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Abstract: Osteopontin (OPN) is a secreted phosphoglycoprotein, and is a transcriptional target of
aberrant Wnt signaling. OPN is upregulated in human colon cancers, and is suggested to enhance
cancer progression. In this study, the effect of deficiency of OPN on intestinal tumor development
in Apc-deficient Min mice was investigated. At 16 weeks of age, the number of small intestinal
polyps in Min/OPN(+/−) and Min/OPN(−/−) mice was lower than that of Min/OPN(+/+) mice.
Colorectal tumor incidences and multiplicities in Min/OPN(+/−) and Min/OPN(−/−) mice were
significantly lower than those in Min/OPN(+/+) mice, being 48% and 0.6 ± 0.8, 50% and 0.8 ± 0.9 vs.
80% and 1.6 ± 1.7, respectively. OPN expression in colorectal tumors was strongly upregulated in
Min/OPN(+/+) compared to adjacent non-tumor parts, but was decreased in Min/OPN(+/−) and
not detected in Min/OPN(−/−). Targets of OPN, matrix metalloproteinases (MMPs)-3, -9, and -13
were lowered by OPN deficiency. Macrophage marker F4/80 in colorectal tumors was also lowered by
OPN deficiency. MMP-9 expression was observed in tumor cells and tumor-infiltrating neutrophils.
These results indicate that induction of OPN by aberrant Wnt signaling could enhance colorectal
tumor development in part by upregulation of MMP-3, -9, and -13 and infiltration of macrophage
and neutrophils. Suppression of OPN expression could contribute to tumor prevention, but complete
deficiency of OPN may cause some adverse effects.
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1. Introduction

Osteopontin (OPN), also known as secreted phosphoprotein 1 (SPP1), binds to several integrin
receptors including CD44v6, a splicing variant of CD44, which is a marker of colon cancer stem cells,
and regulates cell motility, invasion, chemotaxis, and cell survival [1,2]. OPN is overexpressed in
multiple types of cancer, including colorectal carcinomas [3,4], and serum levels of OPN in cancer
patients are elevated. Thus, it is used as a diagnostic and prognostic marker [5]. OPN plays important
roles in immune regulation [6–8] and cancer progression [9,10]. OPN expression in colon cancer
has been identified as an independent prognostic parameter for overall survival, and high OPN
expression is associated with bad prognosis [11]. This might be explained by OPN being implicated
as a key regulatory component of epithelial-mesenchymal transition (EMT) [12]. OPN is expressed
in tumor cells and tumor-associated macrophages (TAMs) [13], and both autocrine and paracrine
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signaling of OPN are considered to be involved in tumor progression. Indeed, it has been reported
that both endogenous OPN expression and exogenous OPN enhances the motility and invasiveness
of human colon cancer cells in vitro [14]. OPN enhances hepatic metastasis of colorectal cancer
cells [15], and it has been reported that silencing of OPN by small interfering RNA (siRNA) suppresses
murine colon adenocarcinoma metastasis [16]. OPN knockdown in a human colon carcinoma cell
line by siRNA reduces vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-2,
and MMP9, and suppresses colon cancer cell growth [17]. OPN is also abundant in bone, and facilitates
bone metastasis of breast cancer [18]. Thus, OPN is considered to be a candidate target for cancer
therapy [19,20]. However, it is not clear whether OPN could be a target for cancer prevention.

Epidemiological studies have shown that insulin resistance and obesity are risk factors for
colorectal tumors [21,22]. OPN is upregulated in adipose tissue in obesity and causes adipocyte
inflammation and insulin resistance through macrophage activation [23,24]. Deficiency of OPN
prevents proliferation of macrophages in adipose tissue, and induction of insulin resistance and
inflammation in adipose tissue induced by a high fat diet in mice [23,25,26]. Neutralization of OPN by
anti-OPN antibody also inhibits obesity-induced inflammation and insulin resistance in diet-induced
obese mice [27]. Increased circulating levels of OPN have been observed to be due to obesity and colon
cancer [28]. Thus, suppression of circulating OPN levels could prevent colorectal tumor development.
There are reports that OPN depletion inhibits diethylnitrosamine (DEN)-induced hepatocarcinogenesis
and N-methyl-N-nitrosourea (MNU) and Helicobacter pylori-induced gastric cancer development in
mice [29,30]. However, there are no reports about intestinal tumorigenesis in OPN-knockout mice.

In human colon cancers, the Apc gene, a gene responsible for familial adenomatous polyposis
(FAP), is frequently mutated [31] and Wnt/beta-catenin signaling is aberrantly activated [32]. OPN has
been suggested to be a putative target of Wnt signaling, and elevated expression of OPN has been
reported to be significantly correlated with increased cytoplasmic and nuclear accumulation of
beta-catenin [11]. In genetically defined mouse models, OPN is upregulated in tumors in Apc1638N mice,
an Apc-deficient mouse model, but not in tumors in pvillin-KRASV12G mice without Wnt activation
mutations [11]. The Min mouse, another animal model of FAP, harbors a mutation and develops
numerous polyps in the intestinal tract [33]. In the present study, the effect of deficiency of OPN on
intestinal tumor development in Apc-deficient Min mice was investigated to clarify the importance of
OPN in the early phase of colon tumor development.

