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Abstract: Breast cancer is one of the most common causes of cancer related deaths in women.
Currently, with the development of early detection, increased social awareness and kinds of treatment
options, survival rate has improved in nearly every type of breast cancer patients. However, about
one third patients still have increased chances of recurrence within five years and the five-year
relative survival rate in patients with metastasis is less than 30%. Breast cancer contains multiple
subtypes. Each subtype could cause distinct clinical outcomes and systemic interventions. Thereby,
new targeted therapies are of particular importance to solve this major clinical problem. Aptamers,
often termed “chemical antibodies”, are functionally similar to antibodies and have demonstrated
their superiority of recognizing target with high selectivity, affinity and stability. With these intrinsic
properties, aptamers have been widely studied in cancer biology and some are in clinical trials. In this
review, we will firstly discuss about the global impacts and mechanisms of breast cancer, then briefly
highlight applications of aptamers that have been developed for breast cancer and finally summarize
various challenges in clinical translation of aptamers.
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1. Introduction

Breast cancer is a heterogeneous disease, which accounts for 29% of all new cancer cases and
14% of all cancer-related deaths among women [1]. Based on the detailed expression patterns and
clinical implications, breast cancer could be divided into four subtypes: luminal A, luminal B,
basal-like, and human epidermal growth factor receptor 2 (HER2) positive breast cancers [2–4].
Different subtypes of breast cancer exhibit distinct histopathological and biological features, which lead
to differences in clinical outcomes and divergent responses to systemic interventions. Current treatment
strategies for breast cancer consist of surgery, radiation therapy, chemotherapy and hormone therapy.
Recent advances in early detection and breakthrough in treatment strategies has significantly improved
survival rate in breast cancer patients. However, most breast cancer patients develop resistance to
chemotherapy drugs, distant organ metastasis and recurrences, which reduce the prognosis of breast
cancer. Thus, treating such patients poses a significant clinical challenge. In recent years, a better
understanding of the molecular mechanisms underlying breast cancer has led to the identification of
new molecular targets and development of targeted therapy. Targeting susceptible molecules in the
pathways that prolong growth and promote invasion of cancer cells have spearheaded the discovery
and clinical trials of several monoclonal antibodies (mAbs) and small-molecule inhibitors. Some of

Int. J. Mol. Sci. 2017, 18, 1851; doi:10.3390/ijms18091851 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0003-3033-6819
https://orcid.org/0000-0002-7807-7695
http://dx.doi.org/10.3390/ijms18091851
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2017, 18, 1851 2 of 23

the targeted therapies widely used in breast cancer treatment include mAbs such as trastuzumab
and pertuzumab; tyrosine kinase inhibitors such as lapatinib; cyclin-dependent kinase inhibitors
such as palbociclib; mammalian target of rapamycin (mTOR) inhibitors such as everolimus; and
poly-ADP-ribose polymerase (PARP) inhibitors [5]. Monoclonal antibodies are essential tools not only
in biochemistry but also in molecular biology and medical research. They have revolutionized the
traditional approach to treat serious diseases such as cancers and human immunodeficiency viruses
(HIV). In addition, many mAbs are being actively evaluated in clinical trials [6]. Inevitably, there are
various drawbacks that limit their clinical applications, such as difficulty in preparation, analysis, and
transportation; easy degradation; and inflexible to chemical modification [7].

As an alternative molecular probe, aptamers offer significant advantages over existing mAbs [8–11],
as illustrated in Table 1, such as small size, facile chemical synthesis easy modification [12], low-cost,
low immunogenicity [13], rapid tissue penetration, high reproducibility and long-term stability [7,8].
Likewise, aptamers have better specificity and higher affinity towards the target molecule, have fewer
non-specific cross-reactivities compared to antibodies [14–19], and have the capability to bind to a range
of different molecules such as proteins, cells, tissues, or small molecules (organic dyes, amino acids,
metal ions and nucleotides) [20]. In conjunction with the development of aptamer technology, aptamers
have aroused wide public attention. In 2004, a vascular endothelial growth factor (VEGF)-specific
aptamer, Macugen, was first approved by the Food and Drug Administration (FDA) for the treatment
of neovascular (wet) age-related macular degeneration (AMD), which indeed has opened up new
possibilities in the field of aptamers [21].

Table 1. Comparison between nucleic acid aptamers and monoclonal antibodies.

Features Aptamers mAbs

Basic composition A, G, T/U, C/ Amino acid
Size and molecular weight ~2 nm; 6–30 kDa ~15 nm; 150–180 kDa

Synthesis time Weeks Months
Manufacture and cost In vitro; cheap In animals; expensive

Storage Stable at ambient temperature Low temperature
Target Almost anything Immunogenic targets

Immunogenicity None or low immunogenicity Significant immunogenicity
Specificity and affinity High High

Modification Easy chemical modification Hard to be modified
Reproducibility None or low batch variation Significant batch variation

2. Breast Cancer

2.1. Current Status of Breast Cancer

Breast cancer is one of the most common cancers and the second leading cause of cancer associated
deaths in women [22,23]. Currently, breast cancer accounts for 26% of all new cancer cases in
women [22,24]. In 2016, approximately 246,660 women and 2600 men were expected to be diagnosed as
new cases of invasive breast cancer in the United States [23,25]. Dramatic advances in early detection,
better imaging techniques and breakthrough treatment strategies such as aggressive chemotherapy,
hormonal therapy and targeted drug therapy have significantly improved the five-year survival rate
among breast cancer patients [26,27]. However, breast cancer has high potential to undergo aggressive
malignant transformation [28]. SEER staging reported that the overall five-year survival rates for
localized and regional breast cancer patients are 99% and 85%, respectively, while, in breast cancer
patients with distant metastasis, it is as low as 26% [29]. Additionally, approximately 30% of breast
cancer patients reported recurrence within five years along with a 56% chance of metastasis, primarily
to the bones, lung, brain, and liver [30].
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2.2. Prognosis of Breast Cancer

2.2.1. Subtypes of Breast Cancer

Breast cancer is a highly heterogeneous disease, which is composed of multiple subtypes based
on molecular, histopathological and clinical levels. Each subtype has its own diverse prognostic and
therapeutic implications [31]. Sørlie et al. pioneered studies into breast cancer classification and
reported a distinctive “molecular portrait” of breast cancer using 456 cDNA clones. Accordingly, breast
tumors were classified into five intrinsic subtypes with distinct clinical outcomes: luminal A (estrogen
receptor (ER)+, progesterone receptor (PR)+, HER2− and Ki67 < 14%), luminal B (ER+, PR+, HER2−
and Ki67 ≥ 14% or ER+, PR+, and HER2+), HER2-enriched (HER2+, ER− and PR−), basal-like (ER−,
PR− and HER2−) and normal-like tumors [2–4,32]. This molecular classification has been shown to
have significant prognostic value and acts as a predictive guide of the chemotherapy response [33].
Therefore, factors that influence survival and prognosis of breast cancer, including stages of cancer,
tumor grade, age, histological subtype, hormone receptor status and HER2 receptor status, are helpful
in the classification process [34].

