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Abstract: To uncover the alleviation mechanism of quinclorac stress by salicylic acid (SA), leaf samples
of Oryza sativa ssp. Japonica under quinclorac stress with and without SA pre-treatment were analyzed
for transcriptional and proteomic profiling to determine the differentially expressed genes (DEGs)
and proteins (DEPs), respectively. Results showed that quinclorac stress altered the expression of 2207
DEGs (1427 up-regulated, 780 down-regulated) and 147 DEPs (98 down-regulated, 49 up-regulated).
These genes and proteins were enriched in glutathione (GSH) metabolism, porphyrin and chlorophyll
metabolism, the biosynthesis of secondary metabolites, glyoxylate and dicarboxylate metabolism,
and so on. It also influenced apetala2- ethylene-responsive element binding protein (AP2-EREBP)
family, myeloblastosis (MYB) family and WRKY family transcription factors. After SA pre-treatment,
697 genes and 124 proteins were differentially expressed. Pathway analysis showed similar
enrichments in GSH, glyoxylate and dicarboxylate metabolism. Transcription factors were distributed
in basic helix-loop-helix (bHLH), MYB, Tify and WRKY families. Quantitative real-time PCR
results revealed that quinclorac stress induced the expression of glutathion reductase (GR) genes
(OsGR2, OsGR3), which was further pronounced by SA pre-treatment. Quinclorac stress further
mediated the accumulation of acetaldehyde in rice, while SA enhanced the expression of OsALDH2B5
and OsALDH7 to accelerate the metabolism of herbicide quinclorac for the protection of rice.
Correlation analysis between transcriptome and proteomics demonstrated that, under quinclorac
stress, correlated proteins/genes were mainly involved in the inhibition of intermediate steps
in the biosynthesis of chlorophyll. Other interesting proteins/genes and pathways regulated
by herbicide quinclorac and modulated by SA pre-treatment were also discussed, based on
the transcriptome and proteomics results.

Keywords: Oryza sativa L.; quinclorac; salicylic acid; RNA sequencing; iTRAQ; differentially
expressed genes (DEGs); differentially expressed proteins (DEPs); transcription factor

1. Introduction

Rice (Oryza sativa L.) is one of the most important cereal crops in China, grown over an area of
30.2 million hectares and producing 208.2 million tons of rice [1]. However, weeds are one of the major
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biological constraints in rice production. The average yield losses in paddy field due to weeds may
vary from 40% to 60%, and can even reach between 94% and 96%, depending upon the cropping
system and management practices [2].

The most effective, prompt and economic method for the control of weeds is related to the use of
chemicals, such as the application of herbicides. Synthetic herbicides have been used in agriculture
on a global scale for about 70 years. Quinclorac (3,7-dichloro-8-quinolinecarboxylic acid) belonging
to the quinoline carboxylic acid type is one of most effective synthetic herbicides, which can easily
kill Echinochloa crus-galli (barnyard grass) and other rice weeds [3]. In China, this herbicide has
been used to control barnyard grass in rice fields for almost 30 years; however, it has now evolved
a resistance to quinclorac [4]. Excessive or inappropriate herbicide use to control resistant weeds can
cause phytotoxicity, which may jeopardize the crop at an early stage. The concept of enhancing crop
tolerance to herbicides with the use of chemical treatments was proposed in the late 1940s [5].

Modern genetic research has explicated that most genes exercise their functions through
the regulation of particular proteins. Intuitively, a gene’s high level of transcripts should represent
a corresponding high level of protein. However, it has been extensively demonstrated that post
transcriptional processing determines steady-state protein levels [6]. RNA sequencing (RNA-Seq),
as a transcript quantification technology, provides a far more precise measurement of transcripts
levels and their isoforms than other approaches, and thus has been widely and successfully
applied in transcript profiling, annotation and gene identification in various plant species [7–9].
Likewise, proteomics is also gaining recognition as a reliable and reproducible high-throughput
approach for understanding biological processes [10,11]. Isobaric tagging for relative and absolute
quantification (iTRAQ), a second-generation, gel-free proteomics analysis gives more accurate
quantitation of protein levels.

According to our preliminary results [12–14], we selected SA as an antidote to alleviate quinclorac
toxicity in rice plants and found that SA mainly functioned by increasing antioxidant defense
and by reducing the levels of reactive oxygen species (ROS). However, the expression of genes,
proteins and an understanding of the SA-mediated alleviation of quinclorac toxicity at molecular
levels is still undisclosed. To provide novel insights into the molecular basis of the SA-mediated
alleviation of quinclorac toxicity in rice, we therefore carried out transcriptomic and proteomic
profiling to identify the changes at the level of gene expression, and post-translational modifications to
elucidate the mechanisms involved in the temporal and spatial regulation of genes/proteins under SA
pre-treatment and quinclorac stress.

