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Abstract: Tanshinone IIA (Tan-IIA) is an extract from the widely used traditional Chinese medicine
(TCM) Danshen (Salvia miltiorrhiza), and has been found to attenuate the proliferation of bladder
cancer (BCa) cells (The IC50 were: 5637, 2.6 µg/mL; BFTC, 2 µg/mL; T24, 2.7 µg/mL, respectively.).
However, the mechanism of the effect of Tan-IIA on migration inhibition of BCa cells remains unclear.
This study investigates the anti-metastatic effect of Tan-IIA in human BCa cells and clarifies its
molecular mechanism. Three human BCa cell lines, 5637, BFTC and T24, were used for subsequent
experiments. Cell migration and invasion were evaluated by transwell assays. Real-time RT-PCR
and western blotting were performed to detect epithelial-mesenchymal transition (EMT)-related
gene expression. The enzymatic activity of matrix metalloproteinases (MMP) was evaluated by
zymography assay. Tan-IIA inhibited the migration and invasion of human BCa cells. Tan-IIA
suppressed both the protein expression and enzymatic activity of MMP-9/-2 in human BCa cells.
Tan-IIA up-regulated the epithelial marker E-cadherin and down-regulated mesenchymal markers
such as N-cadherin and Vimentin, along with transcription regulators such as Snail and Slug in BCa
cells in a time- and dose-dependent manner. Mechanism dissection revealed that Tan-IIA-inhibited
BCa cell invasion could function via suppressed chemokine (C-C motif) ligand 2 (CCL2) expression,
which could be reversed by the addition of CCL2 recombinant protein. Furthermore, Tan-IIA could
inhibit the phosphorylation of the signal transducer and activator of transcription 3 (STAT3) (Tyr705),
which cannot be restored by the CCL2 recombinant protein addition. These data implicated that
Tan-IIA might suppress EMT on BCa cells through STAT3-CCL2 signaling inhibition. Tan-IIA inhibits
EMT of BCa cells via modulation of STAT3-CCL2 signaling. Our findings suggest that Tan-IIA can
serve as a potential anti-metastatic agent in BCa therapy.
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1. Introduction

Bladder cancer (BCa) is one of the most prevalent types of cancer and is the leading cause of death
among patients with urinary tract disease [1]. In 2016, the United States alone recorded more than
76,000 new cases of BCa and 16,000 deaths [2]. Most BCa cases are diagnosed as non-muscle invasive
tumors; however, 50–70% of these tumors recur frequently and approximately 15% eventually develop
into muscle-invasive or metastatic BCa [3,4]. Current treatment methods including radical cystectomy
and systemic chemotherapy are effective in some muscle-invasive BCa patients, but 95% of metastatic
BCa patients die within 5-years diagnosis, indicating the need for new therapeutic strategies [5].

Tan-IIA (C19H18O3) is one of the major lipophilic compounds extracted from the root of a
traditional Chinese medicine, Danshen (Salvia miltiorrhiza) [6,7], and has been used for the treatment of
cardiovascular disease via its anti-oxidant and anti-inflammatory activity [8,9]. In addition, Tan-IIA
has been found to exert antitumor activity in various types of cancer including osteosarcoma [10],
gastric [11], lung [12], esophageal [13], and prostate cancers [14]. The antitumor activity of Tan-IIA
mainly occurs through proliferation inhibition, apoptosis induction, and metastasis inhibition [15–18].
For instance, Tan-IIA increased CCAAT/enhancer-binding protein homologous protein (CHOP) and
caspase-4 expression, and induced apoptosis of human esophageal Ec-109 cells via the endoplasmic
reticulum (ER) stress pathway [19]. Tan-IIA induced cytochrome c-mediated caspase cascade apoptosis
in A549 human lung cancer cells via the JNK pathway [20]. Tan-IIA caused apoptosis in human
oral cancer KB cells through a mitochondria-dependent pathway [21]. However, Tan-IIA did not
show significant cytotoxicity on human normal prostate epithelial cells (PrEC) and normal mammary
epithelial cells (HMEC) at the concentrations high as 50 µM [22,23]. Also, the toxicity in normal tissues
was not observed in Tan-IIA treated mice [24]. In our previous study, Tan-IIA was found to induce
mitochondria-dependent apoptosis and suppress migration in BCa cells [25]. However, the mechanism
by which Tan-IIA inhibits the migration and invasion of BCa cells remains undetermined.