2.2.2. Breast Cancer Mechanism

Both genetic as well as lifestyle factors are implicated in breast cancer etiology. This includes
lifestyle factors such as alcohol intake, combined treatment of estrogen with progestin, postmenopausal
hormone therapy, leanness in early life followed by obesity in later life, lack of physical inactivity,
use of oral contraceptives and exposure to ionizing radiation [35]. Approximately 70% of breast
cancers with positive ERα expression belong to molecular subtype luminal A or luminal B, which
strongly suggests that estrogen plays a pivotal role in survival, progression and development of breast
cancer [36]. Mutation or deregulation in breast cancer susceptibility gene 1 (BRCA1) and breast cancer
susceptibility gene 2 (BRCA2) has been implicated in familial breast cancer and women with first
degree relative. Besides, the risk of breast cancer increases by two folds in women with first degree
relative with breast cancer compared to women without any family history. Other risk factors for
breast cancer are reproductive factors such as early age at menarche, late age at first birth, nulliparity
and late age at menopause.

HER2 is found to be over expressed in several breast cancers and correlates with tumor size and
estrogen expression. Additionally, HER2 expression was reported to be amplified in 20–25% of breast
cancers and acted as an indicator of poor prognosis [37]. On the other hand, mutations, aberrant or
deregulated expression of TP53, MDM2 and RB genes have also been implicated to play a key role
in therapeutic responses to breast cancer [38]. It is reported that restoration of functional activity of
TP53 in TP53 deficient cells could sensitize these cells to chemotherapy drugs [39]. Several other genes
are also involved in signaling and DNA repair defect in breast cancer such as fanconi anemia (FA)
genes (FANCD2, FANCA, FANCC), mismatch repair endonuclease PMS2, mismatch repair genes (MutL
homolog 1 (MLH1)), ataxia-telangiectasia, mutated (ATM) and Phosphatidylinositol-4,5-bisphosphate
3-kinase catalytic subunit alpha (PIK3CA) genes [40,41]. Further studies are being carried out to have
a better understanding of breast cancer mechanism.

Triple negative breast cancer (TNBC) belongs to basal-like breast cancer that is
immune-biologically negative for the ER/PR and HER2 protein expression. TNBC accounts
for approximately 15% of the total newly diagnosed breast cancer patients and are usually
found predominantly in younger patients. TNBC is more aggressive in nature in comparison to
other subtypes and is characterized by high tumor grade, larger tumor size, early incidences of
recurrence, higher tendency of early visceral metastases and lower median survival rate of only
10 months [42]. The present treatments available to TNBC patients are limited to surgery and aggressive
chemotherapy [42]. On the other hand, the low percentage of survival rate among TNBC patients
even after aggressive chemotherapy is attributed to chemo resistance. Over the past decade, several
mechanisms involved in development of chemo-resistance in TNBC have been discovered: (1) efflux
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of chemotherapeutic drugs by cells which have overexpressed ABC transporter; (2) overexpression
of β-tubulin III subunit; (3) mutations in DNA repair enzymes and DNA mismatch repair enzymes;
(4) alterations in apoptotic genes (p53, caspase-3s, bcl-2, and bcl-x); (5) overexpression of ALDH1, raised
glutathione and glutathione-S-transferase activity results in increased breakdown of chemotherapy
agent such as cisplatin; and (6) nuclear factor (NF)-κB signaling pathways [43]. Currently, there are no
targeted therapies available for TNBC treatment due to absence of targets such as hormonal receptors
and HER2. Therefore, new tools are of high importance to be discovered for targeted therapy in
TNBC patients.

3. Aptamer and SELEX

3.1. Aptamers

Early breast cancer detection and accurate diagnosis are vital for determining treatment strategy
in breast cancer [44]. To accurately detect cancer-associated proteins, small molecules and cancer cells,
present diagnostic tests mainly rely on antibody-antigen binding assays [45]. Unfortunately, these
antibody based molecular tools often lack ideal pharmacokinetics and batch to batch reproduction,
and easily lose their activity during chemical modification and storage [8].

In recent past, a new class of nucleic acid probes known as aptamers have gained increasing
research interest as a molecular beacon. Aptamer, a term derived from the Latin aptus meaning
“to fit” and the Greek word meros (“part”) [46], are short single-stranded DNA (ssDNA) or RNA
oligonucleotides. By folding into distinct three-dimensional (3D) structures, aptamers can recognize
the target with high specificity and sensitivity. As a molecular probe, aptamer has been integrated and
utilized in bioanalysis and biomedicine [47].

Aptamers are generated through an in vitro iterative selection process known as Systematic
Evolution of Ligands by EXponential enrichment (SELEX) [46,48]. The traditional SELEX procedures
are illustrated in Figure 1. Generally, DNA SELEX process includes three steps. In the first step, an
ssDNA library will be synthesized, the library consists of primers at two terminals and a random
sequence usually 30–40 mers in the middle [49]. The library contains as many as 1 × 1013 to 1 × 1015

different members. The second is the binding and separation step, in which target-bound sequences
are separated from the unbound library. This step is essential for a successful aptamer screening.
To improve the specific binding, counter-target will be added and only the target-bound library will
be collected for the next step. The last step is amplification: the mixture from the second step will be
used as a template for polymerase chain reaction (PCR) to create a new library for the next round of
selection. The library of ssDNA is often prepared by the strand separation of PCR products. In the case
of RNA SELEX, the complex recovered from the second step is reverse-transcribed to DNA, which will
be used as template for PCR. Then, the PCR product is transcribed to RNA for another round. There is
not much difference between DNA aptamers and RNA aptamers in functions. However, each has
distinct advantages: DNA aptamers are more stable and much easier to be manufactured at a lower
cost than RNA aptamers, while RNA aptamers have more diverse 3D conformations that can form
complex structure to increase the binding specificity and sensitivity [49].
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3.2. The Development of SELEX

