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Abstract: Aphids are phloem feeders that cause large damage globally as pest insects. They induce 
a variety of responses in the host plant, but not much is known about which responses are 
promoting or inhibiting aphid performance. Here, we investigated whether one of the responses 
induced in barley by the cereal aphid, bird cherry-oat aphid (Rhopalosiphum padi L.) affects aphid 
performance in the model plant Arabidopsis thaliana L. A barley cDNA encoding the protease 
inhibitor CI2c was expressed in A. thaliana and aphid performance was studied using the generalist 
green peach aphid (Myzus persicae Sulzer). There were no consistent effects on aphid settling or 
preference or on parameters of life span and long-term fecundity. However, short-term tests with 
apterous adult aphids showed lower fecundity on three of the transgenic lines, as compared to on 
control plants. This effect was transient, observed on days 5 to 7, but not later. The results suggest 
that the protease inhibitor is taken up from the tissue during probing and weakly inhibits fecundity 
by an unknown mechanism. The study shows that a protease inhibitor induced in barley by an 
essentially monocot specialist aphid can inhibit a generalist aphid in transgenic Arabidopsis. 
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1. Introduction 

Aphids are phloem feeding insects and serious crop pests. They are vectors of plant viruses and 
by themselves reduce plant growth at heavy infestations. Some species cause visible symptoms and 
even plant death [1]. The main control method to fight aphid pests is the usage of insecticides, which, 
however, have well-established negative effects, such as toxicity versus non-target organisms [2] and 
the development of insect resistance [3–5]. Because of such problems, regulations for insecticide 
usage are becoming increasingly restrictive [6,7]. The alternative approach of breeding for aphid 
resistance has been applied in several crops [8,9]. However, when based on single gene resistance, 
this approach faces the problem of the development of resistant aphid biotypes, such as in the case 
of the Russian wheat aphid [10]. In view of the need for durable resistance, more interest is now being 
directed to quantitative trait based resistance involving multiple loci, which is believed to be more 
durable [8,11,12]. 

The infestation by aphids induces a reprogramming of the gene expression in the host plant [8], 
something that has been studied in many plant/aphid species combinations (reviewed in, e.g., [9,13]). 
The interaction between Arabidopsis thaliana L. and the generalist green peach aphid (GPA) (Myzus 
persicae Sulzer) has emerged as a model system [13–15]. Genes induced in the Arabidopsis/GPA 
interaction and in other plant/aphid interactions have been further studied in transgenic and gene 
silencing approaches. The reducing effect on aphid population growth was confirmed in Arabidopsis 
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for a lipase [16] and a gene involved in trehalose metabolism [17]. Likewise, for a α-dioxygenase 
upregulated in tomato by potato aphid, (Macrosiphum euphorbiae Thomas), the expression level was 
shown to correlate to numbers of potato aphids in tomatoes [18]. 

The present study is based on the similar assumption, i.e., that genes upregulated by aphids might 
confer aphid resistance. We have used a transgenic approach and the Arabidopsis/GPA interaction to 
investigate the effect of a protease inhibitor (PI), encoded by the barley (Hordeum vulgare L.) gene CI2c. 
There were several lines of evidence to suggest that CI2c might have a role in defense against aphids. 
First, CI2c, at the time named BCI-7, belongs to a small number of barley genes found to be induced 
in leaves by synthetic mimics of salicylic acid (SA) and by methyl jasmonate (MeJA) [19]. This is the 
background to the acronym BCI, meaning Barley Chemically Induced. Both SA- and JA-mediated 
responses have been reported in numerous plant–aphid interaction studies and there is suggestive 
evidence that they are important in efficient aphid defense [20]. 