2. Results

2.1. Effect of Osteopontin (OPN) Deficiency on Intestinal Polyp Formation in Min Mice

To investigate involvement of OPN in intestinal tumor development, the effect of the deficiency
of OPN on intestinal polyp formation in Min mice was examined. OPN genotypes did not
significantly affect food intake, behavior, or body weight changes during the experimental periods.
Final body weights (g) in male Min/OPN(+/+), Min/OPN(+/−), Min/OPN(−/−), OPN(+/+),
OPN(+/−), and OPN(−/−) mice were 23.3 ± 5.3, 26.0 ± 4.5, 25.2 ± 4.5, 29.8 ± 2.6, 31.4 ± 2.0,
and 31.8 ± 2.1, respectively (Figure S1a). The differences between Apc mutant and wild type mice were
statistically significant (p < 0.05). Final body weights (g) in female Min/OPN(+/+), Min/OPN(+/−),
Min/OPN(−/−), OPN(+/+), OPN(+/−), and OPN(−/−) mice were 17.9 ± 3.3, 20.5 ± 2.1, 19.9 ± 2.3,
22.1 ± 1.1, 21.7 ± 1.9, and 22.3 ± 1.9, respectively (Figure S1b). The differences between male and
female mice of each genotype were statistically significant (p < 0.01). There were no significant
differences in final body weights among OPN genotypes. On the other hand, OPN genotypes affected
spleen weights of Apc mutant mice. Spleen weights (g) in male Min/OPN(+/+), Min/OPN(+/−),
Min/OPN(−/−), OPN(+/+), OPN(+/−), and OPN(−/−) mice were 0.173 ± 0.078, 0.278 ± 0.181,
0.270 ± 0.128, 0.092 ± 0.029, 0.105 ± 0.050, and 0.096 ± 0.021, respectively (Figure S1c). Spleen
weights (g) in female Min/OPN(+/+), Min/OPN(+/−), Min/OPN(−/−), OPN(+/+), OPN(+/−),
and OPN(−/−) mice were 0.156 ± 0.086, 0.174 ± 0.086, 0.232 ± 0.156, 0.088 ± 0.010, 0.088 ± 0.016,
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and 0.093 ± 0.027, respectively (Figure S1d). Spleen weights of Apc mutant mice were higher than
those of Apc(+/+) mice, and deficiency of OPN further increased the spleen weight. OPN genotypes
did not affect spleen weights of mice without the Apc mutation.

Table 1 summarizes the data for the number and distribution of small intestinal polyps in the
Min/OPN(+/+), Min/OPN(+/−), and Min/OPN(−/−) mice at 16 weeks of age. Most polyps
developed in the middle and distal sections of the small intestine, with only a few in the proximal
segment of the small intestine and in the colon. There were no polyps in OPN(+/+), OPN(+/−), and
OPN(−/−) mice. The total numbers of small intestinal polyps in Min/OPN(+/−) (96.3 ± 57.4, p < 0.01)
and Min/OPN(−/−) mice (117.1 ± 62.4) were lower than that of Min/OPN(+/+) mice (152.8 ± 93.6).
The majority of polyps were observed in the size range between 0.5 and 2.0 mm in diameter (Figure 1).
In comparison to Min/OPN(+/+) mice, the number of polyps in the size range between 0.5 and 2.0 mm
in diameter remarkably decreased in Min/OPN(+/−) and Min/OPN(−/−) mice.

Table 1. Number of small intestinal polyps in osteopontin (OPN)-deficient Min mice.

Genotype
No. of

Animals
Small Intestinal Polyps

Duodenum Middle Distal Total

Male
Min/OPN(+/+) 15 5.1 ± 3.1 40.1 ± 33.9 106.6 ± 66.6 151.9 ± 101.8
Min/OPN(+/−) 29 5.0 ± 3.7 22.8 ± 16.9 72.7 ± 37.6 100.5 ± 53.4
Min/OPN(−/−) 18 6.0 ± 2.5 27.4 ± 21.9 77.1 ± 42.9 110.5 ± 63.9

Female
Min/OPN(+/+) 10 7.1 ± 4.5 40.1 ± 27.8 106.9 ± 54.4 154.1 ± 85.2
Min/OPN(+/−) 27 4.5 ± 2.3 22.2 ± 17.5 * 65.0 ± 44.7 * 91.7 ± 62.0 *
Min/OPN(−/−) 18 5.2 ± 3.3 28.2 ± 17.5 90.4 ± 44.3 123.7 ± 61.9

Total
Min/OPN(+/+) 25 5.9 ± 3.8 40.1 ± 31.0 106.7 ± 60.8 152.8 ± 93.6
Min/OPN(+/−) 56 4.8 ± 3.1 22.5 ± 17.0 ** 69.0 ± 41.0 ** 96.3 ± 57.4 **
Min/OPN(−/−) 36 5.6 ± 2.9 27.8 ± 19.5 83.8 ± 43.5 117.1 ± 62.4

OPN, osteopontin. Data are expressed as mean ± SD. Significant difference from Min/OPN(+/+) mice (* p < 0.05,
** p < 0.01).
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The number of polyps per mouse in each size class is given as a mean. Significant difference from 
Min/OPN(+/+) mice (* p < 0.05, ** p < 0.01). 

As shown in Figure S2, colorectal tumors developed in the male and female Min/OPN(+/+), 
Min/OPN(+/−), and Min/OPN(−/−) mice. No lesions were observed in mice without the Apc gene 
mutation. Data for the incidence and multiplicity of colon tumors are summarized in Table 2. Both 
colon tumor incidences and multiplicities in Min/OPN(+/−) and Min/OPN(−/−) mice were 
significantly lower than those in Min/OPN(+/+) mice, being 27/56 (48%) (p < 0.01) and 0.6 ± 0.8 (p < 

Figure 1. The effect of OPN deficiency on the size distribution of small intestinal polyps in Min mice.
The number of polyps per mouse in each size class is given as a mean. Significant difference from
Min/OPN(+/+) mice (* p < 0.05, ** p < 0.01).

