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Abstract: Extrusion-based bioprinting (EBB) is a rapidly developing technique that has made 
substantial progress in the fabrication of constructs for cartilage tissue engineering (CTE) over the 
past decade. With this technique, cell-laden hydrogels or bio-inks have been extruded onto printing 
stages, layer-by-layer, to form three-dimensional (3D) constructs with varying sizes, shapes, and 
resolutions. This paper reviews the cell sources and hydrogels that can be used for bio-ink 
formulations in CTE application. Additionally, this paper discusses the important properties of bio-
inks to be applied in the EBB technique, including biocompatibility, printability, as well as 
mechanical properties. The printability of a bio-ink is associated with the formation of first layer, 
ink rheological properties, and crosslinking mechanisms. Further, this paper discusses two 
bioprinting approaches to build up cartilage constructs, i.e., self-supporting hydrogel bioprinting 
and hybrid bioprinting, along with their applications in fabricating chondral, osteochondral, and 
zonally organized cartilage regenerative constructs. Lastly, current limitations and future 
opportunities of EBB in printing cartilage regenerative constructs are reviewed. 

Keywords: cartilage tissue engineering; extrusion-based bioprinting; hydrogels; bio-inks; self-
supporting hydrogel bioprinting; hybrid bioprinting 

 

1. Bioprinting Is a Promising Technique to Process Hydrogel for Fabricating Cartilage Constructs 

Bioprinting of personalized complex tissue grafts is promising for overcoming the current 
challenges of cartilage tissue engineering (CTE). Cartilage is a highly hydrated and specialized tissue 
to provide a low-friction, wear-resistant, and load-bearing surface in diarthrodial joints for efficient 
joint movement [1]. Unfortunately, the structure and function of the cartilage are frequently 
disrupted or lost with trauma or aging; moreover, there is no sufficient heal response for regeneration 
as cartilage shows little self-repair tendency. These defects or injuries last for years and eventually 
lead to arthritis [2]. To address this problem, tissue engineering (TE) approaches aiming to engineer 
constructs to regenerate cartilage defects are under active investigation. Ideally, the tissue-engineered 
constructs for CTE should fill cartilage defects, resemble extracellular matrix (ECM), hold cells in 
place, and retain a space for the growing tissue [3,4]. To this end, hydrogel has been illustrated 
promising due to the fact that it closely mimics native ECM and thus providing a 3D culture 
microenvironment favorable for encapsulated cells to retain the rounded morphology and 
chondrogenic phenotype [5–7]. Furthermore, hydrogels allow for achieving high cell seeding density 
and homogenous cell distribution throughout scaffold [6,8–14], and transmitting external stimuli to 
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embedded cells so as to direct growth and formation of the regenerating cartilage [15,16]. Several 
disadvantages of hydrogels, however, have also been identified, such as weak mechanical strength 
and stability. It is also hard to handle and process hydrogels into cartilage regenerative constructs 
with desired internal structure and external shape. To overcome these problems, the bioprinting 
technique has been rapidly developing and gaining interest for fabrication of customized cartilage 
constructs. 

Although some reviews on bioprinting of tissues and organs are available, investigation into the 
extrusion-based bioprinting (EBB) of cartilage constructs from bio-inks has not been well-
documented. This article presents a brief review of the application of EBB for fabricating cartilage 
constructs from bio-inks, covering its working principles, applicable cell sources and materials, 
printability, printed cartilage constructs, as well as future perspectives of bioprinting cartilage. 

2. Extrusion-Based Bioprinting and Bio-Inks for Cartilage Tissue Engineering 

2.1. Extrusion-Based Bioprinting 

Rapid prototyping (RP), also known as solid freeform fabrication, refer to a series of techniques 
that manufacture objects through sequential delivery of energy and/or material in a layer-by-layer 
manner per computer aided design (CAD) data. The external shape and internal architecture of the 
scaffold can be defined by either 3D computer models or clinical imaging data (e.g., the defect area 
of the patient can be scanned by magnetic resonance imaging or computed tomography) [17,18]. Once 
the external/internal geometric information is determined, the RP system is programed to fabricate 
the scaffold as designed. 

Among various RP techniques, EBB stands out for its unique advantages. It allows for 
production of 3D tissue constructs from bio-inks by a layer-by-layer deposition process in a designed 
way [19]. EBB also allows for higher cell seeding density, higher printing speed to facilitate scalability, 
and relatively less process-induced cell damage compared to other techniques [20]. EBB can print 
continuous cylindrical filaments from almost all types of bio-inks to high cell density aggregates of a 
wide range of viscosities. Once the bio-ink is printed, it can be crosslinked by ionic, photo, and/or 
thermal crosslinking mechanisms (Figure 1). Given the complexity of biological tissue, multiple bio-
inks are often used to fabricate a tissue construct, which is also achievable by using EBB with multiple 
printing heads. 

 
Figure 1. Schematic of extrusion-based bioprinting using various crosslinking mechanisms. 

2.2. Bio-Inks 

Hydrogel precursors and living cells are two important components of bio-ink formulations. 
Cell sources and hydrogel types employed for encapsulating chondrogenic cells are reviewed below. 
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2.2.1. Applicable Cell Sources 

The choice of cells is a central problem to any modality of TE. For cartilage bioprinting, several 
factors need to be taken into consideration when choosing suitable cell sources: (i) cells must be robust 
enough to survive any shear stress and pressure during the printing process; (ii) cells must proliferate 
well; (iii) cells must possess biosynthesis levels (e.g., of proteoglycans, Collagen type II) comparable 
with native chondrocytes so they can maintain their biological functions [21]. So far, the use of 
chondrocytes over stem cells for cartilage bioprinting is predominant (Table 1).  