A second reason to expect CI2c to be involved in aphid defense is its function. It is part of the 
Mla-locus, which confers resistance to powdery mildew and belongs to a family of six chymotrypsin 
inhibitor 2 (CI2) genes [21]. Plant protease inhibitors (PIs) are small proteins often induced upon 
pathogen or herbivore attack and have been much discussed as being important in plant defense 
against pathogens as well as insects [22–26]. It has since long been shown in several types of insects 
that PIs inhibit protein digestion in the gut and thereby their growth and reproduction [22]. With 
regard to aphids, some plant PIs have been shown to affect aphid performance. For example, some 
seed PIs of the cystatin, cysteine PI type have shown antibiosis effects against aphids in transformed 
plants [27–29], and the opposite effect has also been found [30]. There are also numerous studies with 
PIs added in artificial diets showing antibiosis effects against aphids, but usually at quite high PI 
concentrations [31–34]. However, most of the inhibitors tested have been seed or potato tuber PIs, 
which the aphids would not encounter on stems or leaves. Our study is the first where a sequence 
encoding a PI that is induced by aphids in leaf tissue is transformed to another plant species and 
evaluated for its effect against another aphid species. CI2c belongs to the potato inhibitor I family of 
serine protease inhibitors of the trypsin/chymotrypsin type [21]. The induction of chymotrypsin 
inhibitors in barley by aphids was shown as increased inhibitor activity long before transcript studies 
were carried out [35]. In our previous studies, CI2c was one of the genes found specifically induced 
by bird cherry-oat aphid (BCA) (Rhopalosiphum padi L.) in two moderately BCA resistant and not in 
two BCA susceptible barley genotypes [36]. In addition, the constitutive expression of CI2c/BCI-7 was 
higher in a large selection of moderately BCA resistant barley genotypes in comparison to in 
susceptible genotypes [37]. This suggests that, in barley, the gene might be contributing to the 
multifactor BCA resistance, causing lower nymph growth [36]. Evidence for a function for serine 
proteases in GPA comes from a study where Arabidopsis was expressing ds-RNA of a GPA serine 
protease gene. Aphids feeding on these plants exhibited lower serine protease activity and a lower 
fecundity [38]. With this background, we hypothesized that the CI2c inhibitor might reduce the 
performance of GPA in Arabidopsis. 

A PI may be acting in a plant/pathogen interaction by inhibiting either a plant protease or a 
protease from the pathogen and the effect may be either to the advantage or to the disadvantage of the 
pathogen [26]. A similar variety of scenarios can be expected in the plant/aphid interaction. Aphid 
proteases have been found in the aphid saliva [39] and the suggested function is in degrading phloem 
fiber proteins. This has been shown in vitro [40]. Proteases within the aphid body may be involved in 
digestive processes or in other functions related to protein turnover, reproduction or interaction with 
the bacterial symbionts. However, the PI may not necessarily act in a detrimental manner to the aphid. 
It is known that aphids manipulate plants to their own favor [41] and induced PIs might be favorable 
to the aphid by inhibiting plant proteases that are part of the plant defense machinery. 

In order to find out whether CI2c would affect GPA on Arabidopsis, various bioassays were 
carried out on transformed plants expressing CI2c to examine host acceptance, fecundity and life 
span. The gene was expressed under control of either a constitutive promoter (CaMV35S) or the rolC 
promoter with a restricted expression, often cited as phloem-specific [42,43]. A change in host 
acceptance would indicate the recognition of the gene product during penetration of the aphid stylet 
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in the tissue and probing. A short-term effect on fecundity would be an indication of an effect during 
probing or feeding establishment. Any long-term effect on fecundity or life span might indicate that 
the metabolism or other aspects of reproduction are affected. We used both bolting and non-bolting 
plants in several of the tests, since the interaction between GPA and Arabidopsis has been shown to 
differ depending on the growth stage of plants (rosette or flowering) [13,14]. In a parallel approach, 
we overexpressed CI2c in barley and studied the effect on BCA and GPA. It was found that this did 
not cause any effects on the performance of BCA, and that the overexpression caused GPA to prefer 
the transgenic line [44]. 

The main aim of the present study was to investigate whether the product of the CI2c gene 
induced by aphids in barley affects the generalist aphid GPA in another plant species. The major 
effect of overexpressing CI2c in Arabidopsis was a transient inhibition on GPA fecundity, indicating 
that the aphid encounters the CI2c protein during probing and that it inhibits metabolism or 
unknown aspects of reproduction. 

2. Results 

2.1. Confirmation of Transformation and Phenotypes of Arabidopsis Plants Expressing CI2c 

Two CI2c lines (CI2c p:7 and CI2c p:8) with constitutive expression of the transgene and three 
psCI2c lines with phloem-specific expression (psCI2c p:1, psCI2c p:3 and psCI2c p:7) were selected 
for experiments with aphids. Gene expression analysis revealed that the transcript abundance of the 
transgene was high in the selected lines with constitutive expression of CI2c (Figure 1a). The 
transcript abundance was, as expected, much lower in the psCI2c lines (Figure 1c). There was no 
expression of the transgene in any of the azygous lines selected as controls. Measurements of enzyme 
activity confirmed the presence of the gene product in the CI2c lines by strong inhibition of 
chymotrypsin activity as compared to control plants (Figure 1b). The transformation with phloem-
specific expression did not result in detectable inhibition in the enzyme assays (Figure 1d), which can 
be explained by the limited tissue expression in these transformants. 

