence now suggests
that SHS may equally participate. SHS has been shown to increase the risk of developing lung [87],
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oropharyngeal [88], colorectal [89], breast [88], cervical [90], bladder [90], and pancreatic cancer [91].
Moreover, studies investigating nitrosamines, some of the most potent carcinogens in tobacco smoke,
have demonstrated that high levels are present in both mainstream and SHS [92]. As nitrosamines are
readily absorbed through the alveoli and then rapidly distributed through the blood, it is unsurprising
that they are found to play a major role in the induction of many cancers [93,94].

Compounds such as PAHs, aromatic amines, aza-arenes, carbon monoxide, TSNA, nicotine,
ammonia, pyridine, and the gas compounds of acrolein, toluene, isopentene-1,3-butadiene, and
benzene are common in SHS. Overwhelmingly, the data implicate these substances in a host of cancers,
although the mechanisms by which this takes place are broad and diverse. For example, recent
data have demonstrated that benzene [95], toluene [95], and nicotine [96] have the ability induce the
upregulation of CYP2E1, an enzyme that activates many foreign chemical compounds to become
ultimate toxicants [97]. Aside from the ability to produce toxicants, the induction of CYP2E1 has
been suggested to be the first step in leading to chemically induced carcinogenesis [98]. Alternatively,
PAHs and TSNA has been shown to increase epithelial to mesenchymal transition (EMT), which is
closely associated with an invasive or metastatic phenotype. Increased EMT is characterized by a
downregulation of genes encoding for epithelial junction (claudins, occludins, e-cadherin) as well as
an activation of protein products that promote mesenchymal adhesion. As these epithelial junctions
are crucial in regulating cell differentiation, proliferation, and polarity, it is unsurprising that the loss of
these proteins is often associated with an invasive phenotype [99]. As these tissues transition from an
epithelial to mesenchymal state, the epithelial barrier is disrupted and thus a key initial line of defense
in the innate immune system is compromised.

In general, tobacco smoke seems to broadly influence carcinogenesis in four ways. First, the
gas and particulate phase of tobacco smoke includes at least 20 substances that can induce lung
tumors in rodents [100,101]. These compounds directly contribute to carcinogenesis. Second, tobacco
smoke includes substances that are not directly carcinogenic alone, but enhance the activity of
carcinogens when co-administered. These substances include tumor promoters, co-carcinogens,
and toxicants such as catechol, methyl catechols, and PAHs [102]. One potent example of such
a compound is acrolein, which is not strongly carcinogenic when in isolation. However, acrolein
expressed by ciliated epithelium can be highly toxic due to the hindrance of clearing tobacco smoke
compounds from the lung, resulting in profound exposure to other carcinogens. Furthermore, acrolein
reacts directly with DNA and protein, thus triggering genomic silencing of gene targets [103] that
may enhance the likelihood of carcinogenesis. Third, tobacco smoke substantially influences the
chronic inflammatory microenvironment. Tobacco smoke causes the recruitment of inflammatory cells,
cytokine and chemokines that can act as drivers for cancer development and progression [104]. It is
well documented that the infiltration of tumor-associated macrophages in tumor lesions is common to
a host of cancer types, and is associated with tumor angiogenesis, invasion, and metastasis [105–108].
Finally, matrix metalloproteinases (MMP)-1, MMP-8, MMP-9, and MMP-13 are collagenases implicated
in the development of COPD in response to cigarette smoke [109]. Interestingly, these same MMPs
with notable importance in emphysema also function in tumor invasion and metastasis [110]. In fact,
recent data supports the notion that elevated collagenases is associated with an increase in the severity
of cancer. Because MMPs degrade the ECM in a fashion that allows tumor cells to be released
from binding factors in their environment, greater MMP abundance increases the motility of cancer
cells [111].

2.3. Developmental Complications

As cigarettes are known to be one of the most common teratogens [112], a number of serious
obstetric complications arise with cigarette smoke exposure during pregnancy [113]. Approximately
10% of pregnant women in the US smoke, thereby exposing nearly 400,000 fetuses yearly to tobacco
specific toxins [114]. Exposure to smoke during pregnancy has been demonstrated to increase the
likelihood of congenital limb deficiencies [115], congenital heart defects [116], orofacial clefting [112],
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and many other developmental abnormalities. Active smoking has long been considered a teratogenic
agent that increases the risk of premature birth, but recent data shows that 22%–30% of nonsmoking
pregnant women exposed to SHS are also at risk [117]. Developmental defects in the fetus represent
substantial pregnancy complications; however, perinatally, smoke exposure further enhances mortality
via increased risk of sudden infant death syndrome (SIDS) and preterm birth [118]. Altogether, it
not surprising that many researchers have suggested that cigarette exposure may be the single most
important avoidable cause of adverse pregnancy outcomes [119–121].