Consistent with the distinct zonal structure of native articular cartilage [22], chondrocytes from 
different zones show different characteristics of biosynthesis levels. Superficial zone has a dense 
network of collagen fibers that are parallel to the articular surface, while collagen fibers are randomly 
arranged in the middle region and perpendicular to the subchondral bone in the deep zone [23]. The 
content of the other important component in cartilage, proteoglycan, is lowest in the superficial zone 
and increases through the middle and deep zones [24]. Limited number of chondrocytes in articular 
cartilage makes it necessary to expand chondrocytes before use. The monolayer expansion process 
usually leads to chondrocyte dedifferentiation with decreased GAG synthesis and Collagen type II 
expression [25,26]. Most studies typically use chondrocyte mixtures from full-thickness cartilage [27–
29] to obtain higher cell populations. Recently, more attention has been focused on employing zonal 
chondrocytes to achieve different purposes. For example, deep zone chondrocytes are utilized to 
engineer a functional osteochondral interface by coculturing with calcium phosphate [30]. 
Chondrocytes isolated from the superficial layer exhibit increased proteoglycan 4 expression, and 
thus superficial chondrocytes are promising to be used as the cell source for engineering articular 
surface [1]. Articular chondrocytes provide researchers with a unique opportunity to replicate the 
native zonal structure by embedding and culturing zonal chondrocytes in different layers of gels, 
although it is still elusive if this is a promising approach or an overcomplicated strategy [31]. Donor 
site morbidity during harvesting of joint cartilage further limits the use of articular chondrocytes [32]. 
Therefore, nasoseptal chondrocytes, as another autologous chondrocyte source, is also explored for 
bioprinting cartilage constructs [33,34]. Another promising cell type is the multipotent mesenchymal 
stem cell (MSC), which can be derived from multiple tissues, such as bone marrow, adipose tissues, 
synovium, periosteum, and muscle. These stem cells can be differentiated to undergo chondrogenesis 
with the supplement of specific growth factors [35,36], such as transforming growth factor beta family 
[37] and therefore they have been explored to be used in CTE [38–44]. 

Table 1. Cell sources that have been used in cartilage tissue engineering (CTE) or cartilage bioprinting. 

Cell 
Source Features 

References for 
Application in 

CTE 

References for 
Application in 

Bioprinting for CTE 
Chondrocytes  

Artcicular 

ease of induction, make it easy to replicate native zonal 
cartilage by using zonal chondrocytes. Invasive harvesting 
procedure, donor site morbidity, low cell yields, low 
bioactivity, tend to dedifferentiate during expansion. 

[45–51] [48–51] 

Auricular 

elastic cartilage, Faster cell proliferation rates than articular 
chondrocytes, produce more biochemically and histologically 
similar cartilage than articular chondrocytes when implanted 
in vivo. 

[52–54] – 

Nasoseptal 

hyaline cartilage, proliferate faster and less tendency of 
dedifferentiation than articular chondrocytes when culturing 
monolayer, capable of producing a cartilage ECM with a high 
GAG accumulation and Collagen type II/I. 

[33,34,55,56] [33,34] 
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Table 1. Cont. 

Cell Source Features 
References for 
Application in 

CTE 

References for 
Application in 

Bioprinting for CTE 
MSC  

Bone 
marrow 

high differentiation potentials and less morbidity during 
harvesting, chondrogenesis under appropriate culture 
conditions, involving the supplementation of growth factors 
such as TGF-β, FGF-2. 

[38,57–59] [58] 

Adipose 

differentiating into chondrocytes in the presence of TGF-β, 
ascorbate, and dexamethasone, lower chondrogenesis. 
potential than stem cells from other sources, lower deposition 
of cartilage ECM than other cell types. 

[39,60,61] – 

Muscle 

differentiation into various lineages, induction to 
chondrocytes with the addition of BMP-2, improved healing 
of cartilage defect with an efficacy equivalent to 
chondrocytes. 

[40,41,62–64] – 

Synovium 
greater chondrogenic potential than stem cells from other 
sources, comparable biosynthesis level with articular 
chondrocytes in terms of Collagen type II, aggrecan. 

[62,65–67] – 

Periosteum 
good accessibility, proliferate faster that stem cells from other 
sources, and capability to differentiate into multiple 
mesenchymal lineages, including bone and cartilage. 

[42,68] – 

2.2.2. Applicable Hydrogel-Forming Polymers for Formulating Bio-Inks 

Hydrogel cross-linking mechanisms are generally categorized into “physical” crosslinking and 
“chemical” crosslinking. Physical (thermal [69,70] ionic [71] and photo [72]) crosslinking include 
reversible entangled chains, hydrogen bonding, etc. while chemical (enzyme [73] and pH [74]) 
crosslinking are permanent junctions formed by irreversible, covalent bonds. Hydrogel can be 
classified into two groups based on their sources: natural hydrogels (e.g., agarose, alginate, cellulose, 
gelatin, gellan gum, hyaluronic acid, collagen, fibrin) and synthetic hydrogels (e.g., Pluronic® F127, 
PEG, and PVA). Hydrogels that are biocompatible for encapsulating stem cells or chondrogenic cells 
for CTE are summarized and reviewed (Table 2). There are pros and cons to each type of these 
hydrogels and researchers attempted to modify these polymers to improve their properties like 
bioactivity, mechanical properties, and printability. 
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Table 2. Toolkit of bio-ink formulation. 

Materials Crosslinking Advantages Disadvantages 
Encapsulated 

Cells 

References in 
Other 

Techniques 

References 
in 

Bioprinting 

Agarose 

thermal crosslinking at 26–30 °C, 
extruded agarose solidifies by 
bioprinting onto a surface of which 
temperature is lower than the thermal 
crosslinking temperature 

simple and non-toxic 
crosslinking process, good 
mechanical properties, and 
stability of printed construct 

not degradable, poor cell 
adhesion, impaired cell 
viability due to high 
temperature to dissolve 
agarose 

bone marrow 
stem 

cells(BMSC), 
adipose stem 
cells (ASC) 

[75–77] [78] 

Alginate ionic crosslinking with divalent cations 

rapid gelation, high printability, 
biocompatible, good stability, 
and integrality of printed 
construct 

poor cell adhesion, this 
disadvantage can be 
overcome by modifying 
alginate with arginyl glycyl 
aspartic acid, Collagen type I 
or oxygenation 

BMSC, ASC, 
chondrocytes 

[79–81] [82] 

Methylcellulose 

thermal crosslinking below 37 °C, 
silanized hydroxypropyl 
methylcellulose can be synthesized to 
be crosslinked by changing pH 

good printability, 
biocompatibility 

partially degrade when 
culturing in cell culture 
media and therefore not 
suitable for long-term 
culturing 

chondrocytes [83–85] [35] 

Chitosan ionic or covalent crosslinking biocompatibility, antibacterial 
slow gelation rate and poor 
mechanical properties 
without modification 

BMSC [86–88] [89] 

Gellan gum 
thermal crosslinking or ionic 
crosslinking with divalent cation 

biocompatible, high printability poor cellular adhesion 
ASC, nasal 

chondrocytes 
[90–92] [93,94] 

Hyaluronic 
acid 

ionic or covalent crosslinking, 
functionalized with methacrylate to be 
photocrosslinkable 

promote cell proliferation, fast 
gelation, high printability with 
suitable modification, have 
lubricating properties 

fast degradation, poor 
mechanical properties and 
stability without 
modification 

BMSC, 
chondrocytes,fi

broblasts 
[95–98] [99] 

  



Int. J. Mol. Sci. 2017, 18, 1597 6 of 27 

 

Table 2. Cont. 