The germination rate was lower in two of the psCI2c lines, but there were no significant 
differences in leaf area, percentage of flowering plants or time to flowering (Supplementary Figures 
S1 and S2, Table S1) or any other obvious phenotypic differences between transgenic lines and control 
plants (Supplementary Figure S3). 
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Figure 1. Transcript abundance and chymotrypsin inhibition in Arabidopsis expressing CI2c. Relative 
transcript abundance of the CI2c sequence in CI2c (a) and psCI2c (c) lines. The results represent the 
average (± SD) of four biological replicates. The transcript abundance was calculated relative to two 
reference genes: Clathrin and TIP41. The sequence was not found expressed in the corresponding 
azygous control lines. The inhibition of chymotrypsin activity in protein extracts from CI2c (b) and 
psCI2c (d) lines. Bars indicate average (± SD) of three technical replicates. 

2.2. CI2c Expressed in Arabidopsis Has No or Minor Effect on GPA Settling 

The no-choice test showed no difference between controls and transgenes in the proportion of 
aphids settled, at any of the time points 2, 4 and 6 h (Figure 2). In choice tests, a significant difference 
was observed in aphid settling in one combination only; control and CI2c p:7 plants (p ≤ 0.05, 
Wilcoxon signed rank test) for bolting plants (Figure 3). In the case of non-bolting plants, there was 
a consistent trend in aphid preference for control plants instead of CI2c p:7 and CI2c p:8 plants, but 
no significant difference. There was no difference in settling when the aphids had the choice between 
the two transgenic lines CI2c p:7 and CI2c p:8, or between the psCI2c transgenic lines and their 
respective controls (Figure 3).  

 
Figure 2. Proportion of GPAs settled in a no-choice test on (a) CI2c and (b) psCI2c lines and their 
respective controls. Ten adult apterous aphids were released in the center of the rosette of each Plant 
Results (±SE) (n = 12) represent data from two independent experiments. No significant differences 
were observed (p > 0.05 Kruskal–Wallis test). 
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Figure 3. Percentage of GPAs settled in choice tests on CI2c and psCI2c lines or their controls. Twenty 
adult apterous aphids were released in the middle between two genotypes. The bars represent the 
percentage of aphids settled on each genotype. The data are from two independent experiments with 
number of replicates as given in the Section 4. Black or grey bars = transgenic lines as indicated; white 
bars = respective azygous controls. The asterisk indicates significant difference (** p ≤ 0.01 Wilcoxon 
signed rank test). 

2.3. CI2c Expressed in Arabidopsis Has a Transient Short-Term Effect on GPA Fecundity 

To detect possible effects on aphid fecundity due to ingestion of the CI2c protein during 
penetration and probing, short-term fecundity tests were carried out. Adult aphids were added to 
bolting plants and the total numbers of aphids on each plant were counted after five days. The results 
showed lower numbers of aphids on the two CI2c transgenic lines (p ≤ 0.01 for CI2c p:7 and p ≤ 0.001 
for CI2c p:8) and on psCI2c p:3 (p ≤ 0.05) as compared to on control plants (Figure 4). To further study 
the time scale of this effect, aphids were counted each day after settling during eight consecutive days 
in one of the transgene lines. The number of adults did not differ between the control and CI2c p:8 
plants (two-way ANOVA: F1,80 = 3.38, p = 0.0697) (Figure 5a). It was the highest at day 8 when nymphs 
born at the beginning of the experiment reached adulthood and thus were counted as adults. The 
comparison of number of nymphs and the total number of aphids on control and CI2c p:8 plants 
showed that there were significant differences between the two lines (for nymphs: F1,80 = 18.1, p = 
0.0001; for total aphid numbers: F1,80 = 16.76, p = 0.0001). There was no significant line × day interaction 
[nymphs: F7,80 = 0.92, p = 0.4927; total aphid numbers: F7,80 = 0.88, p = 0.5242]. Post hoc analysis revealed 
a significant decrease in the number of nymphs and total number of aphids on transgenic plants 
during the period of day 5 to 7 (p ≤ 0.01 for day 5 and 6 and p ≤ 0.05 for day 7) (Figure 5b,c). 
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Figure 4. GPA fecundity on CI2c and psCI2c plants and on azygous controls. Five apterous adults were 
put on each plant and the total number of aphids on each plant counted after five days. The results (±SE) 
are from two independent experiments and normalized to the average aphid numbers on control plants 
for each experiment as 100 (these numbers were 48 and 26 for CI2c and 43 and 55 for psCI2c, 
respectively). Asterisks indicate significant differences between control and transgenic plants (* p ≤ 0.05; 
** p ≤ 0.01; *** p ≤ 0.001, one-way ANOVA (p ≤ 0.05) followed by Tukey HSD as post hoc test). 
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Figure 5. Time curve of GPA fecundity on CI2c p:8 and control plants. Five apterous adult aphids 
were released on each plant and the number of adult aphids and nymphs counted on a subset of the 
plants each day during eight consecutive days. (a) number of adults; (b) number of nymphs and (c) 
total number of aphids. White bars = control plants, black bars = CI2c p:8 plants. The results are the 
average (±SE). n = 6 for each day. For (b,c), the numbers were normalized to the average aphid 
numbers on control plants as 100. These numbers were 21, 41, 47, 68, 82, 34, 43, 47 for nymphs and 26, 
45, 51, 72, 85, 39, 48, 54 for total aphids, respectively. Asterisks indicate significant differences between 
control and transgenic plant (* p ≤ 0.05; ** p ≤ 0.01, two-way ANOVA with line × day as factors 
followed by Tukey HSD as post hoc test). 