Over the past two decades, SELEX has undergone rapid growth and led to development
of a variety of screening methods such as Complex target SELEX [50], affinity chromatography
SELEX [51], Tissue slide-based SELEX [52], Capillary electrophoresis SELEX [53], genomic SELEX [54],
monoclonal surface display SELEX (MSD-SELEX) [55], and Cell-SELEX [56]. Along with these, several
other new methods were derived from Cell-SELEX such as target expressed on cell surface-SELEX
(TECS-SELEX) [57], fluorescence-activated cell sorting SELEX (FACS-SELEX) [16], 3D Cell-SELEX [58]
and Hybrid-SELEX [59]. It is worth mentioning protein-based-SELEX and cell-based-SELEX, as these
technologies are widely used in screening aptamers for breast cancer.

3.3. Protein-Based-SELEX

Protein-based-SELEX is a method for identifying new aptamers for a known purified intracellular
or extracellular protein [60]. In general, target proteins are immobilized on the surface of beads and then
incubated with the library. After washing, the protein-library mixture is used for PCR amplification
(for ssDNA) or RT-PCR (for RNA) [61]. After about 20 rounds of selection, the evolutionary library
is sequenced.

3.4. Cell-Based-SELEX

Cell-SELEX is aimed at developing a novel aptamer for the whole cell. The main steps of
Cell-SELEX are similar to traditional SELEX, which includes incubation, partitioning and amplification.
To generate aptamers that can specifically bind to target cells, a library is synthesized. The pool is
incubated with the target cells as positive selection, then the unbound sequences are washed away
and only the bound library is collected. Further, negative selection is carried out by incubating the
recovered bound sequences with negative control cells, and only the unbound library is recovered
for PCR [62]. In the case of RNA SELEX, the single-stranded RNA library is prepared by in vitro
transcription of dsDNA templates, usually using recombinant T7 RNA polymerase. In DNA SELEX,
the library is often prepared by PCR products. After 20 rounds of selection, the evolutionary library is
sequenced by high-throughput sequencing [63].

Compared to protein-based-SELEX, cell-based-SELEX could discover novel targets without prior
knowledge of the cell surface, which is quite essential to discover new biomarkers for treating diseases.
In addition, some proteins only function in their native conformation, so these proteins cannot be used
as targets for new aptamers by protein-based-SELEX [49].
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4. Applications of Aptamer in Breast Cancer

Aptamers are an ideal molecular probe candidate due to its unique characteristics of high
sensitivity and specificity towards a selected target. The use of aptamers as therapeutic agent was
first demonstrated by Sullenger et al. in 1990 [64]. In the flowing part, we will explore diagnostic and
therapeutic applications of aptamers against breast cancer. Aptamers that target breast cancer cells or
proteins, since 2006 till today are listed in Table 2.

Table 2. Aptamers that have been identified to breast cancer.

Target Aptamer Name Reference

HER2 protein DNA HeA2_1, HeA2_3 [65]
HER2 protein RNA SE15-8 [66]

Extra-cellular domain (ECD) of HER2protein DNA ECD_Apt1 [67]
Epitope peptide of HER2 DNA HB5 [68]

HER2 extracellular domain DNA Heraptamer1, Heraptamer2 [69]
HER2 protein RNA TSA14 [70]
HER2 peptide DNA HY6 [71]

ERα DNA ERaptD4 [72]
Cell surface associated (MUC1) protein DNA S2.2 [9]

Five MUC1 tandem repeats (MUC1-5TR) DNA 5TR1 [73]
A peptide epitope of MUC1 DNA MA3 [74]

Receptor-binding domain (RBD) of VEGF DNA Vap7 [75]
Periostin DNA PNDA-3 [76]

SK-BR-3 cell line RNA S6 [77]
MCF-10AT1 cell line DNA KMF2-1a [78]

MCF-7 cell line DNA MS03 [79]
N202.1A cell line RNA C1,E1 [80]

MDA-MB-231 cell line DNA LXL-1 [81]
Breast cancer tissue DNA BC15 [52]

4.1. Aptamer-Based Diagnostic Applications

4.1.1. Aptamers Bind to Targets Specifically

HER2, a receptor tyrosine-protein kinase, is highly over expressed in 20–30% of breast cancers [82].
HER2 positive breast cancer is one of toughest subtypes of breast cancer and associated with aggressive
behaviors and poor clinical outcomes [83]. Likewise, HER2 is also a key prognostic marker and an
effective therapeutic target. Therefore, it is essential to realize the early detection of HER2. At present,
immunohistochemistry (IHC), chromogenic in situ hybridization (CISH) and fluorescent in situ
hybridization (FISH) are three most commonly used methods in the clinical evaluation of HER2
expression in breast cancer tissue samples. IHC is often utilized as the screening test to detect the
expression levels of HER2 protein, while CISH and FISH are used to detect HER2 gene expression.
In some ambiguous cases, the IHC results need further validation and confirmation by FISH, which is
a more sensitive and reliable test [84]. However, these diagnostic technologies have serious weakness
such as expensive equipment, difficulty in probe preparation and high technical requirements as an
operator. Hence, they are not popular in general clinical laboratories. On the other hand, most of the
breast cancer patients are generally diagnosed with the advanced or unresectable stage due to the
lack of early detection tests and absence of recognizable signs or symptoms in localized disease state.
Under this circumstance, there is a sense of urgency to develop novel, simple and rapid detection
technology at the early stages [85].

Considering the importance of HER2 expression in breast cancer, Gijs et al. generated two novel
DNA aptamers, HeA2_1 and HeA2_3, that target HER2 through an adherent whole-Cell SELEX
strategy [65]. Both these aptamers could bind to HER2-overexpressing cells SKOV3 and SKBR3 with
high specificity. Further, in vivo tumor tissue staining studies demonstrated a bright fluorescent
staining for HeA2_1 and HeA2_3 aptamers on SKOV3 tumor tissue compared to no staining seen on
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HER2 negative MDA-MB-231 tumor tissue section. Aptamer HeA2_3 could also inhibit cancer cell
proliferation, which will be further elaborately represented in the aptamers as drugs section.