As shown in Figure S2, colorectal tumors developed in the male and female Min/OPN(+/+),
Min/OPN(+/−), and Min/OPN(−/−) mice. No lesions were observed in mice without the Apc
gene mutation. Data for the incidence and multiplicity of colon tumors are summarized in Table 2.
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Both colon tumor incidences and multiplicities in Min/OPN(+/−) and Min/OPN(−/−) mice were
significantly lower than those in Min/OPN(+/+) mice, being 27/56 (48%) (p < 0.01) and 0.6 ± 0.8
(p < 0.01), 18/36 (50%) (p < 0.05) and 0.8 ± 0.9 (p < 0.01) vs. 20/25 (80%) and 1.6 ± 1.7, respectively.
Histopathological examination revealed that incidences of adenomas and adenocarcinomas in
Min/OPN(+/+) mice were 44% and 60%, respectively, and each incidence tended to decrease with
genetic OPN deficiency. Moreover, multiplicities of adenoma and adenocarcinoma also tended
to decrease by OPN deficiency. Figure 2 shows the size distribution of colorectal tumors in mice.
Compared to Min mice, the number of tumors showed a tendency to decrease at all sizes in mice
with OPN deficiency. The number of tumors ranging between 3.0 mm and 5.0 mm in diameter was
statistically lower in Min/OPN(+/−) (0.4 ± 0.6, p < 0.01) and Min/OPN(−/−) (0.4 ± 0.6, p < 0.05)
mice than that in Min/OPN(+/+) mice (1.0 ± 1.1).

Table 2. Incidence and multiplicity of colon tumors in OPN-deficient Min mice.

Genotype Adenoma Adenocarcinoma Total

Incidence (%) Multiplicity a Incidence (%) Multiplicity a Incidence (%) Multiplicity a

Male
Min/OPN(+/+) 7/15 (47) 1.0 ± 1.5 8/15 (53) 0.7 ± 0.8 12/15 (80) 1.7 ± 2.0
Min/OPN(+/−) 4/29 (14) * 0.1 ± 0.4 ** 13/29 (45) 0.6 ± 0.8 16/29 (55) 0.8 ± 0.8 *
Min/OPN(−/−) 4/18 (22) 0.2 ± 0.4 * 8/18 (44) 0.5 ± 0.6 11/18 (61) 0.7 ± 0.7

Female
Min/OPN(+/+) 4/10 (40) 0.5 ± 0.7 7/10 (70) 1.0 ± 0.9 8/10 (80) 1.5 ± 1.3
Min/OPN(+/−) 5/27 (19) 0.2 ± 0.4 8/27 (30) * 0.3 ± 0.6 * 11/27 (41) * 0.6 ± 0.7 *
Min/OPN(−/−) 6/18 (33) 0.4 ± 0.7 5/18 (28) * 0.3 ± 0.6 * 7/18 (39) * 0.8 ± 1.2

Total
Min/OPN(+/+) 11/25 (44) 0.8 ± 1.2 15/25 (60) 0.8 ± 0.9 20/25 (80) 1.6 ± 1.7
Min/OPN(+/−) 9/56 (16) ** 0.2 ± 0.4 ** 21/56 (38) 0.5 ± 0.7 27/56 (48) ** 0.6 ± 0.8 **
Min/OPN(−/−) 10/36 (28) 0.3 ± 0.6 * 13/36 (36) 0.4 ± 0.6 18/36 (50) * 0.8 ± 0.9 **

OPN, osteopontin. a Data are expressed as mean ± SD. Significant difference from Min/OPN(+/+) mice (* p < 0.05,
** p < 0.01).
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of tumors per mouse in each size class is given as a mean. Significant difference from Min/OPN(+/+)
mice (* p < 0.05, ** p < 0.01).

2.2. Serum Levels of OPN, Interleukin (IL)-6, and Triglycerides

The serum levels of OPN in Min/OPN(+/+), Min/OPN(+/−), and Min/OPN(−/−) mice were
significantly different from each other and OPN genotype dependent (Table 3). As for the OPN(+/+),
OPN(+/−), and OPN(−/−) mice, the OPN levels were also significantly different from each other
and OPN genotype dependent. The serum levels of OPN in Min/OPN(+/+) were slightly higher than
in OPN(+/+) mice, though the difference was not statistically different. The serum levels of OPN in
Min/OPN(+/−) were significantly higher than in OPN(+/−) mice.
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The serum levels of IL-6 were significantly elevated in mice bearing the Apc gene mutation
(Min/OPN(+/+), Min/OPN(+/−), and Min/OPN(−/−)) compared with those in mice without the
Apc gene mutation (OPN(+/+), OPN(+/−), and OPN(−/−) ), respectively (Table 3). The serum
IL-6 level in Min/OPN(−/−) mice was significantly lower than those in Min/OPN(+/+) and
Min/OPN(+/−) mice.

Mice bearing the Apc gene mutation were in the hypertriglyceridemic state, as shown in Table 3.
In Min/OPN(+/−) and Min/OPN(−/−) mice, the levels of triglycerides (TGs) were lower than
that in Min/OPN(+/+) mice, though the differences were not statistically significant. On the other
hand, the TG levels in mice without the Apc gene mutation were low and similar among OPN(+/+),
OPN(+/−), and OPN(−/−) mice. The serum levels of TGs in mice bearing the Apc gene mutation
were statistically higher than that in mice without the Apc gene mutation (p < 0.01).

Table 3. Effects of OPN deficiency on serum levels of OPN, interleukin (IL)-6, and triglycerides (TGs).

Genotype Serum OPN (ng/mL) Serum IL-6 (pg/mL) Serum TGs (mg/dL)

Min/OPN(+/+) 456.7 ± 144.7 a 50.5 ± 16.7 a 464 ± 383 a

Min/OPN(+/−) 250.4 ± 73.4 b 54.8 ± 27.7 a 401 ± 454 a

Min/OPN(−/−) 0 d 22.8 ± 28.3 b 360 ± 349 a

OPN(+/+) 414.5 ± 192.9 a 0 b 94 ± 20 b

OPN(+/−) 182.3 ± 88.2 c 5.0 ± 14.6 b 91 ± 25 b

OPN(−/−) 0 d 0 b 97 ± 61 b

Data are means ± SD. Values that do not share a common superscript are significantly different at p < 0.01, except
serum IL-6 levels in Min/OPN(+/+) and Min/OPN(+/−) (p < 0.05).