2.4. CI2c Has No Long-Term Effect on GPA Fecundity 

In order to find out if CI2c would have an effect on aphids when they have settled and are 
feeding from the phloem, long term experiments were carried out. In life span experiments, both the 
life span and the fecundity during the total life span are recorded starting with the birth of each 
nymph. The results showed no differences between transgenic lines and the control plants in the 
number of days for aphids to the start of reproduction, the length of the reproductive life, the life 
span, the number of nymphs produced per individual, the number of nymphs per day or the intrinsic 
rate of population increase rm (Table 1). 

Table 1. Life span and reproduction of green peach aphid (GPA) on CI2c and psCI2c p:3 lines. The 
results represent mean values (±SE). rm = intrinsic rate of population increase. There were no 
significant differences between control and transgenic plants for any of the parameters (Kruskal–
Wallis test, p > 0.05). 

 Control
(n = 6) 

CI2c p:7
(n = 6) 

CI2c p:8
(n = 6) 

Control  
(n = 9) 

psCI2c p:3
(n = 9) 

Days to reproduction 8.7 ± 0.2 8.4 ± 0.3 8.7 ± 0.2 8.7 ± 0.2 9.1 ± 0.3 
Reproductive life (days) 23.6 ± 2.0 22.7 ± 1.8 24.2 ± 1.4 24.4 ±1.7 25.3 ±1.5 

Life span (days) 42.0 ± 4.0 41.1 ± 3.1 42.8 ± 2.7 49.1 ±3.4 46.6 ± 3.9 
Nymphs/individual 63.9 ± 4.4 59.3 ± 2.7 59.7 ± 3.8 49.0 ± 6.1 38.9 ± 2.5 

Nymphs/day 2.8 ± 0.1 2.8 ± 0.3 2.6 ± 0.3 2.0 ± 0.3 1.6 ± 0.1 
rm 0.31 ± 0.004 0.31 ± 0.008 0.30 ± 0.010 0.26 ± 0.012 0.23 ± 0.014 

Another type of fecundity test starting with nymphs was carried out during 14 days on both bolting 
and non-bolting plants. Considering that the days to the first reproduction is eight to nine days (Table 1), 
only one generation of nymphs are born within this time. The results showed lower aphid 
reproduction on the non-bolting line psCI2c p:3 in comparison with the controls (p ≤ 0.01), but not on 
any of the other transgenic lines or growth conditions (Figure 6). 
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Figure 6. GPA fecundity on (a) CI2c and (b) psCI2c lines and their respective controls. Five nymphs 
were put on each plant and the total numbers of aphids on each plant were counted after 14 days. The 
data are from two independent experiments. Results (± SE) are normalized to the average aphid 
numbers on the control plants for each experiment as 100. The average numbers on control plants 
were: CI2c, bolting: 120 and 135; non-bolting 53 and 91; psCI2c, bolting 176 and 159; non-bolting 77 
and 92. Asterisks indicate significant differences between control and transgenic lines at ** p ≤ 0.01 
(one-way ANOVA followed by Tukey HSD). 

3. Discussion 

A. thaliana was transformed with CI2c under control of the constitutive CaMV35S promoter and 
in addition, the phloem-specific promoter rolC. The rolC promoter has been shown to direct the 
expression to phloem parenchyma and companion cells in tobacco [42] and in stems of A. thaliana to 
primary phloem and a random selection of cortical cells [45]. We found much lower transcript 
abundance of CI2c using the rolC promoter than the constitutive CaMV35S promoter (Figure 1), which 
is in agreement with the expected tissue-specific expression of the transgene. 