Nicotine, one of the primary addictive compounds in tobacco smoke, is a key substance
that contributes significantly to many of these health problems as even minute levels induce
detectable transcriptomic modifications in small-airway epithelium [122]. Nicotine readily crosses
the placenta [123] and binds to nicotinic acetylcholine receptors (nAChRs) which regulate fetal brain
development [124]. Interestingly, research has demonstrated that nicotine levels are higher in the
amniotic fluid, fetal serum, and placenta than in the corresponding maternal serum [125]. Studies
demonstrating the adverse effects of tobacco smoke on neurodevelopment have provided compelling
evidence that nicotine increases cellular damage, reduces overall cell number, impairs synaptic
activity, and influences processes such as cell replication to differentiation and apoptosis [126–128].
Furthermore, nicotine has been associated with adverse neurocognitive outcomes such as behavioral
disorders [129], cognitive dysfunction [130], and attention deficit hyperactivity disorder [131,132].

While a significant portion of the literature implicates tobacco smoke in neurodevelopmental
pathologies, such effects are not limited to the nervous system. Prenatal tobacco smoke exposure
has been demonstrated to have striking effects on respiratory development in that it reduces
respiratory compliance in infants and impairs lung function in school-aged children [114,133].
Possibly contributing to impaired lung function are data that suggest that maternal smoke exposure
may alter Clara cell secretory protein (CCSP) expression in fetal lungs [134]. Indeed, evidence
currently suggests that maternal smoke exposure (including SHS) during pregnancy leads to
the deregulation of gene expression [135]. Confirmatory primate studies have shown that in
utero nicotine exposure adversely affects overall lung development by decreasing lung size and
volume, elastin, while increasing Type I and Type III collagen, alveolar volume, and airway wall
areas [136–139]. While the immediate ramifications are apparent, researchers have shown that
nicotine exposure not only predisposes the fetus to lung dysfunction, but also has the ability to
influence asthma in second and third generation offspring, likely through epigenetic modulation
of the fetal program [140–142]. Aside from respiratory disorders, nicotine has further been shown
to affect endocrine function [143,144], increase the likelihood of the fetus to develop chronic kidney
disease (CKD) through increased mitochondrial dysfunction [145], and decrease auditory response
and auditory development [146–148]. Overwhelming, the data suggests a particularly insidious role
for SHS and its ability to influence development.

One further factor that may have a causal role in many developmental deficiencies is the
impact of premature delivery, a risk factor that tobacco smoke has been shown to significantly
increase [149]. As tobacco smoke has been shown to increase preterm birth (PTB), it should be
noted that it additionally exacerbates intrauterine growth restriction (IUGR) and preeclampsia (PE),
two placental diseases closely associated with PTB [113,150,151]. IUGR is a complication that stems
primarily from uteroplacental vascular insufficiency, which ultimately creates an environment of
chronic oxygen and nutrient deficiency, resulting in restricted fetal growth [152]. PE is another disease
that impacts placentation wherein maternal hypertension and proteinuria accounts for around 20%
of induced PTB [153]. Because complications such as perinatal hypoxia and asphyxia, cerebral palsy,
and persistent pulmonary hypertension of the newborn have been associated with both IUGR and
SHS exposure [154,155], it is likely that SHS modulates IUGR and PE symptoms that may culminate in
diverse developmental pathologies
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2.4. Cardiometabolic Disorders

The intimate connection, both in etiology and outcome, of cardiovascular and metabolic processes
has resulted in the term, “cardiometabolic diseases”. The relevance of this is highlighted in the numbers:
heart disease is the leading cause of death [156] and insulin resistance is the most common disorder in
the US, affecting half of all adults [157]. Because of these startling statistics, considerable effort has been
devoted over recent decades to elucidate effective strategies to reverse the trends. Overwhelmingly,
these efforts have focused on the role of lifestyle variables, particularly diet. However, while diet is
clearly relevant [156,158], it is also clearly not the entire solution, as cardiometabolic diseases continue
unabated. Indeed, such a paradigm has left relatively unexplored that what we inhale may matter as
much as what we ingest.

