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Abstract: The synthesis and deposition of extracellular matrix (ECM) plays an important role in
the healing of acute and chronic wounds. Consequently, the use of ECM as treatment for chronic
wounds has been of special interest—both in terms of inducing ECM production by resident cells
and applying ex vivo produced ECM. For these purposes, using adipose tissue-derived stem cells
(ASCs) could be of use. ASCs are recognized to promote wound healing of otherwise chronic
wounds, possibly through the reduction of inflammation, induction of angiogenesis, and promotion
of fibroblast and keratinocyte growth. However, little is known regarding the importance of
ASC-produced ECM for wound healing. In this review, we describe the importance of ECM for
wound healing, and how ECM production by ASCs may be exploited in developing new therapies
for the treatment of chronic wounds.
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1. Introduction

Wound healing is a dynamic and well-orchestrated process with both molecular and cellular
events. When for some reason the wound healing process is perturbed, the wounds may
become chronic, with concomitant alterations in the microenvironment leading to prolonged
inflammation, ischemia, dysfunctional extracellular matrix (ECM), and lack of re-epithelialization [1].
Traditional wound healing therapies are often not sufficient, so there is considerable interest in
developing novel more efficient therapies. Among the novel strategies that are being explored, the use
of adipose tissue-derived stem/stromal cells (ASCs) appears to be very promising, judging from
animal studies [2] and early clinical studies [3]. The ASCs are derived from the so-called stromal
vascular fraction of adipose tissue [4,5], which is a rather heterogeneous population. However,
after expansion for just a few passages, the ASCs converge towards a common phenotype comprised
of fewer, perhaps functionally distinct subtypes [6,7].

While it is still not clear how the ASCs mediate their effect, they have been shown to have
immunomodulatory and proangiogenic properties, the ability to promote keratinocyte and fibroblast
growth, as well as ability to reduce tissue scarring [8–13]. However, less is known about the putative
effect of ASCs on the ECM of the chronic wounds. Consequently, in this review we will outline the
role of ECM in wound healing, describe what is known regarding ASCs’ effect on ECM, and speculate
on how ASC-derived ECM may be exploited in novel wound healing therapies.
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2. The ECM of the Skin

In human skin, the ECM contains both fibrous proteins and ground substance. The fibrous
proteins comprise collagens, elastin, and fibronectin, and provide a three-dimensional scaffold upon
which both individual cells and the vascular network are supported or anchored. The most abundant
fibrous protein in the human skin is collagen I, with collagen III and collagen V representing only
minor proportions of the total collagen [14]. During pathological conditions such as scar formation,
the composition and structure of collagen fibers are altered [15]. The ground substance of the ECM
contains proteoglycans and glycosaminoglycans, and surround the fibrous proteins as a jelly-like
substance which provides hydration to the skin due to the strong hydrophilic characteristics.

Initially, ECM was thought to function only as structural support for the cells; however, it has
become clear that the ECM plays a pivotal role in the regulation of cell behavior both under normal
conditions and during wound healing [16,17]. The ECM regulates cell behavior through molecular
signaling primarily mediated by integrins (a family of cell surface receptors), and it has been shown
that these signals are involved in determining whether the cells proliferate, differentiate, or undergo
apoptosis [18]. Among the resident skin cells that express integrins—and thus may be subjected
to modulation by the ECM—are fibroblasts and keratinocytes [19]. In addition, proteins in the
ECM modulate the activity of growth factors and cytokines such as platelet-derived growth factor
(PDGF) and transforming growth factor-β (TGF-β), produced by activated platelets and macrophages,
respectively [20,21]. Thus, the ECM functions as a reservoir by protecting the growth factors from
degradation and controlling their release [22].

ECM homeostasis is partly controlled by the activity of matrix metalloproteinases (MMPs) and
their counterpart, tissue inhibitors of metalloproteinases (TIMPs). The MMPs are mainly secreted by
keratinocytes, fibroblasts, and endothelial cells [23], and TIMPS by—among others—mesenchymal
stem cells (MSCs), keratinocytes, and fibroblasts [24,25]. Thus, the balance between MMPs and TIMPs
is important for ECM remodeling, cell signaling, and cell migration [26], and it has been suggested
that a high MMP/TIMP ratio could be a biomarker of non-healing wounds [27].