We considered that differences in plant size or development between transgenes and control 
plants might affect the nutritional value and thus cause secondary effects on aphid performance. We 
find this very unlikely since there were no phenotypic differences between the transgenic and control 
plants at the age of the aphid tests. The only difference found was reduced seed germination in two 
of the psCI2c lines, possibly caused by the inhibition of storage protein degradation needed for 
germination in these seeds. The possibility of “seed history” effects, i.e., that induced defenses in the 
previous generation may have been carried through to the plants to be tested [46] was avoided by 
using azygous controls from the same line and from the same generation as the transgenic plants. 
Thus, the plants used for comparisons had experienced the same growth conditions in several 
generations. 

A first consideration when analyzing the results is whether the PI stays within the cytosol or is 
secreted to the apoplast. In the first case, it may be delivered symplastically from the companion cells 
to the sieve cell elements, since this is the presumed trafficking pathway for proteins found in the 
sieve cell elements [47]. In this case, it would be present in the phloem sap from which the aphid is 
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feeding. If, however, the PI has an extracellular location, it is unlikely to enter into the phloem sap 
because it would have to pass the plasma membrane. Many of the plant protease inhibitors are 
secreted to the extracellular space [24–26]. The CI2c sequence does not contain a signal peptide, but 
it has been suggested that, for certain small proteins, a signal peptide is not necessary for entry into 
the secretory pathway [48]. As an example, the closely related CI2, present in barley endosperm, did 
not contain any signal peptide [49] and yet was directed from the cytosol into protein bodies [50]. 
Based on the above, we presume that CI2c is secreted out of the cell. 

There are several stages during aphid infestation where a PI might affect aphid performance. 
One possibility is that the PI has its main effect during aphid probing. The major factors determining 
aphid preference are encountered after stylet penetration of the peripheral host plant tissues, but 
before phloem ingestion [51,52]. The stylet follows an apoplastic pathway to the phloem and on its 
way briefly punctures many cells. The aphid quickly withdraws the stylet upon puncturing cells, but 
a mixture of saliva and cytoplasm is ingested. Will and coworkers [53] showed that the aphid saliva 
composition is different depending on the milieu of the stylet tip and concluded that aphids must 
permanently take up plant fluids, both from the apoplast and the cytosol. The results from our study 
do not give support to a strong effect of CI2c on host acceptance, since there was no delay in aphid 
settling on the transgenic lines in the no-choice tests and evidence for non-preference in the choice 
test was found with only one of the transgenic lines (Figure 3). 

A second possibility is that ingestion of the CI2c during probing has a negative impact on the 
metabolism or reproduction and, as a consequence, the fecundity. Our results support this idea, since 
we found transient lower fecundity in three transgenic lines as compared to control lines. The effect 
was found with adults in three transgenic lines but only with one line using nymphs, suggesting that 
reproductive mechanisms are targeted. In the life span test, the mother has established feeding in the 
phloem. The finding that there were no differences in fecundity or life span between plants 
expressing CI2c and control plants in this test indicates that the CI2c protein is not ingested from the 
phloem, and supports the idea that it is an extracellular protein. 

The CaMV35S promoter directs expression to both phloem and other tissue in dicots [54,55] and 
the expectations from transformation with the rolC promoter was to distinguish effects mainly 
restricted to phloem tissue to those in other parts of the leaf. As an example, in an earlier report, 
tobacco and chickpea were transformed with a gene encoding a leaf agglutinin protein using either 
CaMV35S or rolC-directed expression and the effects evaluated with GPA nymphs (on tobacco) or 
Aphids craccivora nymphs (on chickpea) [56]. The results showed somewhat higher nymph mortality 
on the rolC-transformants than those transformed with the CaMV35S-promoter [56]. Contrary to the 
CI2c protein, the protein in that study caused strong toxicity, since less than 50% of the nymphs 
survived, the 72 h test [56]. Our present results do not show any strong effects related to the use of 
promoter. It may be noted that, despite much lower total transcript abundance and activity of CI2c 
than in the lines with constitutive expression, the psCI2c p:3 line supported lower fecundity both in 
the short term (five days) and the 14 days tests starting with nymphs. 