2.3. Correlation of Small Intestinal Polyp Numbers with Serum Levels of Triglycerides and Spleen Weights

Previously, we reported that serum TG levels dramatically increase with age in Apc-deficient mice,
including Min mice, and both hyperlipidemia and polyp formation were suppressed by administration
of peroxisome proliferator-activated receptor (PPAR) γ ligands, suggesting that hyperlipidemia in
Min mice may be associated with intestinal lesion development [34]. Accordingly, the TG levels and
number of small intestinal polyps in each mouse in the present study were plotted. As shown in
Figure 3a–d, significant positive correlation between serum levels of TGs and polyp numbers was
observed in Min/OPN(+/+) (r = 0.68 by the Pearson correlation coefficient test, p = 0.00019; rs = 0.74
by Spearman’s rank correlation coefficient test, p = 0.00031) Min/OPN(+/−) (r = 0.72, p = 3.1 × 10−10;
rs = 0.74, p = 3.4 × 10−8), Min/OPN(−/−), (r = 0.64, p = 3.0 × 10−5; rs = 0.71, p = 2.5 × 10−5), and all
three genotypes (r = 0.66, p = 9.5 × 10−16; rs = 0.71, p = 2.7 × 10−15).

It has been reported that spleen weights in Min mice positively correlate with small intestinal
polyp numbers [35,36]. However, spleen weights of OPN-deficient Min mice were heavier than
those of Min/OPN(+/+) mice in the present study (Figure S1c,d). The correlation between spleen
weights and small intestinal polyps was examined (Figure 3e–h). Positive correlations were observed
in Min/OPN(+/+) (r = 0.45 by the Pearson correlation coefficient test, p = 0.024; rs = 0.40 by
Spearman’s rank correlation coefficient test, p = 0.048), Min/OPN(+/−) (r = 0.43, p = 0.0011; rs = 0.61,
p = 5.2 × 10−6), Min/OPN(−/−) (r = 0.54, p = 0.00065; rs = 0.65, p = 00011), and all three genotypes
(r = 0.35, p = 0.00013; rs = 0.53 p = 9.9 × 10−9), though the correlation coefficients were not very high.
In the Min/OPN(+/+) group, there were no mice with more than 0.4 g of spleen weight, even though
there were mice with quite high polyp numbers (250 <). On the other hand, in the Min/OPN(+/−) and
Min/OPN(−/−) groups, there were a few mice with quite high spleen weights, though their polyp
numbers were not very high (between 100 and 200); that is to say, positive correlations between polyp
numbers and spleen weights were observed in each genotype, but the gradient of the correlation line
seems to be different between Min/OPN(+/+) and OPN-deficient Min mice. As shown in Figures 1
and 2, numbers of large polyps were relatively low in Min/OPN(+/−) and Min/OPN(−/−) mice
compared with those in Min/OPN(+/+) mice.



Int. J. Mol. Sci. 2017, 18, 1058 6 of 19
Int. J. Mol. Sci. 2017, 18, 1058 6 of 18 

 

 

 
Figure 3. Scatter plots of serum triglyceride (TG) levels and intestinal polyp number in (a) 
Min/OPN(+/+), (b) Min/OPN(+/−), and (c) Min/OPN(−/−) mice, and (d) all genotypes. Scatter plots of 
spleen weight and intestinal polyp number in (e) Min/OPN(+/+), (f) Min/OPN(+/−), and (g) 
Min/OPN(−/−) mice, and (h) all genotypes. r, the Pearson correlation coefficient; rs, Spearman’s rank 
correlation coefficient; *, **, the correlation was statistically significant at p < 0.005, and p < 0.0005, 
respectively. 

Figure 3. Scatter plots of serum triglyceride (TG) levels and intestinal polyp number in (a)
Min/OPN(+/+), (b) Min/OPN(+/−), and (c) Min/OPN(−/−) mice, and (d) all genotypes. Scatter
plots of spleen weight and intestinal polyp number in (e) Min/OPN(+/+), (f) Min/OPN(+/−),
and (g) Min/OPN(−/−) mice, and (h) all genotypes. r, the Pearson correlation coefficient; rs,
Spearman’s rank correlation coefficient; *, **, the correlation was statistically significant at p < 0.005,
and p < 0.0005, respectively.
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Figure 4. Effects of OPN deficiency on mRNA expression levels. Values for relative mRNA
expression levels (vs. glyceraldehyde 3-phosphate dehydrogenase (GAPDH) of (a) OPN, (b) matrix
metalloproteinase (MMP)-3, (c) MMP-9, (d) MMP-13, (e) MMP-2, (f) MMP-7, (g) Bcl-2, (h) CyclinD1,
(i) COX-2, (j) transforming growth factor (TGF) β1, (k) F4/80, (l) CD44, (m) Mest, (n) Snail, (o) Twist,
and (p) Vimentin. Data are means ± SD. Values that do not share a common superscript are significantly
different at p < 0.05.
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2.4. Effects of OPN deficiency on Gene Expression Levels in Colon Tumors