3. Role of ECM for Wound Healing

Acute wounds normally heal in four overlapping phases: hemostasis, inflammation, proliferation,
and remodeling (Figure 1) [17,28,29]. Hemostasis occurs immediately after the injury, and is
characterized by the activation and aggregation of platelets into the wounded area followed by
the deposition of fibronectin and fibrin from the blood plasma. The activated platelets help initiate
the inflammatory phase through the secretion of PDGF, which is important for the migration of
macrophages and neutrophils to the wounded area [20], and TGF-β, which plays a major role in the
transformation of monocytes to macrophages [21]. The stimulation of macrophages results in the
development of polarized phenotypes termed classically activated (M1) macrophages that secrete
pro-inflammatory cytokines and predominate during early wound healing and alternatively activated
(M2) macrophages that are associated with a wound healing anti-inflammatory profile and which
predominate in the later stages when inflammation abates and tissue undergoes remodeling [30,31].



Int. J. Mol. Sci. 2017, 18, 1167 3 of 11

Int. J. Mol. Sci. 2017, 18, 1167  3 of 10 

 

basement membrane towards the wound edge and close the wound. The migration of keratinocytes 
is dependent on basement membrane degradation, facilitated by MMPs [36]. 

 
Figure 1. The phases of normal wound healing. Wound healing normally progresses through a 
tightly orchestrated process that is usually described as having four overlapping phases. During 
hemostasis, a platelet plug is formed and growth factors are secreted. The inflammatory phase has 
two stages. The initial stage, where neutrophils and pro-inflammatory M1 macrophages prevail, and 
a second stage characterized by the presence of anti-inflammatory M2 macrophages. During the 
proliferation phase, fibroblasts proliferate and synthesize extracellular matrix (ECM), new vessels 
are formed, and keratinocytes re-epithelialize the surface of the wound. In the final remodeling stage, 
the composition of the ECM is altered through degradation and resynthesis. PDGF: platelet-derived 
growth factor; TGF-β: transforming growth factor-β. 

In the remodeling phase, fibroblasts transform into myofibroblasts and contract the wound area 
[37]. Remodeling of the granulation tissue is characterized by the synthesis and breakdown of 
collagen, regulated by the MMPs and TIMPs [38]. 

When the normal progression through the different phases of wound healing is perturbed as 
described above, the wounds may become chronic. It appears that non-healing wounds remain in a 
transition state between the inflammation and proliferation phases and proliferative and remodeling 
phases become impaired [39] (Figure 2, left panel). It is not clear what causes the prolonged 
inflammation; however, macrophages in chronic wounds fail to switch from the pro-inflammatory 
M1 to the anti-inflammatory M2 phenotype [40]. 

Furthermore, in mouse models of wound healing, there was a correlation between the presence 
of M2 macrophages, the resolution of inflammation, and wound healing, suggesting an important 
role of the polarization from M1 to M2 macrophages during the process of wound healing [41,42]. 
Interestingly, a switch in phenotype towards a more anti-inflammatory or pro-healing type has also 
been documented for Th1/Th2 cells and MSCs [43,44], which are possibly recruited to the site of 
injury from the bone marrow [45]. 

As wounds become chronic, the ECM homeostasis of the wound area is affected. Indeed, 
chronic wound fibroblasts are unresponsive to the stimulatory effect of TGF-β on collagen synthesis 
when compared to normal skin fibroblasts [46]. In addition, proteolytic enzymes involved in ECM 
degradation are dysregulated in chronic wounds, with increased expression of MMP-1, MMP-2, 
MMP-3, MMP-8, and MMP-9 [47,48] and decreased expression of the MMP inhibitor TIMP-2, 
leading to excessive proteolysis of the ECM [48]. As the balance between ECM synthesis and 
degradation is impaired, the ECM becomes dysfunctional in terms of supporting cell migration and 
proliferation as well as angiogenesis [49].  