The transient effects on aphid fecundity that we found might be caused by targets in the aphid 
saliva or within the aphid. One target might be the gel saliva that forms a sheath in the apoplast 
during stylet penetration. It was shown with pea aphid (Acyrthosiphon pisum Harris) that, when the 
sheath protein is downregulated and no sheath can be formed, the long-term reproduction is 
suppressed [57]. Since this effect was not seen in our experiments, it seems unlikely that the gel saliva 
was affected. Alternatively, proteases in the watery saliva injected into the sieve cell elements might 
be inhibited. Recent studies showed that saliva from pea aphid and potato aphid digested the 
Cucurbita maxima Duchesne PP1 sieve-tube protein, and it was suggested that PIs in the phloem sap 
might protect the phloem proteins by inhibiting the saliva proteases [40]. In this scenario, GPAs might 
successfully establish feeding, but the inhibition of proteases by CI2c might delay reproduction. The 
argument against this idea is that we would then expect inhibitory effects during the life span tests 
where aphids have established feeding, and no such effects were found. We therefore suggest that 
the CI2c protein is ingested during probing and that the targets are within the aphids. 
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This idea would be in accordance with recent studies where lower serine protease activities in 
the GPA gut were correlated to lower fecundity [38]. It is also possible that the PI does not act on 
protein digestion in the gut, but, for example, on functions related to aphid reproduction or the 
interaction with the bacterial endosymbionts. This was suggested based on the finding that in GPA 
reared on oilseed rape expressing a gene for the cysteine PI oryzacystatin (OC-I), the inhibitor was 
found in the oenocytes and bacteriocytes of the aphid [27]. More recently, it was demonstrated that a 
cathepsin-L-like protease purified from the midgut of bean bug (Riptortus pedestris Fabricius) had 
antibacterial activity against gut symbiotic bacteria [58]. 

In barley overexpressing CI2c, GPA preferred the transgenic plants compared to controls, 
possibly due to protection against a serine protease found to be upregulated by GPA in barley [44]. 
The transcripts induced by GPA in Arabidopsis do not seem to include any serine proteases [59]. This 
may explain the absence of any preference of GPA for Arabidopsis expressing the CI2c gene. 

4. Materials and Methods 

4.1. Plant Cultivation 

Seeds of A. thaliana were surface sterilized in a three-step procedure. Seeds were first kept for 1 
h in a refrigerator in water with a few drops of Triton X-100 (Sigma-Aldrich Chemie GmbH, 
Steinheim, Germany), then washed during 20 min in 1:3 diluted NaClO-based commercial bleach 
(Klorrent, Nilfisk Advance, Brøndby, Denmark) and finally washed for 30 s in 70% ethanol. After each 
step, the seeds were rinsed with sterile water to remove the sterilizing agent. Plants were grown in 
growth chambers at 150 μmol photons m−2·s−1 and 22 °C. To obtain bolting plants, seeds were sown on 
plates with half-strength Murashige and Skoog (MS) medium and 0.25% (w/v) Gelrite (both from 
Duchefa Biochemie, Haarlem, the Netherlands) and transferred to a growth chamber with long day 
(LD) conditions (L16:D8). After 14 days, plants were transferred to 6 cm × 6 cm pots with soil 
(Blomjord, Hammenhög, Sweden) and grown under the same conditions for 10 more days. To obtain 
non-bolting plants, surface-sterilized seeds were sown directly into pots (6 cm × 6 cm) containing soil 
and placed in a growth chamber with short day (SD) conditions (L8:D16). After four weeks, the 
seedlings were replanted to 7 cm × 7 cm pots. 

4.2. Aphid Rearing 

Individuals of green peach aphid, Myzus persicae Sulzer (Aphididae, Hemiptera) were collected 
in the field near Uppsala, Sweden. Aphids were reared on kohlrabi (Brassica oleracea L. cv. Delikatess 
weisser) in a growth chamber with SD conditions as described above. 