The effects of OPN deficiency on gene expression levels in colorectal tumors and non-tumorous
colorectum were investigated by semi-quantitative reverse transcription-polymerase chain reaction
(RT-PCR) analysis. OPN expression in colorectal tumors was strongly upregulated in Min/OPN(+/+)
compared to the adjacent non-tumor part. These OPN levels were decreased in Min/OPN(+/−)
and not detected in Min/OPN(−/−) (Figure 4a). OPN has been reported to activate MMPs.
MMP-3, MMP-9, MMP-13, MMP-2, and MMP-7 were upregulated in colorectal tumors in
Min/OPN(+/+) compared to adjacent non-tumor parts. The elevated expression levels of MMP-3
were decreased to almost half by hetero-knockout of OPN, and further decreased by homo-knockout
(Figure 4b). The elevated expression levels of MMP-9 and MMP-13 were decreased to almost half by
hetero-knockout of OPN, while a decrease by homo-knockout of OPN was slight and not significant
(Figure 4c,d). On the other hand, MMP-2 and MMP-7 expression levels in the colorectal tumors were
further increased by OPN deficiency (Figure 4e,f). Expression levels of cell survival/growth-related
genes, Bcl-2, CyclinD1, COX-2, and transforming growth factor (TGF) β1 were higher in colorectal
tumors than those in adjacent colorectal mucosa in Min/OPN(+/+) mice. Those expression levels
in the colorectal tumors were slightly decreased in Min/OPN(+/−) and Min/OPN(−/−) mice
(Figure 4g–j). Expression of a macrophage marker F4/80 in colorectal tumors was also slightly lowered
in Min/OPN(+/−) and Min/OPN(−/−) mice (Figure 4k). CD44, a target of Wnt signaling [37]
and a receptor of OPN, was upregulated in tumors in Min/OPN(+/+) mice, and the expression
was decreased to almost half by hetero-knockout of OPN, but not by homo-knockout (Figure 4l).
Interestingly, expression of mesoderm-specific transcript (Mest)/paternally expressed gene 1 (Peg1),
an inhibitory factor of Wnt signaling [38], was inversely associated with OPN dose in tumors, and it
was significantly elevated in tumors compared with adjacent non-tumor parts in Min/OPN(−/−)
mice (Figure 4m). Expression levels of EMT-related genes, Snail and Twist, were higher in colorectal
tumors than those in adjacent colorectal mucosa in Min/OPN(+/+) mice, and those were decreased
in Min/OPN(+/−) mice, but not in Min/OPN(−/−) mice (Figure 4n,o). Vimentin expression was
also upregulated in tumors in Min/OPN(+/+) mice, and further increased in Min/OPN(−/−) mice
(Figure 4p).

2.5. Protein Expression in Colon Tumors

Protein expressions in colorectal tumors in Min/OPN(+/+), Min/OPN(+/−),
and Min/OPN(−/−) mice were examined by immunohistochemical staining. MMP-9 expression
was observed strongly in stromal infiltrating neutrophils, and weakly in cancer cells in tumor tissue
in Min/OPN(+/+) mice (Figure 5a). Lower expression of MMP-9 was observed in tumor tissue in
Min/OPN(+/−) and Min/OPN(−/−) mice (Figure 5b,c). F4/80-positive macrophages were observed
to be accumulated in tumor stroma in Min/OPN(+/+) mice (Figure 5d), and lower numbers of
macrophages were observed in Min/OPN(+/−) and Min/OPN(−/−) mice (Figure 5e,f).
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3. Discussion

In the present study, OPN-deficient Min mice showed decline in the number and size of small
intestinal polyps compared to those of Min/OPN(+/+) mice in both males and females at the age
of 16 weeks. Furthermore, OPN-deficient Min mice exhibited decreased incidence, multiplicity,
and size of colorectal tumors. OPN expression was markedly elevated in colorectal tumors compared
with that in adjacent normal colon mucosa in Min/OPN(+/+) mice, and that decreased with the
OPN gene dosage. Elevated expressions of MMP-3, MMP-9, and MMP-13 in colorectal tumors
in Min/OPN(+/+) mice were decreased by OPN deficiency. MMP-9 expression was observed in
tumor cells and tumor-infiltrating neutrophils in Min/OPN(+/+) mice. Macrophage marker F4/80
in colorectal tumors was also lowered by OPN deficiency. These results indicate that OPN could
enhance tumorigenesis in part by upregulating MMPs and increasing tumor-infiltrating neutrophils
and macrophages, and could be a target for cancer prevention.

In Min mice, it has been reported that heterozygous disruption of the phosphatase and tensin
homolog (PTEN) strongly induces OPN expression and promotes intestinal neoplasia [39]. Knockdown
of OPN expression in human colon cancer cells suppresses cell proliferation, adherence, invasion,
and expression of angiogenetic factors, such as VEGF, MMP-2, and MMP-9 [17]. It has been
reported that tumor-infiltrating MMP-9-positive neutrophils enhance angiogenesis [40]. OPN is
involved in neutrophil infiltration [41], and neutralization of OPN attenuates neutrophil migration [42].
OPN activates the phosphoinositide 3-kinase (PI3K)-phospo-Akt-nuclear factor (NF)-κB signaling
pathway via α(v)β(3) integrin binding [43]. OPN promotes expression of MMP-13 through
NF-κB signaling in osteoarthritis [44]. MMP-3 and MMP-13 is upregulated in human colorectal
carcinomas [45], and MMP-13 activity is associated with poor prognosis in colorectal cancer [46].
OPN signaling also upregulates COX-2 expression via α(9)β(1) integrin [47]. Moreover, it has been
reported that OPN activates JAK2/STAT3 signaling and upregulates Bcl-2 and cyclinD1 in human
breast cancer cells [48]. OPN activates macrophages [13] and modulates EMT [12]. Consistent
with these reports, elevated expression levels of MMP-3, MMP-9, and MMP-13 were lowered by
OPN deficiency in the present study. Elevated expression levels of Bcl-2, CyclinD1, COX-2, TGF β1,
and F4/80 in colorectal tumors in Min mice were only slightly lowered by OPN deficiency. Since Cyclin
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D1 and COX-2 are also known to be targets of β-catenin/Lef-1 [49,50], the effects of OPN knockout
would be relatively small. On the other hand, elevated expressions of MMP-2 and MMP-7 in colorectal
tumors in Min mice were not lowered but rather increased by OPN deficiency in the present study.
Elevated expression of CD44 and EMT-related genes, Snail and Twist in tumors in Min/OPN(+/+)
were lowered by OPN hetero-deficiency, but not by homo-deficiency. The reasons for this are uncertain.
In the present study, we found that Mest, which has been reported to be an inhibitory factor of Wnt
signaling [38] and has been upregulated in obese adipose tissue [51], was significantly elevated in
colorectal tumors of Min/OPN(−/−) mice. It has been reported that leptin, an obesity-related factor,
upregulates MMP-2 [52] and induces EMT [53]. As a bone marker, OPN is inversely associated
with leptin in non-diabetic women [54]. Though the roles of Mest in tumorigenesis are unknown,
we speculate that it may affect tumorigenesis via upregulation of MMPs and EMT-related genes in
tumors in Min/OPN(−/−). We are now investigating the roles of Mest in tumorigenesis.