Figure 1. The phases of normal wound healing. Wound healing normally progresses through a tightly
orchestrated process that is usually described as having four overlapping phases. During hemostasis,
a platelet plug is formed and growth factors are secreted. The inflammatory phase has two
stages. The initial stage, where neutrophils and pro-inflammatory M1 macrophages prevail, and a
second stage characterized by the presence of anti-inflammatory M2 macrophages. During the
proliferation phase, fibroblasts proliferate and synthesize extracellular matrix (ECM), new vessels are
formed, and keratinocytes re-epithelialize the surface of the wound. In the final remodeling stage,
the composition of the ECM is altered through degradation and resynthesis. PDGF: platelet-derived
growth factor; TGF-β: transforming growth factor-β.

During the proliferation phase of wound healing, fibroblasts migrate to the wounded area
where they proliferate and initiate ECM synthesis [32]. The temporary matrix of fibrin and
fibronectin is replaced by the collagen matrix, enriched in proteoglycans, glycosaminoglycans,
and glycoproteins, forming a granulation tissue. Subsequently, the abundant extracellular matrix
accumulates, supporting cell migration. In response to the newly-synthesized ECM, endothelial
cells migrate into the wound and initiate the process of angiogenesis to restore the circulation in the
damaged area [33]. The wound environment is characterized by low oxygen supply, regulating the
process of angiogenesis through hypoxia-inducible factor-1 (HIF-1) [34]. Additionally, the secreted
growth factors basic fibroblast growth factor (bFGF), TGF-β, and vascular endothelial growth factor
(VEGF) stimulate the angiogenic activity [35]. Concurrently, keratinocytes migrate from the basement
membrane towards the wound edge and close the wound. The migration of keratinocytes is dependent
on basement membrane degradation, facilitated by MMPs [36].

In the remodeling phase, fibroblasts transform into myofibroblasts and contract the wound
area [37]. Remodeling of the granulation tissue is characterized by the synthesis and breakdown of
collagen, regulated by the MMPs and TIMPs [38].

When the normal progression through the different phases of wound healing is perturbed as
described above, the wounds may become chronic. It appears that non-healing wounds remain in a
transition state between the inflammation and proliferation phases and proliferative and remodeling
phases become impaired [39] (Figure 2, left panel). It is not clear what causes the prolonged
inflammation; however, macrophages in chronic wounds fail to switch from the pro-inflammatory M1
to the anti-inflammatory M2 phenotype [40].

Furthermore, in mouse models of wound healing, there was a correlation between the presence
of M2 macrophages, the resolution of inflammation, and wound healing, suggesting an important
role of the polarization from M1 to M2 macrophages during the process of wound healing [41,42].
Interestingly, a switch in phenotype towards a more anti-inflammatory or pro-healing type has also
been documented for Th1/Th2 cells and MSCs [43,44], which are possibly recruited to the site of injury
from the bone marrow [45].

As wounds become chronic, the ECM homeostasis of the wound area is affected. Indeed,
chronic wound fibroblasts are unresponsive to the stimulatory effect of TGF-β on collagen synthesis
when compared to normal skin fibroblasts [46]. In addition, proteolytic enzymes involved in ECM
degradation are dysregulated in chronic wounds, with increased expression of MMP-1, MMP-2,
MMP-3, MMP-8, and MMP-9 [47,48] and decreased expression of the MMP inhibitor TIMP-2, leading to
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excessive proteolysis of the ECM [48]. As the balance between ECM synthesis and degradation is
impaired, the ECM becomes dysfunctional in terms of supporting cell migration and proliferation as
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Figure 2. Characteristics of chronic wounds and the relevant regenerative effects of ASCs on these. 
Chronic wounds appear to unable to progress from the inflammatory phase of normal wound 
healing and to have impaired proliferation and remodeling phases (left panel). The ASCs have 
several regenerative characteristics that may lead to the wound progression from the inflammatory 
phase and through the proliferation and remodeling phases (right panel). ASC: adipose 
tissue-derived stem/stromal cells; MMP: matrix metalloproteinase; TIMP: tissue inhibitor of 
metalloproteinase; VEGF: vascular endothelial growth factor. 