Materials Crosslinking Advantages Disadvantages 
Encapsulated 

Cells 

References in 
Other 

Techniques 

References in 
Bioprinting 

Gelatin 

thermal crosslinking, photocrosslinkable 
polymers can be obtained by 
functionalization withmethacrylamide 
side groups to make it stable at 37 °C 

biocompatibility, high cell 
adhesion support cell viability 
and proliferation 

poor mechanical 
properties and stability, 
low printability 

BMSC, 
fibroblasts, 

chondrocytes 
[100–102] [69,72,103] 

Collagen 
pH crosslinking (7–7.4) at 37 °C or 
thermal crosslinking 

biocompatibility, high cell 
adhesion, promote cell 
proliferation and serve as a 
signal transducer, high 
printability 

low gelation rate, poor 
mechanical properties 
and stability 

BMSC, 
fibroblasts, 

chondrocytes 
[104–106] [107,108] 

Fibrin 
enzymatic crosslinking, gels when 
combining fibrinogen, Ca2+ and thrombin 
at room temperature 

biocompatibility, high cell 
adhesion, rapid gelation 

limited printability and 
poor mechanical 
properties 

BMSC, 
chondrocytes 

[109] [110–112] 

Matrigel 
irreversible thermal crosslinking at 24–
37 °C 

biocompatibility, support cell 
viability and differentiation, 
high printability 

slow gelation and poor 
stability 

BMSC, 
chondrocytes 

[113,114] [115] 

Pluronic® F127 thermal crosslinking 
biocompatibility, high 
printability, support cell 
viability 

weak stability and 
mechanical properties, 
fast degradation, slow 
gelation 

BMSC, 
fibroblasts 

[74,116,117] [118] 

Poly(ethylene 
glycol) 

radiation crosslinking or free radical 
polymerization 

biocompatibility, support cell 
viability, can be easily modified 
with various functional groups 

poor cellular adhesion, 
low cell proliferation 
rate 

BMSC, 
chondrocytes 

[119,120] [121] 
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3. Important Properties of Bio-Inks 

3.1. Biocompatibility 

Biocompatibility must be considered before the application of any material for TE and 
regenerative medicine. Biocompatibility refers to the ability of a biomaterial to perform its desired 
function without eliciting any undesirable biological effects [122]. For the purposes of this review, a 
bioprinted hydrogel must be cytocompatible and nonimmunogenic, and have nontoxic byproducts 
of degradation without eliciting any detrimental effects from the time of bioprinting to in vitro 
maturation and in vivo implantation [123]. The main factor that could influence the biocompatibility 
given the same material lies in the bioprinting process, which means the whole printing process needs 
to be cytocompatible. In most cases, bio-inks are stored as liquids in a reservoir prior to being 
dispensed onto the printing surface and a crosslinking process is followed to solidify the bio-inks. 
The cytocompatibility of this process is characterized by the cell viability test using live/dead staining 
[124]. To elevate the cell viability, bio-inks are designed to minimize the stress-induced damage to 
cells due to the sensitivity of cells encapsulated in the bio-inks. In the cases of printing mechanisms 
involving the use of heating or pressure, the heating temperatures are kept within the range favoring 
cell survival and the pressure is maintained as low as possible. 

3.2. Printability 

Printability of a bio-ink, once printed in a layer-by-layer fashion, is its ability to form and 
maintain a structure as designed with structural fidelity and integrity. Printability is considered to be 
associated with surface tension, viscosity, rheological properties, and crosslinking mechanisms. 
Standardized tests to quantify the printability still do not exist, and an optical examination method 
is usually adopted to do a geometry comparison (e.g., pore size, fiber diameter) between generated 
constructs and CAD data [125,126]. 

3.2.1. First-Layer Formation 

The printing and formation of the first layer of bio-inks play an important role for fabricating 
the whole construct. A relatively large contact angle between dispensed bio-inks and the substrate 
help to maintain the vertical dimension of printed bio-inks and avoid the flattening of the printed 
hydrogel precursor solution. The interaction between printed bio-inks and substrate is crucial, since 
suitable interaction helps to anchor the whole bioprinted construct on the printing surface and avoids 
possible deformation and undesired movement during the layer-by-layer bio-inks deposition 
process. Unfortunately, most receiving surfaces such as glass or plastic have poor contact angles with 
bio-inks and it is difficult to establish any interaction between receiving surface and dispensed bio-
inks. These issues could be addressed by either printing hydrogels in a hydrophobic high-density 
fluid, such as perfluorotributylamine [78], or coating a thin layer of chemicals, such as 3-
(trimethoxysilyl) propyl methacrylate, on the printing surface [127] to enhance their hydrophobicity. 
Polyethylenimine was used successfully in our group to pre-treat the culture plates to establish an 
electrostatic interaction between printed cell-laden hydrogel and the receiving surface [128]. 

3.2.2. Viscosity 

Viscosity describes the internal resistance of a fluid to flow upon application of stress. The 
viscosity of a polymer solution is determined by its concentration, molecular weight, and 
temperature. Higher polymer concentration and molecular weight are associated with higher 
viscosity. Typically, sufficient viscosity of bio-inks leads to good printability, since it can help the bio-
inks to overcome the surface-tension-driven droplet formation and be drawn to form continuous 
strands. Sufficient viscosity will also help the dispensed strands to maintain the cylinder shape and 
keep adjacent strands from merging together, which also explains why thermoplastic polymers are 
usually printed with higher accuracy and resolution than hydrogels. However, cells thrive best in an 
aqueous environment, in which their matrix deposition is not limited by the dense polymer network 
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[129]. Bio-inks with high viscosity require high pressure to expel them out of the dispensing needle; in this 
case, the embedded cells are exposed to a high shear force, which may impair cell viability [130].  

The viscosity of a bio-ink solution is mainly determined by the polymer concentration and 
molecular weight. Given that bio-inks with high concentrations may not be favorable for cell 
proliferation/migration and ECM formation [129], it is reasonable to choose low concentrations of 
high molecular weight polymers for better printability in bioprinting. This also explains the success 
of natural polymers in the bioprinting area. 