2. Results

2.1. Primary Transcriptome Analysis

In the transcriptome project, we sequenced 3 RNA-Seq groups (control, Q and Q + SA) with
3 replications, which approximately generated 13,127,032 raw sequencing reads, and then 13,046,191
clean reads after filtering low quality reads (Table 1). A control group of plants was treated with
nutrient solution. The Q group of plants was treated with herbicide quinclorac (0.1 mM), whereas
Q + SA treatment represents the pre-treatment of rice plants with SA (10 mg/L) for two days prior to
the application of herbicide quinclorac (0.1 mM). The average mapping ratio with the reference gene is
89% and the average genome mapping ratio is 86%. We calculated the correlation value between three
replicated samples based on normalized expression results and drew a correlation heatmap, as shown
in Figure 1. The correlation coefficient was 99% (control-1 and control-2), 98% (control-1 and control-3),
and 95% (control-2 and control-3), respectively. The correlation coefficient for Q samples was 99%
(Q-1 and Q-2), while it was 94% (Q + SA-1 and Q + SA-2) for Q + SA samples, respectively, which
revealed a high sample repeatability. Results demonstrated that the control group (control-1, control-2
and control-3) was significantly different from the Q group (Q-1, Q-2 and Q-3), and the Q + SA group
(Q + SA-1, Q + SA-2 and Q + SA-3).
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Table 1. Summary of average sequencing data for each group.

Group Total Reads Quality
Filtered Reads

Uniquely
Mapped Reads

Genome Mapped
Reads (%)

Gene Mapped
Reads (%)

Control 13,127,074 13,062,738 11,301,931 86.52 88.71
Q 13,126,991 13,047,776 11,277,174 86.43 89.12

Q + SA 13,127,032 13,028,062 11,223,009 86.15 89.83
Average 13,127,032 13,046,192 11,267,371 86.37 89.22

Clean Data Rate (%) = Clean Reads Number/Raw Reads Number.
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correlation value between them is very close to 1. 

2.2. Protein Identification and Quantitation 

A total of 291,605 spectra were produced from the iTRAQ experiment for different sets of 
treatments. By analyzing these spectra, we identified 17,872 known spectra, 16,184 unique spectra, 
5812 peptides, 5453 unique peptides and 2300 proteins, respectively. The distribution of protein 
mass was summarized in Figure 2A. Proteins with 30–40 kDa accounted for 18%, followed by 
proteins with 20–30 kDa and 40–50 kDa. Figure 2B showed the numbers of peptide identified into 
the proteins. Results showed that identified proteins contained less than 10 peptides, and protein 
quantity decreased with the increase of the peptide. The distribution of peptide length has been 
shown in Figure 2C. Most of the peptides′ lengths were around nine, and the number of peptide 
lengths of more than 13 was considered to be relatively low. Additionally, 98% of protein sequence 
coverage was below 40% (Figure 2D). Meanwhile, the repetitive analysis for proteins is depicted in 
Figure 3. The results revealed that the CV value of three treatments (control, Q, Q + SA) was less than 
0.2. The proportion of variation level between 10%–30% accounted for the major part of the total 
quantitative protein, which demonstrated the high repetition of each treatment. 

Figure 1. Correlation heatmap of samples. The gradient color barcode at the top-right indicates
the minimum value in red and the maximum in green. If one sample is highly similar to another one,
the correlation value between them is very close to 1.

2.2. Protein Identification and Quantitation

A total of 291,605 spectra were produced from the iTRAQ experiment for different sets of
treatments. By analyzing these spectra, we identified 17,872 known spectra, 16,184 unique spectra,
5812 peptides, 5453 unique peptides and 2300 proteins, respectively. The distribution of protein mass
was summarized in Figure 2A. Proteins with 30–40 kDa accounted for 18%, followed by proteins with
20–30 kDa and 40–50 kDa. Figure 2B showed the numbers of peptide identified into the proteins.
Results showed that identified proteins contained less than 10 peptides, and protein quantity decreased
with the increase of the peptide. The distribution of peptide length has been shown in Figure 2C.
Most of the peptides′ lengths were around nine, and the number of peptide lengths of more than
13 was considered to be relatively low. Additionally, 98% of protein sequence coverage was below
40% (Figure 2D). Meanwhile, the repetitive analysis for proteins is depicted in Figure 3. The results
revealed that the CV value of three treatments (control, Q, Q + SA) was less than 0.2. The proportion of
variation level between 10%–30% accounted for the major part of the total quantitative protein, which
demonstrated the high repetition of each treatment.
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Figure 2. Identification and analysis of the proteome of O. sativa plants. (A) Identified proteins were grouped based on their protein mass; (B) Number of peptides that
match to proteins as shown by Protein Pilot 5.0; (C) The percentage of different peptide lengths in total amino acids. (D) Distribution of a protein’s sequence coverage.
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comparison showed that 315 transcripts were up-regulated, while 382 genes were down-regulated. 
Exogenous SA pre-treatment up-regulated 627 genes, while 493 were down-regulated. For DEPs, 
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control). Moreover, SA pre-treatment stimulated a similar number of proteins including 68 
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Figure 3. Three plots, one for each group (control, Q and Q + SA), that show the CV values (%) for
comparing protein quantifications over the length of identified peptides.
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2.3. Screening of DEGs and DEPs