4. Using Adipose Stem Cells to Treat Chronic Wounds 

The conventional treatment strategy for wound healing is based on wound bed preparation 
using tissue debridement, antibiotics, anti-inflammatory drugs, the restoration of moisture balance, 
and/or acceleration of epithelization by growth factor therapy [50,51]. Although these treatment 
options accelerate the wound healing process in many cases, many wounds are resistant to the 
current treatment options and more efficient methods are needed [49]. 

Figure 2. Characteristics of chronic wounds and the relevant regenerative effects of ASCs on these.
Chronic wounds appear to unable to progress from the inflammatory phase of normal wound healing
and to have impaired proliferation and remodeling phases (left panel). The ASCs have several
regenerative characteristics that may lead to the wound progression from the inflammatory phase
and through the proliferation and remodeling phases (right panel). ASC: adipose tissue-derived
stem/stromal cells; MMP: matrix metalloproteinase; TIMP: tissue inhibitor of metalloproteinase; VEGF:
vascular endothelial growth factor.

4. Using Adipose Stem Cells to Treat Chronic Wounds

The conventional treatment strategy for wound healing is based on wound bed preparation
using tissue debridement, antibiotics, anti-inflammatory drugs, the restoration of moisture balance,
and/or acceleration of epithelization by growth factor therapy [50,51]. Although these treatment
options accelerate the wound healing process in many cases, many wounds are resistant to the current
treatment options and more efficient methods are needed [49].
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Recently, stem cell therapy has emerged as a novel approach for chronic wound healing. So far,
most data is from studies using bone marrow-derived MSCs (BM-MSCs). However, as ASCs and
BM-MSCs share numerous biological properties, much of the knowledge regarding BM-MSCs can
be directly applied to the ASCs [52]. It has also become apparent the vastly higher numbers of ASCs
than BM-MSCs can be obtained in a short time frame [52]. Thus, as procedures for the isolation and
expansion of ASCs for clinical use have been optimized [53], ASCs are emerging as the most promising
candidate for stem cell-based therapies for chronic wounds.

In the chronic wound environment, in vitro and in vivo studies suggest that the ASCs may be able
to discontinue the prolonged inflammation phase and restore the progression through the phases of
proliferation and remodeling (Figure 2, right panel). In terms of effects on the inflammatory processes,
it is well known that ASCs may influence the functional characteristics and cytokine profile of T-, B-,
and dendritic cells [54–56]. Notably, ASCs have also been shown to be able to induce a conversion
of the macrophage phenotype from the pro-inflammatory M1 associated with chronic wounds to the
anti-inflammatory and wound healing M2 phenotype [57,58]. During the proliferation phase, secreted
factors from ASCs enhance several fibroblast characteristics, such as cell proliferation, migration and,
importantly, the synthesis of collagen and other ECM proteins [59–61]. Furthermore, ASCs have been
demonstrated to inhibit ECM degradation through the increased binding of MMPs and secretion of
TIMPs [24]. The ability of ASCs to promote new vessel growth is also relevant to wound healing [62].
Finally, in vitro studies suggest that ASCs may promote re-epithelialization through modulation of
keratinocytes in terms of promoting their proliferation and migration, but more studies are needed to
confirm if this also holds true for chronic wounds [11,63].

To potentiate the wound healing effects of ASCs, the possibility of pre-conditioning the cells during
in vitro expansion prior to clinical use has been suggested. In particular, the use of hypoxic culture
appears interesting, as several of the wound healing properties of ASCs appear to be enhanced [64,65].
Significantly, it was recently found that hypoxic culture of ASCs altered their expression profile of
several proteins related to ECM structure and function [66]. However, more data is needed to determine
if the hypoxic potentiation of the regenerative properties of the ASCs in vitro can be translated into an
enhanced effect in vivo.