Similarly, Kang et al. isolated a RNA aptamer SE15-8 that could specifically target extracellular
domain of HER2 protein by cell-SELEX [77]. This RNA aptamer could bind with HER2 positive cell
line MDA-MB-453 and KPL-4 but had no affinity towards HER2 negative cells such as MCF-7 and
A431. In another study, Sett et al. reported the isolation of DNA aptamer ECD_Apt1 to specifically
target extracellular domain of HER2 protein [67] and then conjugated the ECD_Apt1 aptamer with
biotin. This biotin-aptamer conjugate showed stronger cytoplasmic staining in SKBR3 compared to
MDA-MB-231 and MCF-7. Further, on breast cancer tissue, it showed specific and selective localization
in the cytoplasmic niche of malignant ducts of cancer cells. Differently, Chu et al. compared specificity
of DNA aptamers HB5 (target for HER2) to commercial anti-HER2 mAbs on 214 breast cancer samples
by IHC in a clinical setting. Surprisingly, DNA aptamer HB5 displayed stronger membrane staining
than the corresponding antibody [86]. Later studies showed that HB5 could also displayed relatively
strong binding to SK-BR-3 and weak binding to MDA-MB-231.

In order to detect breast cancer tissue with metastasis Liu et al. [81] identified a high affinity DNA
aptamer LXL-1-A that could bind to MDA-MB-231 cells which were derived from metastatic site and
pleural effusion. The DNA aptamer LXL-1-A showed high specificity towards metastatic as well as
tumor tissue and positively identified breast cancer tissue with metastasis in 76% of the cases.

The above findings suggest that aptamers could be generated to specifically target not just HER2
expressing cells but also positive primary and metastatic tumor tissue. Aptamers displayed better
binding capability than corresponding antibody, thus could be used as an ideal candidate to design
early stage detection system.

4.1.2. Aptamers Bind to Targets with High Sensitivity

VEGF165 and MUC1 are known to play key roles in breast cancer. The aptamers of MUC1
and VEGF (AptMUC1 and AptVEGF) present high affinity to the corresponding proteins [87–89].
Wang et al. designed a new sensitive colorimetric assay by combining nanotechnology with these two
aptamers [90]. Briefly, MUC1 binding aptamer linked to Pt-Au nanoparticle acted as a bio sensing
probe towards MUC1. VEGF123 binding aptamer modified on magnetic beads acted as capture probe
towards VEGF123. MCF-7 cells were used as target cell line for its high expression of MUC1 and
VEGF165. This study demonstrated that Pt-Au nanoparticle-aptamer complex could detect MCF-7
cells with high sensitivity; it could detect as low as 10 cells/mL. This dual-aptamer targeted strategy
could successfully distinguish between different cancer cells types and even from normal cells.

In another study, Kim et al. generated a novel RNA aptamer SE15-8 towards both extracellular
domain of HER2 protein and HER2 positive breast cancer cells [66]. Zhu et al. developed an
electrochemical immune sensor by using the above RNA aptamer SE15-8 and gold nanoparticles
(AuNPs) [91]. They used glassy carbon electrode (GCE) as a fixed plate, the proposed sensor could
positively distinguish HER2 and differentiated between HER2-positive breast cancer cells from
HER2-negative cells. This method exhibited an excellent diagnosis method for the ultrasensitive
detection of SK-BR-3 breast cancer cells in human serum samples with a minimum detection limit of
26 cells/mL. Thus, by using such method, a very simple, rapid, and sensitive diagnostic technology
could be introduced for diagnosis of early stages of breast cancer and detection of disease progression
and prognosis.

4.2. Aptamer-Based Therapeutics and Drug Discovery

The goal of anticancer therapy is to improve overall survival rate and reduce adverse effects.
To achieve this goal, development of active tumor targeting system that delivers therapeutic agents
selectively to cancer cells is necessary. Target oriented specificity and drug delivering capability are
two vital aspects that need to be examined while developing active tumor targeting system. Although,
the introduction of newer and better chemotherapy drugs has significantly improved the survival rate
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in some breast cancer patients. Inevitably, chemotherapy associated drawbacks such as drug adverse
effects, poor tissue selectivity, low intra-tumoral accumulation, rapid systemic clearance and drug
resistance have raised serious concerns [92].

Antibodies are the most widely used targeted ligands by virtue of their high specificity and ample
availability. However, they have been found to elicit immunogenicity [93]. Therefore, aptamers with
their ability to efficiently target specific cancer cells and tissue are being given due consideration
as an alternative to existing antibodies. Aptamer-mediated active tumor targeted therapy could be
classified into eight groups: aptamers as drugs, aptamer–small interfering RNA (siRNA) conjugates,
aptamer–locked nucleic acid (LNA) conjugates, aptamer–anti-microRNAs (miRNAs) conjugates,
aptamer–chemotherapy agent conjugates, aptamer–nanoparticles (NPs) conjugates, aptamer–photo
dynamic therapy (PDT) agent conjugates, aptamer-mediated immunotherapy. General paradigms that
have appeared most frequently in the recent literatures are graphically represented in Figure 2.Int. J. Mol. Sci. 2017, 18, 1851  8 of 21 
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4.2.1. Aptamers as Drugs

Currently, trastuzumab and pertuzumab are widely used in the treatment of HER2 positive
breast cancers [94,95]. Unfortunately, one of the most important shortcomings for this treatment is the
development of resistance to this therapy [96]. This has highlighted aptamer as an attractive alternative.

To study the anti-tumor activity of a DNA aptamer, Gijs et al. identified a relatively short (40-mer)
DNA aptamer HeA2_3 as reported earlier and investigated its efficacy in inhibiting cancer cell growth
in vivo. They reported that the aptamer HeA2_3 could actively identify HER2 overexpressing cancer
cells, undergo internalization via receptor mediated endocytosis and then inhibit cell progression,
growth and viability [65]. This finding may be useful to design aptamer-mediated delivery of drugs,
siRNA and radionuclides.