4.3. Plasmid Constructs, Plant Transformation and Selection 

RNA was extracted from the doubled haploid barley breeding line 5172-28:4 [36] using the 
NucleoSpin® RNAII kit (Macherey-Nagel, Düren, Germany) following the manufacturer’s instructions. 
Three μg of RNA was used for synthesis of first strand cDNA using the Transcriptor High Fidelity 
cDNA Synthesis Kit (Roche Diagnostics GmbH, Mannheim, Germany) according to the manufacturer’s 
instructions. The ORF of the barley PI (CI2c) was amplified from the cDNA using the primers 5′-
CACCATGAGCTGCGCCGCC-3′ and 5′-TTGCAAAGCTAGCTAGCCAATGTGG-3′. Phusion high-
fidelity DNA polymerase (Thermo Scientific, Vilnius, Lithuania) was used for the PCR reaction at 98 °C 
for 30 s, 35 cycles at 98 °C for 10 s and 72 °C for 30 s followed by 72 °C for 7 min. The PCR product was 
cloned into the Gateway® pENTR/D-TOPO cloning vector (Invitrogen, Life technologies Corporation, 
Carlsbad, CA, USA). For constitutive expression with the cauliflower mosaic virus (CaMV) 35S 
promoter, the PCR product was introduced by LR clonase reaction (Invitrogen) in the destination vector 
pK7WG2 [60]. For phloem-specific expression, the Agrobacterium rhizogenes rolC-promoter was amplified 
using primers 5′-AGCGAAAGGATGTCAAAAAAGGATGC-3′ and 5′-ATGGTAACAAAGTAGGAA 
ACAGGTTGC-3′ from plasmid pPCV7002-rolBC and cloned into the Gateway® pENTR5′TOPO vector 
(Invitrogen). The PCR products (promoter in pENTR5′TOPO and cDNA in pENTR/D-TOPO) were 
introduced in the destination vector pK7m24GW.3 [61] using the LR Clonase II plus enzyme mix 
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(Invitrogen). The binary vectors were transformed into Agrobacterium tumefaciens strain C58pGV2260 
and used to transform plants of A. thaliana ecotype Colombia by the floral dip method [62] at the 
Uppsala Transgenic Arabidopsis Facility, Sweden. Transformants were selected on medium 
containing kanamycin (50 μg·mL−1, Sigma-Aldrich), self-fertilized, and analyses were performed on 
T3 or T4 lines homozygous for a single-gene insertion. Controls were azygous lines selected at T3. 

4.4. Analyses of Transcript Abundance 

For RT-qPCR studies, plant material was frozen in liquid nitrogen and stored at −80 °C until 
used for RNA isolation. Total RNA was extracted from three leaves of seven to eight weeks old plants. 
RNA extraction, reverse transcription, qPCR conditions and calculations of relative transcript 
abundances were performed as described in [37]. Clathrin and TIP41 were used as reference genes 
[63]. A standard curve was made for each primer pair to calculate the efficiency of the primer in the 
reaction. The primer sequences are presented in Supplementary Table S2. 

4.5. Enzymatic Assay of Protease Inhibitor Activity 

Six weeks old non-bolting Arabidopsis plants were frozen in liquid nitrogen and stored at −80 °C. 
Whole shoot tissue was ground in a cold mortar on ice, with 0.1 M potassium phosphate buffer  
(3 mL buffer g−1 tissue) containing 5% polyvinylpolypyrrolidone (Sigma-Aldrich) and 0.1 M β-
mercaptoethanol, pH 7.1. The samples were centrifuged at 12,000× g for ten minutes at 4 °C. The 
supernatants were cleaned from low molecular weight compounds on PD-10 columns (GE 
Healthcare, Little Chalfont, UK), eluted with 0.1 M phosphate buffer, pH 7.1. The protein 
concentration was determined using Bradford reagent (Sigma-Aldrich) with bovine serum albumin 
(Sigma-Aldrich) as standard. Protease activity in the extracts was measured with N-succinyl-Ala-Ala-
Pro-Phe-7-amido-4-methylcoumarine (Sigma-Aldrich) as the fluorogenic substrate. The substrate 
was solubilized in dimethyl sulfoxide (Sigma-Aldrich) and then diluted in 0.1 M Tris-HCl (pH 8.0). 
The chymotrypsin inhibition assay in a final volume of 0.2 mL contained 60 μL of plant protein extract 
(final protein concentration of 24 μg·mL−1), 20 μL of chymotrypsin (Sigma-Aldrich; final concentration 
of 60 ng·mL−1) and 20 μL of substrate (final concentration of 40 μM). The plant extract was first 
incubated for 10 min at 30 °C with chymotrypsin in 0.1M Tris-HCl buffer pH 8.0. Then, the 
fluorogenic substrate was added and the fluorescence signal was measured in a Hidex Sense (Hidex, 
Turku, Finland) microplate reader for 30 min at 30 °C using a 390 nm excitation filter and an emission 
filter of 460 nm. Each reaction was prepared in triplicate. Enzyme activities were calculated from 10 
min of initial linear velocity rates. 