3.2.3. Shear Thinning 

Shear thinning is another desirable feature for bio-inks that will help to improve the printability, 
and it refers to the fact that viscosity decreases as shear rate increases [131]. Polymer solutions with 
higher concentrations show more obvious shear thinning. When bio-inks are exposed to high shear 
rates inside a nozzle during bioprinting, a decreased viscosity or shear stress will be present, which 
favors the survival of embedded cells. Meanwhile, a sudden decrease of shear rates upon deposition 
causes a sharp increase in viscosity, resulting in a high printing fidelity. 

3.2.4. Crosslinking Mechanisms 

The printability is also influenced by how easily and efficiently materials can be crosslinked. EBB 
usually requires printing a cell-laden polymer solution followed by initiating gelation immediately 
after extrusion. The cell-laden polymer solution must be either prepared quite viscous or crosslinked 
rapidly after dispensing onto the printing surface to achieve good printability and shape fidelity. 
However, high viscosity is not ideal for its application in TE and impedes cells survival and 
proliferation [132,133]. Therefore, a relatively rapid crosslinking process is usually desirable in the 
printing process. Currently, ionic, photo, and thermal crosslinking are most commonly used 
crosslinking mechanisms in bioprinting (Table 2). 

3.3. Strategies to Strengthen Mechanical Properties of Engineered Cartilage Construct 

Engineered cartilage should maintain sufficient mechanical properties after bioprinting to 
provide embedded cells with a stable environment for attachment, proliferation, and differentiation. 
Particularly for cartilage bioprinting in CTE, mechanical properties are crucial because the functions 
of cartilage mainly rely on their mechanical performance. Mechanical properties of hydrogel are 
intrinsically weak compared to cartilage [134]. Strategies have been developed to strengthen the 
initial mechanical performance of engineered constructs. 

Research has supplemented hydrogel with mineral particles (e.g., hydroxyapatite) to create 
composite hydrogels, by combining organic and inorganic phases to obtain desirable properties 
including the improvement of mechanical properties and enhancement of biological properties 
[135,136]. In CTE, the presence of calcium phosphate has been shown to promote chondrocyte 
hypertrophy and Collagen type X deposition and thus improve the regeneration of calcified cartilage 
[30,137]. Moreover, hydroxyapatite would be a good supplement in scaffolding materials in CTE to 
recruit endogenous cells in vivo to regenerate articular surface without cell transplantation [138].  

A novel approach reinforced hydrogel constructs by incorporating printed polycaprolactone 
(PCL) scaffolds. Hydrogel precursors were poured and perfused into the printed porous PCL scaffold 
and crosslinked. In this way, the stiffness of the resulting constructs could be tailored to that of native 
cartilage by reinforcement with high-porosity PCL scaffolds [139]. Fabricating cartilage constructs by 
alternating printing injected-printed hydrogels and electrospun thermoplastic polymer fibers is also 
feasible [108]. It would be a promising technique if electrospun thermoplastic polymer fibers can be 
incorporated into EBB to print constructs with native mechanical characteristics. 

A higher mechanical strength can also be achieved by blending multiple polymers and varying 
the molar ratio of bio-ink components. From instance, nanocellulose and alginate composite bio-ink was 
synthesized and printed to fabricate chondrocyte-laden constructs. Increasing the alginate fraction in bio-
ink formula would lead to an increase in compressive modulus of printed constructs [34].  
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Making use of the crosslinking mechanism is also an efficient way to enhance the mechanical 
properties of the printed constructs. For example, a three-step method was used to crosslink alginate 
hydrogel for improved elastic stiffness; furthermore, the three steps are the primary calcium ionic 
cross-linking to increase the initial viscosity of alginate, secondary calcium ionic crosslinking to solidify 
the printed structure, and tertiary barium ionic crosslinking to strengthen elastic stiffness [140].  

Another effective way to enhance the mechanical properties is the use of hybrid bioprinting to 
co-deposit hydrogels and thermoplastic polymers alternately. Cell-laden hydrogels are supported by 
printed thermoplastic polymers; thus, these hybrid constructs possess mechanical characteristics that 
are mainly provided by the printed thermoplastic polymer frame, which is significantly higher than 
the hydrogel-only constructs [141]. Meanwhile, by designing and changing the architecture of the 
thermoplastic polymer framework parameters, including molecular weight of polymer, strand size, 
strand spacing, and strand orientation, the mechanical properties of the construct can be tuned [142]. 
A covalent bonding based on methacrylate groups between thermoplastic polymer methacrylated 
poly(hydroxymethylglycolide-co-e-caprolactone)/PCL (pHMGCL/PCL) and gelatin methacrylamide 
(GelMA) hydrogel can also be established to improve binding in the interface of two materials and 
further elevate the mechanical performance of the engineered construct [29].  

If a scaffold is designed to initially promote engineered tissue formation in vitro prior to 
implantation in vivo, then they are not required to exactly match the mechanical properties of natural 
cartilage at the initial stage. Thereby, many hydrogel-based cartilage bioprinting research still focus 
on formulating bio-inks to favor the synthesis of cartilaginous ECM instead of their initial mechanical 
strength with the hope that the ECM generated by the cells in vitro provides sufficient mechanical 
properties upon implantation in vivo. 

4. Cartilage Constructs Bioprinting Approaches 

Current cartilage constructs are mainly printed based on two approaches: (i) direct printing of 
cartilage constructs from bio-inks (called the self-supporting hydrogel bioprinting) and (ii) 
alternating printing of bio-inks and thermoplastic-polymer network (called the hybrid bioprinting). 
The advantages of self-supporting hydrogel bioprinting rests on their mild and physiological 
crosslinking conditions and its relatively simple process as compared to hybrid bioprinting. 
However, the self-supporting bioprinting requires a high level of printability of bio-inks and the 
printed hydrogel constructs typically have week mechanical properties [128]. In contrast, the 
thermoplastics network printed in hybrid bioprinting can offer a sufficient mechanical support to the 
subsequently dispensed hydrogel strands for being crosslinked. Therefore, hybrid bioprinting can 
print a broader range of bio-inks than self-supporting hydrogel bioprinting. Nevertheless, the high 
temperature for melting thermoplastic polymers in hybrid bioprinting may impair cell viability. 
Additionally, hybrid bioprintng may introduce extra printing errors due to its complex process and 
heating-related stresses within printed constructs [143].  