Previous reports found a correlation of urinary CCL2 levels with tumor stage, grade and
metastasis in patients with BCa [26,27], and patients with stages T2–T4 BCa were found to have
a higher mean CCL2 concentration in their urine as compared to those with T1 stage tumors [27].
Previous studies also showed that CCL2 can regulate tumor progression and metastasis by altering the
tumor microenvironment [28–30]. CCL2 induced epithelial mesenchymal transition (EMT) in order to
promote tumor metastasis in various cancer types [31–33]. Down-regulation of CCL2 expression by
inhibiting phosphorylation of STAT3 led to the suppression of metastasis in breast and lung cancer [34].
STAT3 signaling is an important pathway which is frequently activated in many tumors including
BCa [35,36]. The transcriptional activity of STAT3 is required for the phosphorylation at the tyrosine
residue 705 (Tyr705) and has been demonstrated to be critical for BCa cell growth and survival [36,37].
In addition, activation of STAT3 promoted migration and invasion of BCa cells [38]. Thus, we seek to
elucidate the role of STAT3-CCL2 signaling in Tan-IIA-induced EMT inhibition in BCa cells.

The results of the present study demonstrate that Tan-IIA inhibited the migration and invasion
of human BCa cells. Tan-IIA inhibited EMT in BCa cells via the suppression of CCL2 expression
which cannot be reversed by addition of CCL2 recombinant protein. In addition, Tan-IIA suppressed
the phosphorylation of STAT3 (Tyr705), which cannot be restored by addition of CCL2 recombinant
protein. Our data suggests that Tan-IIA might inhibit EMT in BCa cells through the STAT3-CCL2
signaling inhibition.

2. Results

2.1. Tan-IIA Inhibits the Migration and Invasion of Human BCa Cells

Human BCa cells were treated with 4 µg/mL Tan-IIA for 24 h and then subjected to migration
(24 h) and invasion (48 h) assay (Figure 1A). In the migration assay, Tan-IIA decreased the number
of migrating cells to 25.6 ± 4.7% (5637), 32 ± 2.9% (BFTC), and 70.5 ± 9.7% (T24) as compared to the
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control group. In the invasion assay, Tan-IIA decreased the number of migrating cells to 11 ± 2.9%
(5637), 51.8 ± 4.4% (BFTC), and 22.8 ± 9.8% (T24) as compared to the control group.
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Figure 1. Tan-IIA inhibited migratory and invasive ability in human BCa cells. (A) Human BCa cells 
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protein expression using western blot, and the (C) supernatant was used to detect the enzymatic 
activity using zymography analysis. M: marker. Data are presented as means ± S.D. from three 
different experiments. ** p < 0.01 versus vehicle. 

Figure 1. Tan-IIA inhibited migratory and invasive ability in human BCa cells. (A) Human BCa cells
were treated with 0.2% DMSO as a vehicle control or 4 µg/mL Tan-IIA for 24 h and then seeded onto
the transwell hanging insert for migration (24 h) and invasion (48 h) assays. Images were captured
using an inverted microscope with 200×magnification; Scale bar: 50 µm. The migration and invasion
of BCa cells were quantified by counting the stained cells that migrated into the underside of the
hanging insert membrane; (B) human BCa cells were treated with different concentrations of Tan-IIA
(1, 2 and 4 µg/mL) for 48 h. The protein of total cell lysates were then used to detect MMP-9/-2 protein
expression using western blot, and the (C) supernatant was used to detect the enzymatic activity using
zymography analysis. M: marker. Data are presented as means ± S.D. from three different experiments.
** p < 0.01 versus vehicle.