4.6. Aphid Settling 

No-choice tests of aphid settling were carried out on 24 days old bolting plants in the light. Ten 
adult apterous aphids were released in the center of the rosette on each plant and the total numbers 
of aphids settled (i.e., not moving) on each plant were counted at 2, 4 and 6 h after their release. The 
experiments were carried out in two independent experiments (n = 6 in each). In host choice tests, the 
different genotypes (24 days old bolting plants or 6–7 weeks old non-bolting plants) were planted in 
opposite corners of the same square pot (7 cm × 7 cm). Twenty apterous adult aphids were carefully 
released in the middle of a dry filter paper (3 cm diameter) that was placed between the plants 
(Supplementary Figure S4). The plants were kept in a growth chamber with SD conditions as 
described above and the aphid location was assessed after 24 h. The choice tests between transgenes 
and controls were carried out two times on bolting and non-bolting CI2c (n = 15 or 16) and on non-
bolting psCI2c plants (n = 12) and once on bolting psCI2c plants (n = 11). Tests with the choice between 
two CI2c transgenic lines were carried out once for bolting plants (n = 5) and twice for non-bolting 
plants (n = 17). 
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4.7. Aphid Fecundity and Life Span 

To determine short-term effects on fecundity, five apterous adult aphids were released on each 
transgenic or control plant (bolting plants, 24 days old), and, after five days, the total numbers of 
aphids on each plant were counted. Plants were in open trays. The experiment was carried out in two 
independent experiments (n = 6 to 8 in each). To follow the fecundity day by day during eight days, 
five synchronous apterous adult aphids (9–10 days old) were released on CI2c p:8 and control plants. 
Adults and nymphs were counted each day during eight days, each day from a new set of plants. 
This experiment was carried out once (n = 6 for each day). In the test to determine fecundity during 
14 days, five one-day old nymphs were transferred to each transgenic or control plant (bolting, 24 
days old or non-bolting, seven to eight weeks old). Plants were in a growth chamber with SD 
conditions as described above under transparent cages made of plastic and fabric (Supplementary 
Figure S4). The experiment was carried out in two independent experiments with 12 to 14 replicates. 

To determine fecundity during the life span, one apterous adult aphid was placed on one of the 
young leaves (non-bolting plants, seven to eight weeks old) (six to eight replicates, each on a different 
plant). All selected leaves were similar in size and age. The leaf was enclosed in a transparent plastic 
container (5 cm high, 7 cm in diameter) with a small hole for the leaf (Supplementary Figure S4). 
Aeration was created by small holes in the plastic. The space around the leaf hole was closed with a 
piece of cotton wool to prevent aphid escape (Supplementary Figure S4). When the first offspring 
was produced, the aphid was removed together with all but one newborn nymph. For each single 
nymph, its reproduction and life span was monitored. All nymphs produced were counted and 
removed daily. During the period of the experiment, plants were kept in a growth chamber under 
SD conditions as described above. At the start of these experiments, plants were not flowering, but 
towards the end, flowers were developing. The intrinsic rate of population increase (rm) was 
calculated according to [64] as 0.738 (log Md)/d, where Md is the number of progeny produced by an 
aphid in a period equal to the pre-reproductive time and d is the pre-reproductive time in days. 

4.8. Statistical and Sequence Analyses 

Normal distribution of data was analyzed using the Shapiro–Wilk normality test and was 
confirmed for fecundity tests, but not for aphid settling and life span test. Analyses of differences in 
aphid settling were carried out using a Kruskal–Wallis test (no-choice test) or by Wilcoxon signed 
rank test (choice tests) at p ≤ 0.05. Differences in aphid fecundity (five days test and 14 days test) were 
analyzed using one-way ANOVA (p ≤ 0.05) followed by Tukey HSD as a post hoc test, at p ≤ 0.05. 
Differences in aphid fecundity measured over a period of eight days were analyzed using two-way 
ANOVA with “Line” and “Day” as fixed factors followed by Tukey HSD as post hoc test at p ≤ 0.05. 
Results from life span experiments were analyzed using a Kruskal–Wallis test. All statistical analyses 
were performed with StatPlus Pro v5 for Windows from AnalystSoft Inc (Walnut, CA, USA). The 
presence of a signal peptide in the CI2c amino acid sequence was analysed using SignalP 4.1 
(http://www.cbs.dtu.dk/services/SignalP/) [65]. 

5. Conclusions 

The CI2c gene, which is encoding a chymotrypsin inhibitor in barley, reduced certain aspects of 
GPA performance when its cDNA was expressed in Arabidopsis. The most consistent effect was a 
transient inhibition on the fecundity of adult aphids. We suggest that this is caused by ingestion of 
the CI2c protein during probing, causing inhibitory effects in the aphid or its symbionts. 

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/6/1317/s1. 
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