4.1. Self-Supporting Hydrogel Bioprinting 

Self-supporting hydrogel bioprinting approaches form cartilage constructs for CTE application 
by printing stem cell- or chondrocyte-laden natural and synthetic hydrogels [144]. Chondrocytes and 
stem cells embedded within alginate hydrogels has been demonstrated to be viable and metabolically 
active [145]. Rapid crosslinking makes alginate a commonly used component in bio-inks to print 
cartilage constructs. A highly printable bio-ink consisted of alginate and nanocellulose was 
formulated. The printed constructs supported the culture of human nasoseptal chondrocytes and had 
the potential to be printed into more complex shapes [34]. Alginate has also been sulfated to bind 
growth factors such as fibroblast growth factor (FGF), transforming growth factor (TGF) without 
losing its printability [146,147]. A chondrocyte-laden construct consisting of sulfated alginate and 
nanocellulose still provided good printability and Collagen type II deposition [148,149]. Lack of 
sufficient cell adhesion sites still limits the application of alginate in CTE. By incorporating 
BioCartilage (cartilage extracellular matrix particles) and gellan in alginate, the bioactivity and 
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printability of the bio-ink was significantly improved and the resulting patient-specific cartilage 
grafts showed good mechanical property and biological properties [27].  

Hyaluronic acid (HA), as an essential component of cartilage ECM, can mediate cellular 
signaling, wound repair, and ECM organization due to its structural and biological properties [150]. 
More recently, HA is increasingly explored as a “building block” in various bio-inks formulations for 
cartilage bioprinting in CTE because of its viscoelastic and bioactive properties [151]. Nevertheless, 
one major drawback of unmodified HA for cartilage bioprinting is the poor stability owing to its 
water solubility. To address the problem of the poor stability of printed HA, the photo-crosslinkable 
dextran derivate or acrylated Pluronic was added to improve mechanical properties and the 
printability of the material. Moreover, embedded chondrocytes demonstrated good compatibility 
with this bio-inks formulation [152,153]. 

Although gelatin gel has been shown to support chondrocyte viability and differentiation, its 
low viscosity and de-crosslinking at 37 °C make it hard to print [154]. Therefore, gelatin is usually 
modified to become photo-crosslinkable by a straightforward reaction with an acrylate or 
methacrylate agent [72,155]. For example, a study [102] explored the functionalization, preparation 
and use of cell-laden gelatin methacryloyl (GelMA)-based hydrogels as modular tissue culture 
platforms. For improved printability of gelatin, HA was also incorporated in GelMA and printed 
chondrocyte-laden constructs supported the viability of embedded chondrocytes and cartilaginous 
tissue formation [50].  

Acrylation is also commonly used with synthetic hydrogels to facilitate cartilage bioprinting. An 
example is printing poly (ethylene glycol) dimethacrylate (PEGDMA) together with human 
chondrocytes to repair defects with osteochondral plugs through a layer-by-layer manner. The 
printed construct showed a higher mechanical property of 395.73 kPa than most printed natural 
hydrogels. This study demonstrated that hydrogel bioprinting is a feasible approach of producing 
cartilage constructs with anatomic characteristics to accurate targeted locations. The embedded 
human chondrocyte viability was 89% and showed an elevated glycosaminoglycan (GAG) content. 
Additionally, printed cartilage constructs firmly attached to the surrounding tissue and showed even 
greater proteoglycan deposition at the interface of implant and native cartilage [48].  

Improving the integrity between the engineered cartilage and subchondral bone remains a 
challenge. In this regard, a self-supporting hydrogel construct was printed onto the printed bone 
paste (consisting of demineralized bone matrix and powdered gelatin) to mimic the cartilage and 
subchondral bone respectively [156]. Heterogeneous cell-laden high-viscosity alginate hydrogel 
constructs were printed with distinct parts for human chondrocytes and osteogenic progenitors for 
potential use as osteochondral grafts. Embedded cells stayed in their compartment of the printed 
scaffold for the whole culture period and viability remained high throughout the printing and culture 
process and cartilage and bone ECM formation were observed both in vitro and in vivo [157]. The 
reported cartilage constructs fabricated by self-supporting hydrogel bioprinting are summarized in 
Table 3.  

To sum up, self-supporting hydrogel bioprinting of cartilage constructs can be processed under 
cytocompatible conditions and printed constructs are generally shown to support cartilage ECM 
biosynthesis. Current research emphasis is focused on formulating bio-inks to achieve high 
printability and improving the mechanical performance of printed constructs. The relatively weak 
mechanical properties of printed hydrogel-based cartilage constructs limit its application to 
regenerating focal cartilage defects, where most exerted force is born by its surrounding tissue. To 
overcome these issues, hybrid cartilage bioprinting by alternating printing of bio-inks and 
thermoplastic polymers fibers (hybrid bioprinting) has been brought forward. 
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Table 3. Overview of publications on the self-supporting hydrogel bioprinting of (osteo) chondral and zonally organized cartilage regenerative constructs. 

Material(s) Cell Type(s)  Mechanical Properties Crosslinking 
Mechanism(s) 

Outcomes Reference 

Hydrogel Bioprinting of Chondral Constructs 

Alginate 

ATDC5 
chondrogenic cell 
line and embryonic 
chick chondrocytes 

Unconfined compressive 
modulus: 20~70 kPa 
(depending on the culture 
time and crosslinking 
densities) 

Ionic 
~85% cell viability, show cartilage 

extracellular matrix formation in constructs 
[128] 

Nanocellulose with alginate 
Human nasoseptal 
chondrocytes 

Unconfined compressive 
modulus: 75~250 kPa 
(depending on the ratio of 
two materials) 

Ionic 73–86% cell viability [34] 

Methacrylated chondroitin sulfate (CSMA) 
with a triblock copolymer poly (N-(2-

hydroxypropyl)methacrylamide-
mono/dilactate) 

ATDC5 
chondrogenic cell 
line 

Unconfined compressive 
modulus: 7–60 kPa 
(depending on the degree 
of methacrylation) 

Photo ~95% cell viability [158] 

GelMA with gellan gum 
ATDC5 
chondrogenic cell 
line 

Unconfined compressive 
modulus: 18–59 kPa 
(depending on the 
concentration of gellan 
gum) 

Ionic, photo 
and thermal 

Approximately 50% cell viability in plotted 
gels due to the supraphysiological 
temperature of 40–50 °C. 

[94,159] 

GelMA with gellan gum 
Equine articular 
chondrocytes 

Unconfined compressive 
modulus: 2.7–186 kPa 
(depending on ratio and 
content of two 
components) 

Ionic, photo 
and thermal 

Support cartilage matrix production, higher 
gellan gum contents improves the 
printability but compromise cartilage ECM, 
and high total polymer concentrations 
hamper the distribution of ECM. 