Periostin is another important extracellular matrix protein associated with cell proliferation
and metastasis. It is found to be over expressed in several human cancers especially breast cancer.
In order to specifically target periostin and inhibit its functions, Lee et al. generated a DNA aptamer,
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PNDA-3 [76]. PNDA-3 aptamer could efficiently bind to periostin-expressing cells 4T1 but not
to periostin-deficient cells MCF-7. In vitro studies showed that PNDA-3 aptamer could markedly
antagonize the periostin-induced adhesion, migration, and invasion of breast cancer cells and block
the activation of various components of the αvβ3 and αvβ5 integrin signal transduction pathways.
Moreover, PNDA-3 aptamer significantly reduce primary tumor growth and prevent distant metastasis
in tumor mouse model.

Hence, aptamers such as HeA2_3 and PNDA-3 could be integrated as a potential targeted therapy
against breast cancer (Figure 2A).

Notably, in TNBC the epidermal growth factor receptor (EGFR) is frequently overexpressed. EGFR
is a 170 kD integral membrane protein, characterized by tyrosine kinase activity through which it exerts
control of key cellular transduction pathways in both normal and cancerous cells. Increased expression
of EGFR was seen in a variety of tumors such as breast, lung, colorectal, prostate and bladder cancer.
Besides, EGFR overexpression is associated with poor prognosis [97]. Presently, anti-EGFR targeted
therapies including mAbs, e.g., cetuximab and panitumumab, and small molecule tyrosine kinase
inhibitors (TKIs), e.g., afatinib, are approved for treatment of non-small cell lung cancer (NSCLC) and
colorectal cancer (CRC). However, due to disappointing results of TKIs and mAbs as monotherapy
and in combination against breast cancer, they have not been approved for treatment of TNBC [98].
To overcome this challenge Camorani et al. developed a nuclease resistant RNA-aptamer CL4 that
had high affinity towards the extracellular domain IV of human EGFR. They reported significantly
inhibition of tube formation in TNBC-like cells. In addition, CL4 aptamer when injected in a mouse
xenograft model resulted in a strong inhibition of tumor growth [99].

The first aptamer drug, Macugen, was approved by US FDA in December 2004 to treat age-related
macular degeneration [21,100]. Macugen is a PEGylated RNA aptamer that targets VEGF 165 which
plays a vital role in angiogenesis and permeability [101]. In addition, aptamer based targeted therapy
against various diseases are under development and a few have entered the clinical trial stage (shown
in Table 3) [102–110].

Table 3. Current status of 11 aptamers undergoing clinical trials.

Aptamer Target Conditions Current Status Reference

Pegaptanib
(Macugen) VEGF

Age related macular
degeneration/diabetic macular
edema/proliferative diabetic

FDA approved [21]

NU172 Thrombin Heart disease Phase II NCT00808964 *

AS1411
(AGRO-100) Nucleolin Renal cell carcinoma/non-small cell lung

cancer Awaiting Phase III [103]

ARC1779 A1domain of von Willebrand
factor von Willebrand‘s disease Awaiting Phase III NCT00742612 *

ARC1905 Complement component 5
(C5)

Neovascular age related
macular degeneration

Phase II/III,
(recruiting) NCT02686658 *

ARC19499
(BAX499)

Tissue factor pathway
inhibitor (TFPI) Hemophilia Phase I/II NCT01191372 *

REG1 (RB006 plus
RB007) Coagulation factor IXa Coronary artery disease Phase III [102]

NOX-A12 Angiogenic chemokine (C-X-C
motif) ligand 12 (CXCL1) Tumor Phase II NCT01486797 *

NOX-E36 Pro-inflammatory chemokine
C-C motif-ligand 2(CCL2)

Type II diabetes mellitus/Renal
impairment/nephropathy/lupus nephritis Phase II NCT01547897 *

NOX-H94 Hepcidin Anemia of chronic disease Phase II NCT01691040 *

E10030 Platelet-derived growth factor
(PDGF)

Neovascular age related
macular degeneration Awaiting Phase III NCT01944839 *

* clinical trial number.
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4.2.2. Aptamer–Small Interfering RNA(siRNA) Conjugates

Bcl-2 is an anti-apoptotic gene. The elevated expression of Bcl2 protein could improve the survival
of HER2 positive cancer cells [111–113]. Aptamers have an important characteristic that they could
easily undergo chemical modification (Figure 2B). Thiel et al. exploited this property to conjugate
aptamers with si-RNA. Firstly, they isolated a novel RNA aptamer by cell-internalization SELEX
protocol towards HER2 positive cells. The developed aptamer could be internalized as well as could
deliver therapeutic si-RNA into the cytoplasm [80]. They covalently linked this aptamers to si-RNA
which targeted Bcl-2 and then showed that when HER2 aptamers–Bcl-2-si-RNA conjugate was applied
to different types of cell lines; the conjugates could successfully internalize into HER2 positive cells
and thereby silence Bcl-2 gene expression. Thus, silencing of Bcl-2 could expose the HER2 positive
cells to become more sensitive to chemotherapy drugs.

4.2.3. Aptamer–Locked Nucleic Acid (LNA) Conjugates

LNA is a modified RNA nucleotide with a special conformation. This structure can increase
binding affinity and remarkable nuclease resistance. Nonaka et al. developed a novel DNA aptamer
Vap7 aimed against the receptor-binding domain (RBD) of VEGF with high affinity [75]. Edwards et al.
further modified Vap7 aptamer with a LNA to form a complex named RNV66. This RNV66 complex
could effectively suppress breast cancer cell proliferation in vitro and in vivo experiments. Based on
the results, we believe that RNV66 could be used as a potential therapeutic candidate that offers great
promise for future pre-clinical investigations [114].

4.2.4. Aptamer–Anti-MicroRNAs (miRNAs) Conjugates

miRNAs are small non-coding RNA molecules (containing 19–25 nucleotides) that function in
RNA silencing and post-transcriptional regulation of gene expression [115]. Shu et al. developed
a multifunctional RNA conjugate complex (3WJ–aptamer–anti-miRNA conjugate), in which CL4
aptamer functioned as a EGFR targeting agent, anti-miR-21 RNA acted as a therapeutic agent, and
a three-way junction (3WJ) motif supported as a molecular scaffold. They demonstrated that systemic
administration of 3WJ-EGFRapt/anti-miR-21 nanoparticles injection in TNBC tumor bearing mice
could efficiently be internalized into tumor cells then inhibit miR-21 and thus result in suppression of
tumor growth [116].