Insulin resistance is the “metabolic” in cardiometabolic disorders. Due to the obvious challenges
of determining causality of a cigarette smoke-insulin resistance interaction, most of the findings in
humans are correlational in nature [159,160], though limited data exist to establish [161,162] that
cigarette smoke exposure increases insulin resistance. Typified by a reduced ability of insulin to
elicit action at cells throughout the body, as well as general hyperinsulinemia, insulin resistance is
at the heart of most cardiometabolic disorders, such as hypertension [163,164], atherosclerosis [163],
dyslipidemia [165], cardiomyopathy [166], and more [167,168].

Unsurprisingly, cigarette smoke exposure similarly increases the risk of myriad cardiovascular
complications through diverse mechanisms, though insulin resistance is clearly a dominant factor [169].
For example, dyslipidemia (i.e., increased triglycerides, reduced high density lipoprotein cholesterol),
which is a key predictor in cardiovascular mortality with cigarette smoking [170], is significantly worse
in smokers with insulin resistance compared with more insulin-sensitive smokers [171,172].

A second instance of the role of insulin resistance in smoke-induced cardiometabolic disorders
is abnormal endothelial physiology. Blood vessels from smoke-exposed humans are less dynamic,
having a reduced dilatory capacity [173], and have increased leukocyte adherence [174], increasing
the risk of clot formation. In regards to endothelium-dependent vasodilation, current evidence
shockingly revealed that after only 15 to 30 min of breathing SHS, vasodilation of coronary arteries in
non-smokers was impaired almost to the extent of habitual smokers [175]. Intriguingly, both of these
pathological processes are associated with endothelial dysfunction and are exacerbated by insulin
resistance [176,177].

Among the multiple mechanisms that mediate smoke-induced cardiometabolic disorders, the
effects of smoke on lipid metabolism are noteworthy insofar as they may reveal a strategy to
partially mitigate the cardiometabolic consequences of smoke exposure. In particular, cigarette smoke
pathologically alters sphingolipid metabolism, resulting in the accrual of ceramides, the backbone
of higher-order sphingolipids, in heart [162] and skeletal muscle [178]—two key insulin-responsive
tissues. Ceramide accrual in these tissues resulted in substantial disruption of mitochondrial function,
including alterations in morphology and electron transport. Moreover, smoke exposure altered insulin
signaling in skeletal muscle. An increase in the action of serine palmitoyltransferase, the rate-limiting
step in sphingolipid biosynthesis, was necessary for the ceramide accrual, as inhibition via myriocin,
was protective against the deleterious effects of smoke exposure.

Data collected over the past few decades suggest that SHS increases the incidence of coronary
heart disease approximately 25%–30% [179–181]. Furthermore, although active smokers receive up
to 100 times the dose of smoke than individuals exposed to SHS, an active smoker’s relative risk of
coronary heart disease is 1.78 followed closely by a passive smoker at 1.31 [182]. SHS contributes to
cardiovascular disease by activating blood platelets [183] likely through the combined elevation of
both fibrinogen [182,184] and thromboxane [185], thus leading to the development of artherosclerosis.
SHS has also been demonstrated to decrease levels of NO, the primary substrate that is implicit in the
hemodynamic changes in the vascular system [186]. Research has even demonstrated that, after only
20 min of SHS exposure, direct endothelial cell injury is observed. Mechanistically, SHS exposure has
been shown to increase free radicals [187] while decreasing antioxidants [188], decrease mitochondrial
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function [178], decrease protective HDL levels [189,190], and increase arterial stiffness [191]. Such
staggering data adds new meaning to the current warnings from the Surgeon General that state “there
is no safe level of exposure to tobacco smoke” [114].