Western blot results indicated Tan-IIA down-regulated the protein expression of MMP-9/-2 in a
dose-dependent manner (Figure 1B). Zymography analysis also showed that Tan-IIA attenuated the
enzymatic activity of MMP-9/-2 in a dose-dependent manner (Figure 1C). Taken together, these results
suggested that Tan-IIA might be an effective inhibitor of cell migration and invasion of BCa cells.
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2.2. Tan-IIA Inhibits EMT in Human BCa Cells

EMT is a crucial step for the invasion and metastasis of BCa cells. We first show that Tan-IIA could
inhibit cellular migration and invasion in BCa cells, and this is accompanied by the up-regulation of
epithelial marker E-cadherin, the down-regulation of mesenchymal markers N-cadherin and Vimentin,
and the down-regulation of transcription factor Snail and Slug, at both the mRNA and protein level as
evidenced by quantitative RT-PCR (qRT-PCR) (Figure 2A) and western blot (Figure 2B,C).
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Previous reports suggested that high levels of CCL2 expression play a key role in BCa 
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Figure 2. Tan-IIA inhibited EMT on human BCa cells. (A) Human BCa cells were treated with 4 µg/mL
Tan-IIA for 24 h. The expression of EMT-related genes was detected by qRT-PCR analysis; (B) human
BCa cells were treated with 4 µg/mL Tan-IIA for 24 to 72 h. The expressions of EMT-related genes were
detected by western blot. (C) Human BCa cells were treated with increasing concentrations of Tan-IIA
(1, 2 and 4 µg/mL) for 48 h. The expressions of EMT-related genes were detected by western blot. Data
are presented as means ± S.D. from three different experiments. * p < 0.05 versus vehicle.

2.3. Tan-IIA Inhibits EMT via Down-Regulated CCL2 Expression in Human BCa Cells

Previous reports suggested that high levels of CCL2 expression play a key role in BCa progression
and metastasis in vitro and in vivo [27,32,39]. Thus, we analyzed the CCL2 expression in the culture
medium of human BCa cells treated with or without Tan-IIA. As shown in Figure 3A, Tan-IIA inhibited
the CCL2 expression in all BCa cell lines detected by PCR and qRT-PCR. Furthermore, ELISA tests
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confirmed that the protein level of CCL2 secreted by BCa cells was inhibited by Tan-IIA treatment
in a dose-dependent manner (Figure 3B). These results showed that Tan-IIA down-regulated CCL2
expression in BCa cells.
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Figure 3. Tan-IIA inhibited the CCL2 expression and reversed the EMT in human BCa cells. (A) Human
BCa cells were treated with increasing concentrations of Tan-IIA for 24 h. The expression of CCL2 was
detected by PCR and qRT-PCR; (B) Human BCa cells were treated with increasing concentrations of
Tan-IIA for 48 h. The supernatant was collected for CCL2 protein detection using ELISA assay; (C) BFTC
cells were treated with or without 4 µg/mL Tan-IIA in the presence or absence of CCL2 recombinant
protein for 48 h. The EMT-related gene expression was detected by western blot; (D) BFTC cells were
treated with or without 4 µg/mL Tan-IIA in the presence or absence of 100 ng/mL human CCL2
recombinant protein for 24 h, followed by migration (24 h) or invasion (48 h) assays and analyzed as
previous described. Data are presented as means ± S.D. from three different experiments. *** p < 0.001
versus vehicle.

To investigate the mechanism by which Tan-IIA inhibits CCL2 resulting in metastatic inhibition,
BFTC cells were treated with or without human CCL2 recombinant protein (10 or 100 ng/mL) in the
presence or absence of 4 µg/mL Tan-IIA for 48 h to examine the EMT-related genes expression.
As shown in Figure 3C, treatment with CCL2 recombinant protein increased the expression of
mesenchymal marker N-cadherin and Vimentin, along with transcription factor Snail and Slug, which
were down-regulated by Tan-IIA treatment. In addition, treatment with CCL2 recombinant protein
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attenuated the inhibitory effect on migration and invasion induced by Tan-IIA treatment (Figure 3D).
Together, these findings indicate that Tan-IIA inhibited EMT in BCa cells via the down-regulation
of CCL2.