OPN is a secreted protein. The serum OPN levels in the Min/OPN(+/−) mice were almost half
compared to those in Min/OPN(+/+) mice. Serum OPN was not detected in Min/OPN(−/−) mice.
These results are consistent with the OPN gene dosage. The differences of serum OPN levels between
mice with and without the Apc mutation, which are considered to be due to OPN production by
intestinal tumors, were not particularly marked. This means that contribution of OPN produced in the
tumors to the circulation levels of OPN was not high in Min mice. Min mice develop many polyps in
the small intestine, but most of them are adenomas. Some colorectal tumors are carcinomas, but tumor
volumes are relatively small. Besides cancer, OPN is expressed in a variety of tissues and cells including
adipocytes and macrophages, and highly upregulated in inflammation [7]. This circulating OPN could
also contribute to tumor development.

In the present study, serum IL-6 levels were elevated in mice bearing the Apc gene mutation,
and that was lowered by homo-deficiency of OPN. Serum IL-6 levels positively correlate with
progression of human colorectal cancer [55]. It has been reported that Min mice have elevated
levels of circulating IL-6, which are decreased by exercise [36]. Min mice suffer from lymphodepletion
between 83 and 120 days of age [56], and lymphodepletion could be associated with increased plasma
IL-6 [57].

Epidemiological studies have shown that high serum TG levels are related with the risk of
colorectal cancer [58,59]. Dysregulation of lipoprotein lipase (LPL) contributes to dyslipidemia,
and LPL inducers, such as PPAR ligands, NO-1886, and indomethacin, have been shown to decrease
TG levels and suppress tumor development in animal models [60]. Correlation between the level of
TGs and the number of intestinal polyps was observed in the present study. In the OPN-deficient
Min mice, serum TG levels tended to decrease with the OPN-gene dosage. It has been reported
that osteogenic differentiation gene OPN and adipogenic differentiation gene LPL are oppositely
regulated in mesenchymal stem cells [61,62]. These findings indicate that the depletion of OPN could
affect development of small intestinal polyps and colorectal tumors in part through decreasing the
inflammatory status and hypertriglyceridemia.

It has been reported that OPN is involved in high fat-induced insulin resistance and OPN deficiency
protects against insulin resistance [22]. Therefore, insulin levels in the mice used in the present study
were measured, but statistically significant differences were not observed (data not shown).

Intestinal polyposis causes anemia in Min mice [63], and as a result, extramedullary hematopoiesis
in the spleen occurs [64,65]. Therefore, spleen weights in Min mice positively correlate with intestinal
polyp numbers. Contrary to this, OPN deficiency increased spleen weight without an increase in polyp
numbers and size in the present study. The reason is unclear. It has been reported that myocardial
angiogenic response is impaired in the absence of OPN [66]. To recover the anemia, aggressive
extramedullary hematopoiesis may play some roles in OPN-deficient Min mice.

Chronic inflammation is known to be a risk factor for cancer. Helicobacter pylori infection, which
causes chronic gastritis, is closely associated with gastric cancer risk [67,68]. OPN depletion decreases
inflammation and gastric epithelial proliferation during Helicobacter pylori infection in mice [69],
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and suppresses MNU and Helicobacter pylori-induced gastric cancer development [29]. As for colorectal
cancer, inflammatory bowel diseases (IBDs), including ulcerative colitis (UC) and Crohn’s disease
(CD), are well-known risk factors [70–72]. Increased levels of circulating and colonic tissue OPN in
human IBD and experimentally-induced colitis in mice have been observed [73–78]. However, results
of experimental studies about the effects of OPN deficiency on dextran sulfate sodium (DSS)-induced
colitis are controversial. It has been reported that OPN deficiency exacerbates tissue destruction
in DSS-induced acute colitis [74,79], and another report has shown that OPN deficiency protects
mice from DSS-induced colitis [80]. In contrast to acute colitis, OPN-null mice are protected from
mucosal inflammation during chronic colitis [74]. These findings suggest that OPN is a two-sided
mediator of intestinal inflammation [74] and participates in both inflammation and mucosal protection
in IBDs [73]. Thus, effects of OPN deficiency on colitis-associated colorectal carcinogenesis are
unclear, and it is considered that suppression of mucosal protective effects of OPN may enhance
colitis-associated colorectal carcinogenesis. OPN could be a target for tumor prevention under weak
and chronic inflammation, such as in obesity, but when there are severe injury and acute inflammation,
complete depletion of OPN should not be recommended. In the present study, suppressive effects of
hetero-deficiency of OPN on intestinal tumor formation in Min mice were slightly higher than those of
homo-deficiency. Since OPN plays important roles in many tissues and cells, complete suppression
may cause adverse effects. Moreover, we speculate that Mest, which was found to be elevated in
tumors in Min/OPN(−/−) mice, may affect tumorigenesis. It has been reported that OPN deficiency
is linked to a reduced immune response [8]. Post-transcriptional activation of OPN by MMPs could
also affect OPN functions. These points may have roles to play in the differential response. Roles of
OPN in early stages of colorectal tumorigenesis and ways to prevent colorectal cancer development
via OPN suppression should be further investigated.