[94,159] 

Fibroin and gelatin 

Human 
mesenchymal stem 
cells, Human 
articular 
chondrocytes  

Not reported Enzymatic 

84–90% cell viability of both cell types 
during 14 days of culture, supported 
cartilage ECM deposition and remodeling, 
minimize hypertrophic differentiation 
towards development and promote 
cartilage development. 

[73] 
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Table 3. Cont. 

Material(s) Cell Type(s)  Mechanical Properties Crosslinking 
Mechanism(s) 

Outcomes Reference 

Hydroxyethyl methacrylate derivatized 
dextran (Dex-HEMA) and hyaluronic acid 

(HA) 

Equine articular 
chondrocytes 

Ultimate compressive 
stress: 100–160 kPa 
(depending on the HA 
content), uncontained 
compressive modulus: 26 
kPa for different constructs 

Photo 
Cell viabilities are 94% and 75% after day 1 

and day 3 
[153] 

Diacrylated Pluronic F127 and methacrylated 
HA 

Bovine articular 
chondrocytes  

Unconfined compressive 
modulus: 1.5–6.5 kPa 
(depending on the 
methacrylated HA content) 

Photo Cell viability is between 60% to 85%. [152] 

GelMA constructs reinforced with 
methacrylated pHMGCL/PCL 

Human articular 
chondrocytes  

Unconfined compressive 
failure force ~2.7 N and 
~7.7 N when covalent 
bonds between gelMA and 
methacrylated 
pHMGCL/PCL are 
established 

Photo 

Cartilage ECM network consisting of 
GAGs and Collagen type II are formed 
after 6 weeks of in vitro culture and 
Collagen type II production was more 
pronounced in vivo compared to in vitro 

[29] 

Gellan, alginate and cartilage extracellular 
matrix particles 

Bovine articular 
chondrocytes  

Tensile modulus ~116–230 
kPa 

Ionic and 
thermal 

Cell viability: 80% and 96%, 60% viable 
cells are observed in the centre of some 
samples at day 7. Constructs with cartilage 
ECM particles increased cartilage ECM 
formation, but the influence of TGF-β3 on 
cartilage ECM is more pronounced and 
constructs with TGF-β3 showed most 
cartilage ECM formation 

[27] 

Methacrylated HA with HA-pNIPAAM 
Bovine articular 
chondrocytes 

Not reported 
Thermal and 

photo 
Cell viability is negatively influenced by 
the addition of HA-pNIPAAM 

[28] 
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Table 3. Cont. 

Material(s) Cell Type(s)  Mechanical Properties Crosslinking 
Mechanism(s) 

Outcomes Reference 

Hydrogel Bioprinting of Osteochondral Constructs
Alginate (cartilage)  

Gelatin with demineralized bone matrix 
(bone) 

Cell-free Not reported Ionic 
Directly printing into an osteochondral 
defect of a bovine femur and showed good 
geometric fidelity 

[156] 

Alginate (cartilage)  
Alginate with biphasic calcium phosphate 

particles (bone) 

Human articular 
chondrocytes 
(cartilage)  
Human 
mesenchymal 
stromal cells (bone) 

Unconfined compressive 
modulus: 4.5–15 kPa 
(depending on porosity of 
constructs) 

Ionic 

Cell viability: ~89%  
Cartilage and bone ECM formed in 
designed regions of the constructs after 
culturing for 3 weeks. In vivo tests showed 
similar results after 6 weeks of culture 

[157] 

GelMA with gellan gum (cartilage)  
GelMA, gellan gum and polylactic acid 

microcarriers (bone) 

Murine 
mesenchymal 
stromal cells 

Unconfined compressive 
modulus: ~25–50 kPa 
(depending on 
concentration of 
microcarriers) 

Photo and ionic Cell viability: 60–90% [93] 

Hydrogel Bioprinting of Zonally Organized Cartilage Constructs

Collagen type II 

Rabbit articular 
chondrocytes  
(2 × 107 cells/mL in 
superficial zone, 1 × 
107 cell/mL in 
middle zone and 0.5 
× 107 cells/mL in 
deep zone) 

Not reported Thermal 

Cell viability: 93% Zonally organized 
cartilage constructs could be fabricated by 
bioprinting Collagen type II hydrogel 
constructs with a biomimetic cell density 
gradient. The cell density gradient 
distribution resulted in a gradient 
distribution of ECM 

[49] 
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4.2. Hybrid Bioprinting 

A hybrid construct combining advantages of hydrogel and thermoplastics has been brought 
forward, offering potential for application in CTE [141]. Scaffolds made from thermoplastic polymers 
provide stronger structural properties, and hydrogels provide a biologically favorable, highly 
hydrated microstructure like native cartilage ECM for chondrocytes. By alternately printing 
thermoplastic polymer and cell-laden hydrogel, hybrid cartilage construct is yielded. This 
mechanism makes a broader range of bio-inks types available for use compared to bioprinting of 
hydrogels alone, since requirements for viscosity and gelling speed are less stringent [141]. 
Additionally, engineered cartilage fabricated by hybrid bioprinting possesses adequate mechanical 
characteristics, since the thermoplastic polymer framework mainly provides the mechanical property 
of the constructs [141]. 

By applying this state-of-the-art printing technology, human nasoseptal chondrocyte-laden 
alginate hydrogel with a supportive PCL structure was printed [33]. The study demonstrated in vitro 
and in vivo applications of hybrid constructs encapsulating chondrocytes and growth factors in CTE. 
Another trial explored the feasibility to use embryonic chick chondrocytes as cell sources for hybrid 
printing and comprehensively studied biological performance of the embedded chondrocytes. Cell 
viability, proliferation, and cartilage ECM biosynthesis were all kept at high levels in hybrid 
constructs, confirming the validity of the hybrid bioprinting for effective CTE [160]. Given the 
bioinert nature of alginate, it is not an ideal material for encapsulating chondrocytes and maintaining 
their functionality. Therefore, a study printed hybrid tissue analogues by dispensing decellularized 
ECM (dECM) instead of alginate in the abovementioned hybrid bioprinting system. The results 
showed the versatility and flexibility of hybrid bioprinting process using various tissue-specific 
dECM bio-inks, including adipose, cartilage and heart tissues, which can provide bioactive cues for 
embedded cells [143].  