5. ECM-Based Scaffolds for Wound Therapy

An alternative approach to using cells for wound therapy is to use acellular ECM. Acellular
ECM-based scaffolds derived from natural tissues have been successfully applied in various preclinical
and clinical settings for the treatment of severe wounds. These natural scaffolds appear to mediate
tissue regeneration through a process known as constructive remodeling, in which the diverse ECM
components orchestrate a process of scarless tissue repair [67]. There are various commercially
available ECM-derived materials that are routinely used for the treatment of burns and chronic
wounds, including materials obtained by the decellularization of animal tissues, such as porcine
or bovine skin [68,69], or from allogeneic human skin [70]. A more detailed review of the variety
of decellularized ECM scaffolds that are currently available for clinical use can be found in the
literature [71]. Despite the relatively high success rates associated with these materials, some issues may
still appear, such as sustained inflammatory responses and incomplete healing due to poor integrity
of the native ECM molecules after decellularization [72]. In addition, xenogeneic ECM components
may cause adverse host immune responses, and there is a risk of pathogen transfer [73]. To avoid
these risks and the limitations associated with the supply of allogeneic human tissues, cell cultures
have recently emerged as viable alternatives for the fabrication of ECM scaffolds. Depending on
the cell type used for ECM synthesis, it is possible to fabricate ECM scaffolds containing specific
proteins and morphogens that appear during early tissue development and which are associated
with enhanced wound healing [74]. In particular, matrices derived from stem cells have shown
promise as scaffolds for various tissue engineering and regenerative medicine applications, including
regeneration of cartilage [75], bone [76], and neural tissue [77]. Surprisingly, despite the beneficial
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properties of BM-MSCs or ASCs in the context of wound healing therapies, little is known regarding
the use of stem cell ECM for wound healing applications. In this context, MSCs may possess a relative
advantage over terminally differentiated skin fibroblasts, as they have shown an increased capacity
to synthesize proteins involved in extracellular matrix, morphogenesis, and development [78,79].
The predominant upregulation of genes such as fibronectin (FN1) and extracellular matrix protein 2
(ECM2) found in MSCs suggests that the ECM derived from these cells may enhance wound healing by
promoting matrix deposition and cell adhesion [78]. Accordingly, comprehensive proteomic analysis
of ECM derived from MSCs has revealed an enrichment of structural proteins, including collagen I,
VI, and XII, which together with an increased presence of MMPs indicates a highly dynamic matrix
turnover [79]. Furthermore, MSC-derived ECM is also enriched in proteoglycans such as perlecan and
hyaluronan, and glycoproteins such as fibronectin, tenascin-C, fibulin-1, and thrombospondin-1 [79].
Overall, these components of the ECM may contribute to the different phases of wound healing by
supporting integrin-mediated cell adhesion and signaling, cell migration, and proliferation. In addition,
decellularized stem cell ECM has demonstrated a significant angiogenic potential, which has been
evidenced through the activation of endothelial cells [80]. An additional advantage of using stem cell
cultures is the possibility of microenvironmental preconditioning of the cells during the fabrication
process to tailor specific biological or biophysical functionalities in the scaffold that may promote
wound healing [81]. In ASCs, in vitro ECM production and assembly has been shown to be controlled
by mechanical and topographical cues from the microenvironment [82,83].

Decellularized ECM-scaffolds may be also used as platforms for cell delivery. It has been
hypothesized that ASCs might have a better survival rate and reduce scar formation when
administrated in combination with ECM-components [84]. Such a co-delivery could be implemented
either using a patch of ECM seeded with ASCs [84] or delivering the ASCs in a fibrin spray glue.

In summary, although fabrication of ECM scaffolds using ASC cultures or co-delivery of ASCs
and ECM represent novel concepts that may offer several comparative advantages for wound healing
applications, the knowledge in this field is still scarce, and more efforts are needed to further develop
these approaches into a clinical reality.
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ASC Adipose stem cell/adipose stromal cell
bFGF Basic fibroblast growth factor
BM-MSC Bone marrow-derived mesenchymal stem cell
ECM Extracellular matrix
HIF-1 Hypoxia-inducible factor 1
MSC Mesenchymal stem cell
MMP Matrix metalloprotease
PDGF Platelet-derived growth factor
TGF-β Transforming growth factor-beta
TIMP Tissue inhibitor of metalloproteases
VEGF Vascular endothelial growth factor
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