2.5. Joint and Movement Disorders

Osteoarthritis (OA), characterized by joint pain, effusion, loss of mobility, and deformity that
progresses to functional joint failure, is one of the most common chronic diseases. It is reported to
be the most common disease associated with the temporomandibular joint (TMJ) [192]. There is not
currently any treatment to slow or stop the progression of OA. It has become the most common cause
of long-term disability, in large part because of its association with the knee and spine. The incidence
of OA in the population is comparable to other major disorders such as end-stage kidney disease and
heart failure. For instance, there are nearly half a million joint replacements performed annually in the
United States alone [193]. Many studies, including mouse knee destabilization and TMJ misalignment
models, have demonstrated a pattern of biomarker expression associated with the progression of
OA [194–197]. The disease appears to be associated with an initial rise in Tgf-β1 expression, followed by
the upregulation of HtrA1, Ddr2 and Mmp13 expression, resulting in OA as assessed by standardized
joint scoring methods such as the Mankin and the Osteoarthritis Research Society International (OARSI)
scoring systems [198–201]. Curiously, the expression of HtrA1 and the other factors associated with
OA are attenuated in a receptor for advanced glycation end-products (RAGE) knockout (KO) mice
following surgically induced OA models [195]. This suggests that inflammation may be the trigger
for the initiation and onset of OA. It follows that OA is associated with cigarette smoke. It is noted
that, early on, the interaction of smoking and OA was controversial [202–206]. However, it has
been reported that the discrepancies between smoking and OA interaction are likely do to study
design and metrics [203,207]. A correlation between smoking and OA and/or cartilage defects is now
apparent [207,208]. It is interesting to note that one study showed that the harmful effects of smoking
associated with OA were due to both cartilage loss as well as the development of cartilage defects in
people with a family history of joint disease [207]. Suggesting that a pre-disposition may be exacerbated
by smoking through some bone/cartilage development association. Finally, it is noteworthy that one
group who reported no association between direct smoking and OA did report a correlation between
the joint disease and indirect smoking [206]. It is unknown if constituents of tobacco smoke have
direct deleterious effects on chondrocyte function or if direct and/or indirect cigarette smoke induces
cartilage damage through more global means such as inflammation.

3. RAGE: A Plausible Unifying Mechanism

Although many interrelated mechanistic processes potentially contribute to the diversity of
diseases stemming from exposure to primary smoking, SHS, and thirdhand smoke, RAGE signaling is
a program that commonly emerges. An underlying mechanistic theme of the smoke-related disease
states outlined in this review is chronic inflammation, in which RAGE is a key modulator. Essential to
understanding the clear link between RAGE and disease progression is the key concept that RAGE
expression is increased by exposure to tobacco smoke [5,209–212] and the induction of RAGE causes
inflammatory disease symptoms similar or identical to the ones described herein [23,195,213–217].

RAGE is expressed in a variety of cell types including endothelial and vascular smooth muscle
cells, fibroblasts, macrophages/monocytes, osteoprogenitor cells, endothelium, and epithelium [3]
(personal communication). Of note, RAGE is most abundantly expressed in the lung, the tissue in which
it was initially discovered. Although RAGE is predominantly expressed in the lung, it is detectable
in a variety of tissues including the heart, brain, placenta, liver, kidney, pancreas, small intestine,
and colon [4,5]. RAGE is a pattern recognition cell surface receptor that binds many endogenous
and exogenous entities such as S100/calgranulins [218], amyloid-β-peptide [219], HMGB-1 [220], and
AGEs [221]. Following RAGE-ligand interaction, a cascade of signaling events elicits gene expression
modulation via divergent signal transduction pathways [222–224]. Because RAGE expression can also
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increase when ligands accumulate [225], RAGE-ligand interactions may not only induce the defects
described in this review, but also contribute to the chronicity of inflammatory tobacco smoke exposure
observed in these pathological states as well. RAGE activation exacerbates a host of pro-inflammatory
responses via MAP kinases (ERK, JNK, and P38), NF-κB, reactive oxidative species (ROS), and other
chemokine mediators including TNF-α, IL1-β, and others [226]. While redundancies exist within the
pathway, RAGE signaling generally culminates in the activation of NF-κB, a transcriptional regulator
that not only promotes pro-inflammatory mediator elaboration, but also de novo RAGE expression.
Thus, RAGE signaling via NF-κB represents a vicious positive feedback loop that orchestrates chronic
inflammation. In contrast to short-lived cellular activation mediated by lipopolysaccharide (LPS),
engagement of RAGE by its ligands results in prolonged inflammation [227] that, if left unchecked,
causes severe tissue injury.
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