Hybrid bioprinting also showed good suitability to fabricate osteochondral constructs, enabling 
researchers to use different bio-inks in cartilage portion and bone portion. A mechanically stable 3D 
dual cell-laden construct consisting of osteoblasts and chondrocytes for osteochondral tissue 
engineering using a multi-head extrusion-based printing system was successfully printed. Two 
different alginate solutions with encapsulated osteoblasts or chondrocytes were deposited into the 
previously printed PCL framework [161]. A more recent study from the same research group 
successfully bioprinted a multilayered construct with three distinct layers by varying the hydrogel 
materials and incorporated growth factors using a similar hybrid printing process and achieved the 
regeneration of osteochondral defects in the knee joints of rabbits [162]. Overviews of hybrid 
bioprinting for fabricating osteo (chondral) constructs reviewed in Table 4. 

These studies show the promise of hybrid bioprinting as an advanced fabrication technique for 
CTE. However, mechanical stimuli exerted on hybrid construct would probably be mainly withstood 
by the polymeric scaffolds instead of chondrocyte-laden hydrogel because of stress shielding [163]. 
This might be an issue when considering mechanical stimuli can positively mediate chondrocytes 
biosynthetic behavior [164] and cartilage tissue remodeling [165]. Therefore, further studies need to 
be carried out to determine the influence of mechanical stimuli on the engineered hybrid constructs. 



Int. J. Mol. Sci. 2017, 18, 1597 15 of 27 

 

Table 4. Overview of publications on the hybrid bioprinting of osteo (chondral) constructs. 

Material(s) Cell Type(s) Mechanical 
Properties 

Crosslinking 
Mechanism(s)  

Outcomes Reference 

Hybrid Bioprinting of Chondral Constructs 

Alginate reinforced with 
polycaprolactone (PCL) 

framework 

C20A4 human chondrocyte cell 
line 

Unconfined 
compressive 
modulus: 6000 
kPa 

Ionic 
Cell viability varies from 70 to 80%. Co-deposition of 
thermoplastic polymer and hydrogel is firstly introduced 
for bioprinting of reinforced constructs. 

[141] 

Alginate reinforced with 
PCL framework 

Human nasoseptal 
chondrocytes 

Not reported Ionic 

85% cell viability, cartilage ECM formation in constructs 
with the addition of TGF-β after culturing for 4 weeks. 
Cartilage ECM formation is observed in constructs with 
after 4 weeks in vivo. 

[33] 

Alginate reinforced with 
PCL framework 

Embryonic  
chick chondrocytes 

Not reported  Ionic 
Cell viability: 77–85%; Cartilage ECM (glycosaminoglycan 
and Collagen type II) is formed in constructs.  

[160] 

Decellularized 
extracellular matrix 

(dECM) reinforced with 
PCL framework 

Human adipose-derived stem 
cells (hASCs) and human 

inferior turbinate-tissue derived 
mesenchymal stromal cells 

(hTMSCs) 

Not reported Thermal 

Cell viability: >90%. The dECM provided cues for cells 
survival and long-term functionality. Embedded cell 
synthesizes cartilage ECM and expressed chondrogenic 
genes. 

[143] 

Hybrid Bioprinting of Osteochondral Constructs 

Alginate reinforced with 
PCL framework 

Human nasoseptal 
chondrocytes (cartilage)  

Human osteoblasts cell line 
(MG63) 

Not reported Ionic 
Cell viability: ~93.9% for dispensed chondrocytes and 
~95.6% for dispensed osteoblasts during 7 days of culture. 

[161] 

Atelocollagen 
supplemented with BMP-2 

(cartilage)  
CB[6]-HA supplemented 

with TGF-β (bone)  
The whole structure is 
reinforced with PCL 

framework 

Human turbinate-derived 
mesenchymal stromal cells 

(hTMSCs) 
Not reported 

Thermal and 
enzymic 

Cell viability: 93% for atelocollagen (bone) and 86% CB (6)-
HA (cartilage). In vivo results showed neocartilage is 
formed in cartilage region while new bone is observed in 
subchondral bone. The constructs are well integrated with 
surrounding native tissue in vivo.  

[162] 
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5. Zonal Cartilage Bioprinting 

Zonal cartilage constructs that reflect the native structural depth-dependent characteristics of 
articular cartilage could have advantages over homogeneous constructs. A zonal cartilage construct 
can be achieved by the following strategies: (1) using zonal chondrocyte subpopulations from 
different zones of cartilage; (2) using a single cell source combined with the correct biochemical 
and/or biomechanical cues; (3) using different biomaterials and smart scaffold designs. Zonal 
chondrocyte subpopulations from different zones of cartilage tissue can be harvested [1,166,167], but 
donor site morbidity, dedifferentiation during expansion, and limited availability are the drawbacks 
of this strategy. Meanwhile, there is still a debate if zonal chondrocytes can maintain their phenotype 
after being isolated from their original biomechanical and biochemical environment [31]. Comparing 
with Strategy (1), Strategy (2) might be an easier and more practical technique using single cell source 
combined with the suitable biochemical and/or biomechanical cues. BMSCs have been induced to 
differentiate into zonal chondrogenic cells by co-culturing with various molecules [168–170]. This 
method shows great promise since it would be easier to carry out and potentially could solve the 
problems associated with direct isolating zonal chondrocytes from cartilage. A good example of 
Strategy 3 was reported by Wise et al. [171]. They successfully mimicked the cells and ECM 
organization found in the superficial zone by culturing BMSCs on electrospun and oriented PCL 
scaffolds. Bio-inks can be formulated based on these strategies for the fabrication of complex zonal 
structures. Technically, zonal cartilage bioprinting can be realized either by self-supporting hydrogel 
bioprinting or hybrid bioprinting (Figure 2). It has been reported that zonal engineered cartilage 
could be fabricated by bioprinting Collagen type II hydrogel constructs with a biomimetic cell density 
gradient [49]. Even though, zonal cartilage bioprinting is still a challenging task because of the 
complexity of fabrication process, involving multiple bio-inks preparation, frequent switching 
between dispensing heads, and complicated real-time calibration. 

 
Figure 2. (A) Schematic of self-supporting hydrogel bioprinting for fabrication of zonal cartilage 
constructs. Zonal constructs are printed with chondrocytes from the superficial, middle, and deep 
zones incorporated in distinct hydrogel precursors in defined geometries. Reproduced with 
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permission. Copy right 2009, Wiley Online Library [144]; (B) Schematic of hybrid bioprinting for 
fabrication of zonal cartilage constructs. Alternating steps of printing polymer and zonal cell-laden 
hydrogels are performed to obtain zonal constructs Reproduced with permission. Copyright 2015, 
Wiley Online Library [31]. 