4. Materials and Methods

4.1. Animals and Diets

Male and female C57BL/6-ApcMin/+ mice (Min mice) and B6.129S6(Cg)-Spp1tmlBlh/J (JR#004936)
(OPN(−/−) mice) (those were backcrossed to background C57BL/6 for 10 generations) were purchased
from Jackson Laboratories (Bar Harbor, ME, USA). Min mice were mated with OPN(−/−) mice to
generate Min/OPN(+/−) mice. Then, the Min/OPN(+/−) mice were crossed with OPN(+/−) mice to
obtain Min/OPN(+/+), Min/OPN(+/−), Min/OPN(−/−), OPN(+/+), OPN(+/−), and OPN(−/−) as
littermates. Since Apc-homo-deficient mice are embryonic lethal, all Min/OPN(+/+), Min/OPN(+/−),
and Min/OPN(−/−) mice are Apc hetero-deficient. Offspring were genotyped by PCR as previously
reported [33,81]. All mice were housed in plastic cages with sterilized softwood chips as bedding
in a barrier-sustained animal room with controlled conditions of humidity (55%), light (12/12 h
light/dark cycle), and temperature (24 ± 2 ◦C). Basal diet AIN-76A and water were available ad
libitum. The animals were observed daily for clinical signs and mortality. The experiments were
performed according to the “Guidelines for Animal Experiments of the National Cancer Center”
and were approved by the Institutional Ethics Review Committee for Animal Experimentation of the
National Cancer Center (permission code: T07-012, approval date: 1 April 2007). Diluted isoflurane [82]
was used to anaesthetize the animals.

4.2. Analysis of Intestinal Polyps

At 16 weeks old, mice were anesthetized, and blood samples were collected from the abdominal
vein. The intestinal tract was removed and separated into the small intestine, cecum, and colon.
The small intestine was divided into the proximal segment (4 cm in length) and the proximal (middle)
and distal halves of the remainder. These segments were opened longitudinally and fixed flat between
sheets of filter paper in 10% buffered formalin. The numbers and sizes of polyps and their distributions
in the intestine were assessed with a stereoscopic microscope. The colon was opened longitudinally
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and observed colon tumors were collected. A half part of each colon tumor was stored at −80 ◦C for
PCR analysis, and the other half was fixed with 10% buffered formalin and embedded in paraffin.
Paraffin sections were stained with hematoxylin and eosin for histological examination. The remaining
intestinal mucosa (non-polyp part) was removed by scraping, and then stored at −80 ◦C.

4.3. Measurement of Mouse Serum Parameter Levels

Serum concentrations of OPN (R&D Systems, Minneapolis, MN, USA) and IL-6 (BioSource
International, Inc., Camarillo, CA, USA) were determined by enzyme-linked immunoassays according
to the manufacturer’s protocol. The serum levels of TGs were measured using the Fuji Dri-Chem
system (Fujifilm, Tokyo, Japan).

4.4. Quantitative RT-PCR Analysis

The mRNA expression levels of OPN, MMP-3, MMP-9, MMP-13, MMP-2, MMP-7, Bcl-2,
CyclinD1, COX-2, TGF β1, F4/80, CD44, Mest, Snail, Twist, and Vimentin were examined in
colorectal tumors (n = 5~6 for each group) and non-lesional colorectal mucosa (n = 6 for each
group). Total RNA was extracted from the tissue samples using TRIZOL® Reagent (Life Technologies,
Japan). After RNA purification, aliquots of total RNA (2 µg) were subjected to the RT reaction
with oligo-dT and hexamer random primers in a final volume of 20 µL using an iScript TM cDNA
Synthesis Kit (Bio-Rad Lab., Hercules, CA, USA). Quantitative real-time RT-PCR was performed
in a final volume of 10 µL with aliquots of cDNA (10 ng) using SsoAdvancedTM Universal SYBR®