2.4. Tan-IIA Inhibits STAT3-CCL2 Signaling in Human BCa Cells

Recent studies indicated that CCL2 signaling plays a pivotal role in regulating STAT3 activation
and EMT [40], and the inhibition of STAT3 signaling may reduce the invasiveness of BCa [41]. We
further examined whether Tan-IIA could inhibit the activation of STAT3 on BCa cells. Human BCa
cells were treated with Tan-IIA for indicated time points and p-STAT3 (Tyr705) was analyzed by
western blot. As shown in Figure 4A,B, Tan-IIA inhibited the activation of STAT3 by decreasing
the phosphorylation of STAT3 at Tyr705 in all BCa cell lines in a time- and dose-dependent manner.
To elucidate the mechanism by which Tan-IIA inhibits CCL2 through regulating STAT3, BFTC cells
were transfected with the STAT3 siRNA and the expression of STAT3 and CCL2 were examined by
western blot. Silencing the expression of STAT3 leads to the inhibition of CCL2 expression (Figure 4C).
However, treatment with human CCL2 recombinant protein (10 or 100 ng/mL) cannot restore the
regulation of STAT3 via phosphorylation of Tyr705, and this was inhibited by Tan-IIA treatment.
These results suggested that Tan-IIA down-regulated the CCL2 expression via inhibition of the STAT3
pathway in human BCa cells.
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Figure 4. Tan-IIA inhibited STAT3-CCL2 signaling in human BCa cells. (A) Human BCa cells were
treated with 4 µg/mL Tan-IIA for indicated time points, and the expression of phospho-STAT3 (T705)
was detected by western blot; (B) human BCa cells were treated with increasing concentrations of
Tan-IIA for 48 h, the expression of phospho-STAT3 (T705) were detected by western blot; (C) BFTC
cells were transfected with control or STAT3 siRNA for 24 h, and the expression of STAT3 and CCL2
was detected by western blot; (D) BFTC cells were treated with or without 4 µg/mL Tan-IIA in the
presence or absence of human CCL2 recombinant protein for 48 h. The expression of phospho-STAT3
(T705) and STAT3 was detected by western blot.
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3. Discussion

Our previous study reported that Tan-IIA could inhibit the proliferation and migration of human
BCa cells [25], but the underlying mechanism of Tan-IIA attenuating the migration and invasion
of BCa cells remains unclear. EMT is a process by which epithelial cells gradually transform into
mesenchymal-like cells to promote the migration and invasiveness of cancer cells [42]. Our results
showed that Tan-IIA treatment could inhibit the process of EMT as evidenced by increased level of the
epithelial marker E-cadherin and decreased level of mesenchymal markers (N-cadherin and Vimentin).
Activation of MMP proteins leads to cell migration and penetration to the basement membrane, playing
an important role in EMT processes [43]. In previous studies, Tan-IIA decreased migration or invasion
through inhibiting MMP-9/-2 secretion in gastric cancer and osteosarcoma [11,18]. Similar results
observed in our study showed that Tan-IIA suppressed both the protein expression and enzymatic
activity of MMP-9/-2 on human BCa cells (Figure 1B). Together, these findings suggest that Tan-IIA
inhibits EMT in human BCa cells.

Several reports have demonstrated the importance of CCL2 and EMT signals in BCa progression.
Chiu et al. reported that blocking the CCL2/CCR2 pathway could decrease the migration and invasion
of BCa cells [39]. Additional reports show that CCL2 signals promote EMT in various tumors including
BCa [32,40,44,45]. The present study provides evidence that Tan-IIA decreased CCL2 expression
in a dose-dependent manner by qRT-PCR and ELISA analysis (Figure 3). The addition of CCL2
recombinant protein resulted in a partial reversal of EMT markers, and attenuated the Tan-IIA-induced
migration and invasion inhibition in BCa cells. Our results show that Tan-IIA inhibits the EMT in BCa
cells via the suppression of CCL2 expression.