4.2.5. Aptamer–Chemotherapy Agent Conjugates

Doxorubicin (Dox) is one of the most potent chemotherapeutic drugs, which has shown great
treatment potential against variety of cancers. However, its wide range of clinical applications was
hampered due to emergence of drug resistance and serious cardiotoxicity [117,118]. By understanding
the modification potential of aptamers, several researchers devised a strategy to conjugate
chemotherapeutic drugs to tumor-targeting aptamers. This drug–aptamer conjugate increase dosage
of drug delivery to specific target cancer cells and minimize the exposure to non-target sites
(Figure 2C). Liu et al. generated a new DNA aptamer (HB5) using an adherent whole-cell SELEX
approach. HB5 could selectively bind to both ECD of HER2 and HER2 enriched breast cancer
cells [68]. They formulated Apt-Dox complex by intercalating Dox into the DNA structure and
their further studies demonstrated that Apt-Dox complex could selectively deliver doxorubicin to
HER2 overexpressed breast cancer cells sparing HER2 negative cells. Importantly, HB5 can increase
the cytotoxicity and reduce the tumor cell growth.

MUC1, is a large transmembrane mucin glycoprotein. Its expression was reported to be increased
at least 10-fold in several cancers such as adenocarcinoma, lung cancers, colon cancers and breast
cancers, thus making MUC1 protein an attractive anti tumors target [74]. Hu et al. initially selected
a DNA aptamer MA3 that targeted a peptide epitope of MUC1 and then conjugated the MA3 aptamer
with Dox to form an Apt-Dox complex. This Apt-Dox complex had shown preferentially binding to
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MUC1 enriched cells MCF7 and effectively deliver DOX into the target cells but not MUC1-negative
cells [74]. Hence, this strategy of targeting ligands to selectively deliver cytotoxic drugs (Figure 2D)
shows the plausible role of aptamer–drug conjugate in targeted therapy.

4.2.6. Aptamer–Nanoparticles (NPs) Conjugates

NPs are particles 1–100 nanometers (nm) in size. NPs are of great scientific interest, as they have
proven to have great potential in drug delivery due to their passive tumor-targeting effect of enhanced
permeability and higher retention (EPR) on solid tumors. [119]. Paclitaxel (PTX), a natural taxane
diterpene, is widely used as a chemotherapy drug as monotherapy or in combination with other
drugs [120]. Aptamer-mediated nano therapeutics assist in bypassing pathophysiological barriers
to boost uptake and greater retention of cytotoxic drugs by target cells. Yu et al. developed a novel
drug delivery system. They firstly formulated a PTX loaded poly (lactic-co-glycolic-acid) (PLGA)
nanoparticles complex and conjugated these nanoparticle to MUC1 protein targeted DNA aptamer
S2.2 via a DNA spacer [121]. They reported that MCF-7 cancer cells had an increased uptake of PTX
loaded Apt-NPs, with enhanced cytotoxicity.

Mahlknecht et al. selected a new DNA aptamer 2-2 for HER2 using extracts of N87 cells.
Serious experiments with DNA aptamer 2-2 for HER2 illustrated that the trimeric version of this
aptamer could promote the translocation of HER2 from the cell membrane to the cytoplasm, then
enhance the degradation of HER2 and inhibit tumor proliferation [122]. A serious disadvantage of
nanoparticle is that they cannot escape from vesicle after endocytosis and thus induce a biological
response. Lee et al. [123] exploited this disadvantage by conjugating gold nano-particles with
anti-HER2 DNA aptamer 2.2 (HApt-AuNs complex). They demonstrated that this complex could
specifically target HER2 positive cells and are internalized. Apt-AuNS accumulates in the lysosomes,
thereby promoting lysosomal degradation of HER2 and ultimately triggering cell death and cell
cycle arrest.

4.2.7. Aptamer–Photo Dynamic Therapy (PDT) Agent Conjugates

PDT is a minimally invasive technique and has been approved for treatment of several cancers
such as esophagus, skin, tirades, and respiratory system [124]. PDT has several advantages including
low toxicity, repeatedly and immunological effects. PDT as treatment of breast cancer is still in initial
stages [124]. Wu et al. conjugated a DNA aptamer S2.2 with Ag–Au nanoparticles. These Apt–Ag–Au
nanostructures demonstrated high affinity and specificity to recognize MUC1 protein on the surface of
MCF-7. In addition, these Apt–Ag–Au nanostructures have high capability to adsorb near-infrared
(NIR) irradiation. Hence, photo thermal therapy of MCF-7 cells could be performed at a very low
irradiation power density without any harm to healthy cells [125] (Figure 2E).

On similar note, Ferreira et al. identified a special DNA aptamer 5TR1 targeting MUC1 [73]. It can
bind specifically to cells expressing MUC1 glycoforms as well as MUC1+ epithelial cancer cell lines
such as MCF-7. Chlorin e6 plays a key role in the photodynamic therapy. In this study, they modified
chlorin e6 at 5′ end of aptamer 5TR1 and demonstrated that a remarkable enhancement (>500-fold
increase) in toxicity upon light activation was achieved compared to the drug alone.

Shieh et al. used dimeric G-quadruplexed AS1411 aptamer that has high affinity and specificity
towards nucleolin. The specialized dimeric G-quadruplex structure of the AS1411 aptamer could
non-covalently bound with several molecules of TMPyP4 (a porphyrin). The results showed that
Apt-TMPyP4 complex derivative resulted in higher accumulation of TMPyP4 in nucleolin positive
MCF-7 cells, and had significantly higher photo-damage in MCF-7 cells compared to normal epithelium
cells when explosive to light [126] (Figure 2E). Development of these types of receptors-targeted
aptamers conjugates with photosensitive molecules could highlight their potential in discovery of
more efficient cancer photo chemotherapy agents.
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4.2.8. Aptamer–Mediated Immunotherapy