Green Supermix (Bio-Rad Laboratories, Inc., Hercules, CA) and a PTC-200 DNA engine cycler
equipped with a CFD-3220 Opticon 2 detector (MJ Research Inc., St. Bruno, Quebec, Canada)
for fluorescence detection. The primers used were selected from the mouse cDNA sequences of
GAPDH, OPN, MMP-3, MMP-9, MMP-13, MMP-2, MMP-7, Bcl-2, CyclinD1, COX-2, TGF β1, F4/80,
CD44, Mest, Snail, Twist and Vimentin: 5’-primer: 5’-TCAAGAAGGTGGTGAAGCAG-3’,
3’-primer: 5’-TCCACCACCCTGTTGCTGTA-3’ (product size, 203 bp) for GAPDH;
5’-primer: 5’-CTTGCGCCACAGAATGCTG-3’, 3’-primer: 5’-TGACCTCAGTCCATAAGCCA-3’
(product size, 303 bp) for OPN; 5’-primer: 5’-CGTTTCCATCTCTCTCAAGATG-3’,
3’-primer: 5’-GTTAGACTTGGTGGGTACCA-3’ (product size, 99 bp) for MMP-3; 5’-primer:
5’-TGTACCGCTATGGTTACAC-3’, 3’-primer: 5’-CGACACCAAACTGGATGAC-3’ (product
size, 372 bp) for MMP-9; 5’-primer: 5’-GATGATGAAACCTGGACAAG-3’, 3’-primer:
5’-GCCAGTGTAGGTATAGATGG-3’ (product size, 138 bp) for MMP-13; 5’-primer:
5’-TCAAGTTCCCCGGCGATGTC-3’, 3’-primer: 5’-AGTTGGCCACATCTGGGTTG-3’
(product size, 225 bp) for MMP-2; 5’-primer: 5’-TGTGGAGTGCCACATGTTGC-3’,
3’-primer: 5’-GTGTTCCCTGGCCCATCAAA-3’ (product size, 266 bp) for MMP-7; 5’-primer:
5’-AGCTGCACCTGACGCCCTTCAC-3’, 3’-primer: 5’-TCCACACACATGACCCCACCGA-3’
(product size, 127 bp) for Bcl-2; 5’-primer: 5’-CCATGGAACACCAGCTCCTG-3’, 3’-primer:
5’-CGGTCCAGGTAGTTCATGGC-3’ (product size, 187 bp) for CyclinD1; 5’-primer:
5’-AATGAGTACCGCAAACGCTT-3’, 3’-primer: 5’-GAGAGACTGAATTGAGGCAG-3’
(product size, 323 bp) for COX-2; 5’-primer: 5’-TTCCTGCTTCTCATGGCCACCC-3’,
3’-primer: 5’-TGCCGCACGCAGCAGTTCTT-3’ (product size, 122 bp) for TGF β1; 5’-primer:
5’-CCTGGACGAATCCTGTGAAG-3’, 3’-primer, 5’-GGTGGGACCACAGAGAGTTG-3’
(product size, 64 bp) for F4/80; 5’-primer: 5’-CTGGATCAGGCATTGATGATG-3’,
3’-primer: 5’-GCCATCCTGGTGGTTGTCTG-3’ (product size, 157 bp) for CD44; 5’-primer:
5’-CTGAGAGTGAGCTGTGGGAC-3’, 3’-primer: 5’-GGCAGCGTTTTCCTGTACAG-3’
(product size, 220 bp) for Mest; 5’-primer: 5’-CATCCGAAGCCACACGCTG-3’,
3’-primer: 5’-CGCAGGTTGGAGCGGTCA-3’ (product size, 256 bp) for Snail; 5’-primer:
5’-GATGGCAAGCTGCAGCTATG-3’, 3’-primer: 5’-CAGCTCCAGAGTCTCTAGAC-3’ (product size,
193 bp) for Twist; 5’-GATTCAGGAACAGCATGTCC-3’, 3’-primer: 5’-CATCCACTTCACAGGTGAG-3’
(product size, 251 bp) for Vimentin. The cycling conditions were as follows: 95 ◦C for 3 min, 40 cycles
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of 94 ◦C for 10 s, 60 ◦C (GAPDH, OPN, MMP2, Bcl-2, CyclinD1, TGF β1, F4/80, Mest, Vimentin),
55 ◦C (MMP-3, MMP-9, MMP-13, MMP-7, COX-2, Twist), or 65 ◦C (CD44, Snail) for 20 s, 72 ◦C
for 20 s, and 79 ◦C for 2 s. The fluorescence intensity of SYBR Green I was measured at 79 ◦C at
every cycle. To assess the specificity of each primer set, amplicons generated from the PCR reaction
were analyzed for melting curves. Finally, the PCR products were analyzed by 2% agarose gel
electrophoresis with ethidium bromide staining to confirm the correct sizes. Quantification of OPN,
MMP-3, MMP-9, MMP-13, MMP-2, MMP-7, Bcl-2, CyclinD1, COX-2, TGF β1, F4/80, CD44, Mest,
Snail, Twist, and Vimentin relative to GAPDH was performed by ∆∆Ct method.

4.5. Immunohistochemical Staining of Colon Tumors

Paraffin-embedded tissue sections of colorectal tumors were used for immunohistochemical
analyses with the avidin-biotin complex immunoperoxidase technique after heating with 10 mM
citrate buffer (pH 6.0). As the primary antibodies, polyclonal rabbit anti-MMP-9 immunoglobulin G
(IgG) (Chemicon, Temecula, CA, USA) and anti-F4/80 IgG (Santa Cruz Biotechnology, Santa Cruz,
CA, USA) were used at 100× and 200× dilution, respectively. As the secondary antibody, biotinylated
anti-rabbit IgG (H+L) raised in a goat, affinity purified, (Vector Laboratories Inc., Burlingame, CA, USA)
was employed at 200× dilution. Staining was performed using avidin-biotin reagents (Vectastain
ABC reagents; Vector Laboratories Inc., Burlingame, CA, USA), 3,3’-diaminobenzidine, and hydrogen
peroxide. The sections were counterstained with hematoxylin. As a negative control, duplicate sections
were immunostained without exposure to the primary antibody.

4.6. Statistical Analysis

The significance of differences in the incidences of colon tumors was analyzed using Fisher’s exact
probability test. Other results are expressed as mean ± standard deviation (SD) and statistically
analyzed using one-way analysis of variance (ANOVA), followed by Tukey-Kramer multiple
comparison post-hoc test. Correlation of serum TG levels or spleen weights with polyp numbers was
analyzed by the Pearson correlation test or Spearman’s rank correlation coefficient test. Differences
were considered to be statistically significant at p < 0.05.

5. Conclusions

OPN expression was upregulated in colon tumors in Apc-deficient mice and OPN-knockout
significantly suppressed tumor development. Though OPN was not essential for tumor formation,
it was indicated that OPN is involved in early stage intestinal tumorigenesis in part by upregulation
of MMP-3, MMP-9, and MMP-13, and infiltration of macrophages and neutrophils. OPN could be
a target for cancer prevention.

Supplementary Materials: The following is available online at www.mdpi.com/1422-0067/18/5/1058/s1,
Figure S1: Effects of OPN deficiency on body and spleen weights, Figure S2: A macroscopic view of the colorectum
of (a) male Min/OPN(+/+), (b) male Min/OPN(+/−), (c) male Min/OPN(−/−), (d) female Min/OPN(+/+),
(e) female Min/OPN(+/−), and (f) female Min/OPN(−/−).
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