Additional reported data suggested that CCL2 induced EMT through the activation of STAT3
signals [33,40] and inhibited STAT3 signaling to reduce the invasiveness of tumor cells [41,46]. Our
data showed that Tan-IIA could inhibit the p-STAT3 (Tyr705) in a time- and dose-dependent manner.
Besides, inhibition of STAT3 expression by STAT3 siRNA transfection attenuated the expression of
CCL2. The phosphorylation of STAT3, inhibited by Tan-IIA, cannot be restored by CCL2 recombinant
protein addition. These data suggested that Tan-IIA inhibits EMT of human BCa cells via modulation
of STAT3-CCL2 signaling (Figure 5). Several effects of Tan-IIA on human cancer were also integrated
to get a better view of possible anti-cancerogenic effects of Tan-IIA [47–50]. In addition, since the
results from this study were based on in vitro assays of human BCa cells, the in vivo experiments are
necessary for future study.

EMT is orchestrated by several signaling pathways, including JAK/STAT3 and TGF-β/Smad
signaling. Recent studies have demonstrated that TGF-β-mediated cancer metastasis was associated
with the activation of STAT3 pathway in colorectal and lung cancer [51,52]. STAT3 activation can
increase smad7 expression and form an inhibitory complex with smad3 which eventually suppress
EMT [53]. Recent study elucidated the mechanisms behind the tumoricidal activity of TCM clinical
prescription Jianpi Huayu Decoction (JHD) in Hepatocellular carcinoma (HCC) treatment. Their
results indicated that Tan-IIA might be the one of crucial components of the JHD that targets on
the TGF-β/Smad3 pathway and inhibits EMT [50]. Taken together, the targeted blockade of the
STAT3/smad3 axis in tumor cells may be an effective therapeutic strategy against tumor metastatic
progression and worth for further investigation.
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Figure 5. Schematic representation the anti-cancerogenic roles of Tan-IIA. CCL2: Chemokine (C-C
motif) ligand 2; EMT: Epithelial-Mesenchymal Transition; HIF-1α: Hypoxia-inducible factor-1α; MMP:
Matrix MetalloProteinases; mTOR: mammalian target of rapamycin; P: phosphorylation; p70S6K:
p70 ribosomal protein S6 kinase; STAT3: signal transducer and activator of transcription 3; Tan-IIA:
Tanshinone IIA; TGF-β: transforming growth factor β. ↓: stimulatory modification; ⊥: inhibitory
modification; Dashed arrow: putative stimulatory modification [47–50].

4. Materials and Methods

4.1. Chemicals and Antibodies

Tanshinone IIA (C19H18O3, >97% HPLC), Dimethyl sulfoxide (DMSO), [3-(4,5-dimethyl
thizol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT), Tween-20, methanol, and horseradish
peroxidase-conjugated secondary antibodies were purchased from Sigma Chemical Co. (St. Louis,
MO, USA). The antibodies against p-STAT3 (Tyr705), STAT3, E-cadherin, N-cadherin, Vimentin, Slug,
Snail, MMP-2, MMP-9 and β-actin were all purchased from Cell Signaling Technology, Inc., (Danvers,
MA, USA). The human CCL2 recombinant protein was purchased from Santa Cruz Biotechnology,
Inc. (Dallas, TX, USA). Polyvinyldenefluoride (PVDF) membranes, BSA protein assay kit and western
blot chemiluminescence reagent were purchased from Amersham Biosciences (Arlington Heights,
IL, USA).