Immunotherapy, a strategy that harnesses immune system to combat tumors was chosen as the
breakthrough of 2013 [127]. T cells are the final effectors of immune-mediated cancer regression;
strategies that directly use tumor-reactive T cells as an immunotherapy have been developed [128].
Memory T cells plays an important role in developing protective immunity against pathogens and
cancers. Differentiation of activated CD8+ T cells into protective memory cells can be promoted by
inhibiting key regulators. This led to the discovery of several immune-stimulatory antibodies against
co-inhibitory receptor cytotoxic T lymphocyte antigen 4 (CTLA4), such as ipilumimab. CTLA-4 is
an inhibitory receptor that is over expressed only on advanced CD4 and CD8 cells [129]. However,
apart from showing positive clinical benefits, these antibodies face serious dose limiting toxicities
and adverse effects in clinical trials. This hurdle paved way for the development of aptamers [130].
The first aptamer was developed to bind to CTLA-4 [131]. Gilboa et al. demonstrated that this nuclease
resistant aptamer could reserve CTLA-4 mediated inhibition of T cells and the tetravalent form of this
aptamer also can induce protective immunity in mouse tumor models. 4-1BB is a major costimulatory
receptor promoting the survival and expansion of activated T cells [132]. McNamara et al. generated an
aptamer targeted towards 4-1BB based on the effectives of agonistic anti-4-1BB antibody. They showed
that the 4-1BB aptamer could not only cause T cells activation but also induce tumor rejection in mice
tumors [133]. Further, Benaduce and coworkers’ study on 4-1BB aptamer, showed that 4-1BB aptamer
could achieve similar tumors suppression as that of 4-1BB mAbs and has superior therapeutic index
over mAbs [134]. Consequently, aptamer application in immunotherapy is limited as it targets only
costimulatory ligands that are mostly expressed on surface of tumor or immune cells and does not
undergo internalization upon ligand binding.

4.3. Molecular-Imaging

Current clinical imaging modalities used in breast cancer detection include nuclear imaging
such as positron emission tomography (PET), single photon emission computed tomography
(SPECT), conventional radiological modalities such as magnetic resonance imaging (MRI), computed
tomography (CT) and ultrasonography (USG) and optical imaging. However, each imaging modality
has its own pros and cons. At present, the achievement of multimodal molecular imaging mainly relies
on the development of multi-functional molecular imaging probes.

In 2010, Li et al. developed a nucleolin-targeted optical/magnetic resonance (MR) dual imaging
nanoprobe by covalent coupling reaction between PEG-Gd2O3 NPs and AS1411-Ag NCs to track cancer
cells [135]. Due to high expression of nucleolin, MCF-7 cells were used as the target. This nanoprobe
could easily recognize MCF-7 cells, which was demonstrated by bright fluorescence signal, while no
fluorescence signal was observed in the case of NIH-3T3 mouse fibroblast cells. Therefore, nucleolin
positive tumor cells could be specifically tracked by both fluorescence imaging and magnetic resonance
imaging in vitro. Thus, aptamer could be incorporated for tumor imaging in the future.

5. Challenges for Aptamers in In Vivo Therapeutic Trials and Solutions

Aptamers, functionally comparable to traditional antibodies, offer several advantages, as
mentioned earlier. However, even after a few aptamers underwent clinical trials, only one aptamer
drug was approved by FDA. As nucleic acid biopolymers, the intrinsic physicochemical feature poses
serious challenges for aptamers as shown in Table 4. These limitations have delayed or even suppressed
the clinical translation of aptamers.
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Table 4. Challenges of aptamer therapeutics.

Challenge Solution

Nucleases mediated degradation Chemical modification

Rapid renal clearance (short half-lives) Increasing the weight of aptamer by conjugating
cholesterol or PEG

Cost of production Decrease the usage of aptamer

Toxicity (nonspecific immune activation and
polyanionic effects) Cautious modification

5.1. Nuclease-Mediated Degradation

Aptamers composed of unmodified nucleotides have half-lives as short as 10 min in the blood
due to the activity of endogenous nucleases [136]. Chemical modifications need to be used to increase
serum half-life; most aptamers in clinical studies have been chemically modified. Modifications
can be introduced during the SELEX or after discovery. Modifications with 2′-aminopyrimidines,
2′-fluoropyrimidines, 2′-Omethylnucleotides and LNA have been successfully incorporated into
the DNA/RNA library [137–139]. Multiple modifications could be used after SELEX. Most of the
post-SELEX modifications could be advantageous, while some might affect the inherent properties
and change the structures of the original aptamers. Therefore, it is necessary to precisely tailor the
modifications for the desired functions [140].

5.2. Renal Filtration

The average diameter of aptamers with a mass of 6–30 kDa and molecular mass range
(20–100 nucleotides long) is less than 5 nm [141]. Although the low molecular weight allows economical
chemical synthesis and better target accessibility, it facilitates rapid excretion of non-formulated
aptamers through renal filtration. Hence, as the molecular mass cut-off for the renal glomerulus is
30–50 kDa [49,110], aptamers are generally formulated with a bulky moiety by increasing the molecular
weight to overcome renal filtration and extend its circulation time. The most commonly used polymer
for preventing exclusion is high-molecular-mass polyethyleneglycol (PEG) [136]. PEGylation has
been extensively used with proteins, peptides, small molecules, and oligonucleotides as a strategy
for slowing down renal clearance and extending half-life [142]. Cholesterol conjugation has also been
reported as an alternative strategy to reduce renal filtration rates, although the extent of this effect
seems to be less than for PEG conjugation [110,139,143].

5.3. Toxicity

Because there is only one approved aptamer drug (Macugen), availability of toxicological information
regarding aptamers in humans is very limited [144,145]. The toxicological testing of Macugen and
anticancer aptamer AS1411 revealed very minimal toxicity [142,146]. Although aptamer-related adverse
events are rare in clinical evaluations to date, potential toxicities may arise from polyanionic effects,
unexpected tissue accumulation, intensive chemical modification or conjugation, nonspecific immune
activation and in particular with continuous or repeated administration of aptamer therapeutics [147].
As with other therapeutics, aptamer toxicity can manifest itself through on-target or off-target
mechanisms. In conjunction, highly negatively charged molecules are prone to nonspecific binding
towards blood proteins, which may result in high uptake by non-target tissues and organs, thereby
causing unwanted side effects and reducing therapeutic efficacy [148,149]. Chemical modifications
have proved to be a double-edged sword, as unnatural nucleotides may cause chemical toxic effects
or become immunogenic. Thus, chemical modifications should be used cautiously according to the
desired therapeutic application of the aptamers. Adverse responses could also be associated with the
formulation of therapeutic aptamers.
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6. Future Perspectives

Aptamers can bind to their targets with high affinity and selectivity. This feature makes aptamers
ideal candidates to be used as molecular probes in clinical research, especially in cancer studies.
Besides the applications mentioned above, aptamers can also be used for biomarker discovery due to
cell-SELEX is a method for generating specific aptamers targeting cancer cells without prior knowledge
of the membrane proteins.