6. Current Limitations and Recommendations for Future Research 

EBB is a convenient and promising technique that can print porous tissue-engineered constructs 
with structural and biological properties from a wide range of bio-inks. It still has several limitations, 
including limited biomaterials for bio-ink formulation, cell death during printing, low resolution as 
well as insufficient mechanical properties. Bio-inks formulation is restricted by limited printable 
biomaterials, which makes up only a small portion of biomaterials applied in TE. To alleviate this 
problem, development of new biomaterials for bio-ink formulation is needed. When formulating and 
processing new bio-inks, the properties discussed in Section 3 should be considered and/or 
compromised for a given CTE application. Further, for clinic application, bio-inks must also satisfy 
the requirements and regulations as set in standards and norms. Unfortunately, such standards and 
norms are few nowadays and even none are directly related to bioprinted implants for TE, which 
raises a great need for such standards and norms [172]. Cell death during the printing process is 
usually caused by the process-induced forces, such as shear stress, exerted on cells [173,174]. This 
happens especially when the bio-ink is highly viscous, in which cells would experience significantly 
higher shear stress [175]. Meanwhile, high viscosity possibly induces clogging of the nozzle tip, 
leading to disturbance of the printing process [176–178]. However, relatively high viscosity is 
essential for the bio-inks to be dispensed into undisrupted strands with higher resolution and 
printing accuracy. A recent study printed hydrogels in liquid nitrogen to fabricate scaffolds with high 
resolution and precisely defined dimensions [179]. However, it impaired the cell viability when 
printing with cell-laden hydrogels. Therefore, a compromise is usually needed to be made among 
these factors. Future studies should also focus on new approaches to improve the printability of bio-
inks without negatively influencing the cell behavior. Research should also be implemented on 
developing new techniques to process bio-inks prior to printing to improve printability. For example, 
increased mixing of alginate and cross-linker solutions actually improved geometric fidelity, 
mechanical properties, and cell viability of printed constructs [180–182].  

Other printing parameters, including printing pressure, nozzle geometry and diameter, and bio-
ink concentration, have also been shown to influence cell viability within bio-inks [72,130]. 
Manipulating and optimizing these process parameters can potentially address these issues and 
challenges to some extent. Recent finding also demonstrated the influence of these printing 
parameters on printing accuracy [183]. Therefore, we urge that future studies should indicate these 
parameters when investigating new bio-inks to improve consistency and repeatability. 

To fabricate functional cartilage construct, suitable cell sources, biological cues, and construct 
organization are still needed to be determined for successful cartilage regeneration. Most present 
studies only focus on evaluating cell viability in different bioprinted hydrogels, while functionality 
of the engineered cartilage is not very well characterized. As such, we also urge that, for bioprinted 
engineered cartilage constructs, research should also emphasize the overall chondrogenesis within 
the constructs, either qualitatively (e.g., Alcian Blue and Safranin O histology) or quantitatively (e.g., 
collagen and glycosaminoglycan content, or aggrecan and Collagen type II gene expression). 
Moreover, given that the mechanical performance of cartilage engineered from hydrogel is usually 
inferior to native cartilage, research on mechanical properties is also required for future cartilage 
bioprinting studies. Notably, current mechanical characterization of engineered cartilage constructs 
is mainly performed based on a single mechanical test (Tables 4). However, a single acceptable 
mechanical test result does not sufficiently prove the engineered constructs can perform its 
biomechanical functions as good as native cartilage tissue. Therefore, a series of mechanical tests (e.g., 
compression, tensile, and shear tests) needs to be done to comprehensively characterize the 
mechanical performance of bioprinted cartilage constructs [184]. 
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Theoretically, the shape of scaffolds fabricated by bioprinting techniques can match 
personalized defects in vivo. Notably, current in vivo research is usually based on man-made regular 
defects, which can be made fitting with a bioprinted scaffold with exact shape and dimension. It 
could be difficult for the in vitro printed material to match perfectly with the defect that needs to be 
regenerated. Printed construct could deform during in vitro culture and defects may expand while 
waiting for implantation. Although defined defects can be created in clinic, this is not desirable since 
it further increases the area that needs to be regenerated. Therefore, the concept of “in situ” 
bioprinting has been performed to directly print alginate hydrogels into a defect on an explanted 
articular surface from a calf [156]. This strategy avoids laboratory-based constructs culture and 
multiple surgical intervention and would represent the future of TE using bioprinting techniques for 
cartilage regeneration. 

Issues facing CTE is the inability to translate technologies into the clinic and lack of clinic 
standards of materials for human tissue biopriting [185]. To move bioprinted living cartilage implants 
into clinic application, bio-inks also must satisfy the requirements and regulations on safety, sterility, 
and reproducibility. To ensure safety of bioprinted implants for clinical application and to help 
researchers qualify and validate the bioprinting process and bio-ink formulations, consistent 
standards are required. Additive manufacturing standards have been published by American Society 
for Testing and Materials (ASTM) F2792. Meanwhile, standards for tissue-engineered constructs have 
been approved by the ASTM international committee F04, the International Organization for 
Standardization technical committee 150/SCZ, and the British Standards Institute. Nevertheless, there 
are no standards is currently available for bioprinted implants applied in TE field [172]. To ensure 
sterility throughout bioprinting, the process has to be incorporated in a Good Manufacturing Practice 
facility, and all components of bioprinter should be sterile and can be operated in a sterile 
environment. Moreover, the whole bioprinting process should involve minimal manual handling and 
operation. Therefore, skilled operators are needed to monitor the printing process. Automated, 
reliable quality control during the printing process will also promote the translation of printers into 
clinics. Having an integrated bioreactor system with bioprinters to allow in vitro culture before 
implantation is also an efficient way to avoid undesirable handling of the printed construct and to 
improve the sterility and reproducibility. 

7. Conclusions 

EBB is an advanced fabrication technique to produce customized cell-laden hydrogel-based 
constructs for CTE so as to mimic chondral, osteochondral, and zonal organization of articular 
cartilage. Despite the advantages and opportunities provided by hydrogel-based EBB for cartilage 
bioprinting, there are still multiple challenges that need to be addressed. Bio-inks for EBB need to be 
synthesized and optimized in terms of their biocompatibility, formulation, processing, printability, 
and optimal cell sources. Self-supporting hydrogel bioprinting and hybrid bioprinting are two 
common approaches to fabricate cartilage constructs. The former technique provides a cell-friendly 
printing environment but limited mechanical strength, while the latter brings elevated mechanical 
properties but the stress shielding may disable external mechanical stimuli. Tackling the challenges 
revolving around bio-inks and mechanical performance of resulting cartilage constructs will foster 
biologically active and living bioprinted implants for future clinical applications.  
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