4.2. Cell Culture

The human BCa cell lines 5637 (grade II carcinoma), BFTC (BFTC 905, papillary transitional cell
carcinoma), and T24 (transitional cell carcinoma) were purchased from BCRC (Bioresource Collection
and Research Center, Hsinchu, Taiwan). Cells were cultured in appropriate medium supplemented
with 10% FBS, 100 U/mL penicillin and 100 U/mL streptomycin (all from Invitrogen, Carlsbad, CA,
USA) at 37 ◦C in a humidified atmosphere with 5% CO2.

4.3. Western Blot Analysis

Five hundred thousand cells per 6-cm plate were lysed with 200 µL M-PER mammalian protein
extraction reagent containing protease inhibitor cocktail (Thermo Scientific, Rockford, IL, USA) and
centrifuged at 13,000× g at 4 ◦C for 10 min. The protein concentration in the supernatants was
quantified using a BSA Protein Assay Kit. Electrophoresis was performed on a NuPAGE Bis-Tris
Electrophoresis System using 20 µg of reduced protein extract per lane. Resolved proteins were
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transferred to PVDF membranes, blocked with 5% skim milk for 1 h at room temperature, finally
probed with the specific primary antibodies at 4 ◦C overnight. After the PVDF membrane was
washed three times with TBS/0.2% Tween-20 at room temperature, it was incubated with appropriate
secondary antibody labeled with horseradish peroxidase (Sigma Chemical, St. Louis, MO, USA)
for 1 h at room temperature. All resolved proteins bands were detected using Western Lightning™
Chemiluminescence Reagent Plus (Amersham Biosciences, Arlington Heights, IL, USA).

4.4. Cell Migration and Invasion Assay

The trans-well assay was performed using Hanging inserts (Millipore Co., Billerica, MA, USA)
with 8 µm polycarbonate membrane in a 24-well plate. Cells were seeded in 6 well plates and treated
without or with 4 µg/mL Tan-IIA with or without CCL2 for 24 h. Cells were then detached and
seeded (5 × 104) to the upper chamber of the transwell plates. Upper chambers were filled with
serum free medium and lower chambers were filled with cultured medium containing 10% FBS as
a chemo-attractant. Incubation was carried out at 37 ◦C for the indicated 24 h. The hanging inserts
were washed with PBS, and cells on the upper filter surface were wiped away with a cotton swab.
The inserts were subsequently fixed with 10% formalin for 10 min at room temperature, stained with
0.2% w/v crystal violet, washed with PBS, the remaining cells were counted on the opposite site
of the filter under a light microscope operating at 200× magnification. The migration cell numbers
of control group were considered as 100%. For the invasion assay, a Matrigel basement membrane
matrix (BD Biosciences, San Jose, CA, USA) was coated to the upper side of the hanging inserts at
a concentration of 2 mg/mL. Cells were seeded onto the coated hanging inserts and followed by
migration assay protocol.

4.5. RNA Extraction and Real-Time RT-PCR

Total RNA was extracted from cell lines using RNeasy Mini Kit® (Qiagen, Valencia, CA, USA)
and reverse transcribed at 37 ◦C for 60 min with Omniscript RT Kit® (Qiagen) according to the
manufacturer’s instructions. Real-time RT-PCR analysis was performed in triplicate in a Step One Plus
Real-Time PCR system (Applied Biosystems, Foster City, CA, USA) with Power SYBR® Green PCR
Master Mix (Applied Biosystems) in a final volume of 20 µL/reaction. Threshold cycle (Ct) value of
each tested gene was normalized to the Ct value of the GAPDH control from the same RNA preparation.
The ratio of transcription of each gene was calculated as 2–(∆Ct), where ∆Ct is the difference Ct(test
gene)−Ct(GAPDH). Real-time RT-PCR primer sequences used in this study are listed in Table 1.

Table 1. The gene-specific primers used in this study.