Biomarker discovery plays a vital role in the development of our knowledge about diseases.
Molecular biomarkers cannot only detect pathogens but also can differentiate pathogenesis, they
are unique measurable indicators for cellular state as well as disease screening, disease progression
and treatment effectiveness [150]. Furthermore, newer biomarkers are useful for discovery and
development of novel targeted therapy. There are relatively few biomarkers in clinical practice, and
the main reason is the absence of efficient methods for biomarker discovery [151]. Among the latest
technologies, aptamers generated by recent SELEX approach can specifically recognize cell-surface
biomarkers without prior knowledge of their molecular signature.

At present, there are two groups are working on this field. The first group, Shangguan et al.
had developed individual aptamers Sgc8, which can specifically identify CCRF-CEM cell line and
then identified the target of sgc8 [152]. The main procedures they used include protein identification
and Mass Spectrometry sequencing. Another group discovered new biomarkers by utilizing pools of
aptamers instead of an accurate aptamer. This is termed as aptamer-facilitated biomarker discovery
(AptaBiD) [153]. There are three main steps in this approach: the first step is to select an aptamer
pool that can specifically bind to the target, then isolate the protein–aptamer pool mixture, and finally
validate the accurate protein by mass spectrometry. In this study, live mature and immature dendritic
cells are used as targets and six biomarkers that were previously unknown are identified.

Biomarkers are quite important for detailed classification and accurate targeted therapy. Thus,
these new approaches could be similarly utilized in the discovery of new biomarkers for breast cancer.
Although relevant applications are new, and still in developmental stage, with significant progress
achieved, aptamers could play a vital role in breast cancer management in the future.

7. Conclusions

Breast cancer is heterogeneous in nature, at both epidemiological and molecular levels [154].
Despite the development in early detection and management of breast cancer patients, the prognosis of
this disease remains a major public health problem and poses a significant challenge to clinicians [155].
With the existing therapeutic methods, five-year survival rate for early-stage breast cancer patients
has increased to 99%, while for breast cancer patients with metastasis this rate is still below 30% [27].
Moreover, these therapeutic methods have serious side effects and have also resulted in drug resistance.
Thus, there is desperate need to develop tailored and targeted therapy.

SELEX strategy provides an effective approach to screen aptamers that specifically aim at
a variety of targets. As recognition probes, aptamers have several advantages including efficient
and cost-effective chemical synthesis, easy and controllable modification with functional moieties
to meet various clinical requirements, large-scale commercial production, non-toxicity, and limited
immunogenicity [151–153]. Aptamers have been widely used in cancer cell biology, drug discovery [21],
targeted drug delivery [63,154,155], molecular imaging [135], and several other fields.

Various applications of aptamer have been reported for breast cancer. For example, aptamer
could promote the early detection of breast cancer due to its high sensitivity and specificity, thus
it could be used as a new diagnostic tool. In addition, as a new targeted therapeutic agent, some
aptamers could act as drugs by interacting with their target, other aptamers could be conjugated with
si-RNA [80], LNA, miRNAs, chemotherapeutic drugs, PDT agents [125] or nanoparticles to formulate
a new complex to specifically kill cancer cells without causing any harm to healthy cells. Besides,
aptamers can also be conjugated with imaging agents to efficiently detect specific types of cancer and
monitor drug efficacy and disease progression.
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Application of aptamer technology in cancer diagnosis and therapy is still in its primal stage,
and several challenges need to be overcome. For example, aptamer half-life in biological systems
is relatively low, and unmodified aptamers are highly susceptible to degradation by endogenous
nucleases [136]. Therefore, chemical modification is necessary to protect aptamers against nuclease
degradation, reduce toxicity and also improve their half-life [141]. Furthermore, Macugen is the only
aptamer that has been used as a drug to treat disease and most of the aptamers are still in clinical trials.

Aptamers have attractive biological functions and pharmacokinetic attributes for clinical
applications in both cancer diagnosis and targeted cancer therapy. Hence, further investigation
and improvements need to be conducted to facilitate clinical translation of aptamers mediated targeted
cancer therapy.
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Abbreviations

ssDNA Single-stranded DNA
3D Three-dimensional
HER2 Human epidermal growth factor receptor 2
SELEX Systematic evolution of ligands by exponential enrichment
FDA Food and Drug Administration
mAbs Monoclonal antibodies
NSCLC Non-small cell lung cancer
CRC Colorectal cancer
VEGF Vascular endothelial growth factor
AMD Age-related macular degeneration
ER Estrogen receptor
PR Progesterone receptor
ERα Estrogen Receptor α
IHC Immunehistochemistry
CISH Chromogenic in situ hybridization
FISH Fluorescent in situ hybridization
Dox Doxorubicin
PLGA Paclitaxel (PTX) loaded poly (lactic-co-glycolic-acid)
TNBC Triple negative breast cancer
PDT Photo dynamic therapy
PET Positron emission tomography
SPECT Single photon emission computed tomography
MRI Magnetic resonance imaging
NIR Near-infrared irradition
CT Computed tomography
USG Ultrasonography
ATM Ataxia Telangiectasia Mutated
BRCA-1 Breast Cancer susceptibility gene 1
BRCA-2 Breast Cancer susceptibility gene 2
RBD Receptor-binding domain
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LNA Locked nucleic acid
GCE Glassy carbon electrode
ECD Extra-cellular domain
FACS-SELEX Fluorescence-activated cell sorting SELEX
MSD-SELEX Monoclonal surface display SELEX
TECS-SELEX Target expressed on cell surface-SELEX
MLH1 MutL homolog 1
Bcl-2 B-cell lymphoma 2
siRNA Small interfering RNA
PARP Poly-ADP-ribose polymerase
TKIs Tyrosine kinase inhibitors
HIV Human Immunodeficiency Viruses
AptaBiD Aptamer-facilitated biomarker discovery
PIK3CA Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha
TFPI Tissue factor pathway inhibitor
NPs Nanoparticles
PEG Polyethyleneglycol
PTX Paclitaxel
MUC1 Cell surface associated
PCR Polymerase chain reaction
TNBC Triple-negative breast cancer
3WJ Three-way junction
CTLA4 Cytotoxic T lymphocyte antigen 4 CTLA4
nm Nanometers
EGFR Epidermal growth factor receptor
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