Gene Primers

CCL2 sense: 5′-GATCTCAGTGCAGAGGCTCG-3′

antisense: 5′-TGCTTGTCCAGGTGGTCCAT-3′

E-cadherin sense: 5′-ACGTCGTAATCACCACACTGA-3′

antisense: 5′-TTCGTCACTGCTACGTGTAGAA-3′

N-cadherin sense: 5′-ACAGTGGCCACCTACAAAGG-3′

antisense: 5′-CCGAGATGGGGTTGATAATG-3′

Fibronectin sense: 5′-CCCACCGTCTCAACATGCTTAG-3′

antisense: 5′-CTCGGCTTCCTCCATAACAAGTAC-3′

Vimentin sense: 5′-CTTCGCCAACTACATCGACA-3′

antisense: 5′-GCTTCAACGGCAAAGTTCTC-3′

Snail sense: 5′-TCGTCCTTCTCCTCTACTTC-3′

antisense: 5′-TTCCTTGTTGCAGTATTTGC-3′

Slug sense: 5′-TGTTGCAGTGAGGGCAAGAA-3′

antisense: 5′-GACCCTGGTTGCTTCAAGGA-3′

GAPDH sense: 5′-CCATGGAGAAGGCTGGGG-3′

antisense: 5′-CAAAGTTGTCATGGATGACC-3′
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4.6. Enzyme-Linked Immunosorbent Assay (ELISA)

Human MCP-1/CCL2 ELISA kit was purchased from R&D Systems. BCa cells were cultured in
serum-free medium with or without Tan-IIA for 72 h. The medium were collected (400 µL/sample in
96-well) for ELISA assay according to manufacturer’s instructions.

4.7. Gelatin Zymography

The BCa cells were cultured in serum-free medium containing Tan-IIA (0, 1, 2, 4 µg/mL) for 48 h
and the supernatant was collected. The supernatant was mixed with non-reducing SDS gel sample
buffer. Electrophoresis was carried out using 10% native polyacrylamide gel containing 0.1% gelatin
(Sigma, St. Louis, MO, USA) on a NuPAGE Bis-Tris Electrophoresis System. After electrophoresis,
the gels were washed in wash buffer containing 2.5% Triton X-100 at room temperature, and then
incubated with the reaction buffer containing l M CaC12, 2% NaN3, 1 M Tris-HCl (pH 8.0) at 37 ◦C
overnight. Gels were stained by Coomassie Brilliant Blue R-250 solution and gelatinolytic activity was
shown as clear areas in the gel.

4.8. Small Interfering RNA (siRNA) Transfection

STAT3 siRNA (#6582) was purchased from Cell Signaling Technology, Inc., (Danvers, MA, USA).
Non-targeting siRNA (ON-TARGET plus non-targeting pool) were purchased from Dharmacon RNAi
Technologies (Lafayette, CO, USA). Non-targeting control sequences were not provided. BFTC cells at
50–60% confluence were transfected with siRNA (40 or 80 nM) using the DharmaFECT 4 transfection
reagents (GE Healthcare Dharmacon, Lafayette, CO, USA) according to the manufacturer’s protocol.
Cells were cultured for 24 h, and then treated with Tan-IIA or vehicle for an additional 48 h. Proteins
were then isolated for western blotting.

4.9. Statistical Analysis

All data were shown as mean ± S.D. Statistical differences were analyzed using the Student’s
t-test for normally distributed values.

5. Conclusions

In conclusion, our study demonstrated that Tan-IIA inhibits EMT in human BCa cells. The
anti-metastatic effects of Tan-IIA in human BCa cells were shown by migration and invasion assay.
Tan-IIA is shown to regulate EMT-related gene expression via the suppression of CCL2. The inhibition
of CCL2 might be linked to the phosphorylation inhibition at Tyr705 of STAT3 by Tan-IIA. Tan-IIA
has been shown to inhibit EMT in human BCa cells, and the mechanism involved was mediated
through the modulation of STAT3-CCL2 signaling. Thus, our findings suggest a novel role of Tan-IIA
in controlling BCa, suggesting that Tan-IIA might be a potential option for treating BCa metastasis.
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Abbreviations

CCL2 Chemokine (C-C motif) ligand 2
EMT Epithelial-mesenchymal transition
MMP Matrix metalloproteinases
STAT3 Signal transducer and activator of transcription 3
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