In order to find DEGs in different transcripts, we performed function analysis via the NOISeq,
a differential expression algorithm. For the NOISeq method, samples were firstly grouped so
a comparison could be performed between every two groups in a pairwise manner. We drew the scatter
plot of all expressed genes and protein abundance and distribution, as in Figure 4, to represent
the distribution of DEGs and DEPs in screening threshold dimensions. A histogram represented
the significant up/down regulation of gene and protein numbers in Figure 5. More genes were
expressed under quinclorac stress, including 1427 up-regulated and 780 down-regulated, compared
to the control (Figure 5A, Q vs. control). Analysis of the Q + SA vs. Q comparison showed that
315 transcripts were up-regulated, while 382 genes were down-regulated. Exogenous SA pre-treatment
up-regulated 627 genes, while 493 were down-regulated. For DEPs, quinclorac inhibited 98 proteins
and increased the expression of 49 proteins (Figure 5B, Q vs. control). Moreover, SA pre-treatment
stimulated a similar number of proteins including 68 down-regulated proteins and 56 up-regulated
proteins (Figure 5B, Q + SA vs. Q).Int. J. Mol. Sci. 2017, 18, 1975  6 of 23 
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up-regulated genes, and brown dots represent non-regulated genes; whereas, in the protein-abundance
distribution figures, green and red dots represent significantly down-regulated and up-regulated
proteins, respectively. The grey dots represent insignificant changed proteins.

Int. J. Mol. Sci. 2017, 18, 1975  6 of 23 

 

 
Figure 4. Scatter plots of gene expression level and the protein abundance distribution of expressed 
proteins. In the scatter plot, blue dots represent down-regulated genes, orange dots represent 
up-regulated genes, and brown dots represent non-regulated genes; whereas, in the 
protein-abundance distribution figures, green and red dots represent significantly down-regulated 
and up-regulated proteins, respectively. The grey dots represent insignificant changed proteins. 

 
Figure 5. The numbers of differentially expressed genes (DEG, A) and proteins (DEP, B). The blue 
bar denotes down-regulated genes or proteins, and the orange bar shows the up-regulated ones. 

2.4. GO Functional Classification and Pathway Enrichment Analysis of DEGs 

We used Web Gene Ontology (WEGO) software for a Gene Ontology (GO) functional 
classification to understand the distribution of genes at macro level (Figure S1). Among three 
comparisons, major processes were “cellular process” and “metabolic process” in the biological 
process category, “cell” and “cell part” categories were predominant within the cellular component 
category, and most genes were annotated in the “binding” and “catalytic activity” categories of 
molecular function (Figure S1). Additionally, we found many genes that were related to “response to 
stimulus” and “single-organism process” in the biological process area, “membrane” and 
“organelle” in the cellular component, “transporter activity” and “nucleic acid binding transcription 

Figure 5. The numbers of differentially expressed genes (DEG, A) and proteins (DEP, B). The blue bar
denotes down-regulated genes or proteins, and the orange bar shows the up-regulated ones.



Int. J. Mol. Sci. 2017, 18, 1975 7 of 23

2.4. GO Functional Classification and Pathway Enrichment Analysis of DEGs

We used Web Gene Ontology (WEGO) software for a Gene Ontology (GO) functional classification
to understand the distribution of genes at macro level (Figure S1). Among three comparisons, major
processes were “cellular process” and “metabolic process” in the biological process category, “cell”
and “cell part” categories were predominant within the cellular component category, and most genes
were annotated in the “binding” and “catalytic activity” categories of molecular function (Figure S1).
Additionally, we found many genes that were related to “response to stimulus” and “single-organism
process” in the biological process area, “membrane” and “organelle” in the cellular component,
“transporter activity” and “nucleic acid binding transcription factor activity” in the area of molecular
function, whereas few genes were classified into the “positive regulation of biological process”, “cell
junction” and “metallochaperone activity” groups as shown in Figure S1. Pathway enrichment analyses
of the DEGs based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database were performed
to study the gene interaction with each other in order to play roles in certain biological functions.
The whole report for DEGs in each pairwise, respectively, was generated in Table S1. In addition, we
drew a scatter plot for the top 20 KEGG enrichment results in Figure S2. Most genes were clustered in
metabolic pathways and the biosynthesis of secondary metabolites. The expressions of DEGs related to
the ribosome were high in the Q + SA group compared to the control. In comparison with the control,
herbicide treatment caused the enrichment of most genes in glutathione metabolism, porphyrin and
chlorophyll metabolism, and valine, leucine and isoleucine degradation pathways (Figure S2, Q vs.
control). Genes related to glutathione metabolism were also enriched in the Q + SA vs. Q comparison.
In addition, SA pre-treatment also modulated phenylpropanoid biosynthesis, tyrosine metabolism and
flavonoid biosynthesis. The Q + SA vs. control comparison did not show a similar significant level
to the other two comparisons (Q vs. control, Q + SA vs. Q). The main pathways, such as porphyrin
and chlorophyll metabolism, carbon fixation in photosynthetic organisms and photosynthesis, played
an important role in the comparison. Over the total 16811 annotated genes, quinclorac produced 1289
genes enriched in 121 pathways, while 40 pathways were significantly enriched (p ≤ 0.05) (Table S1.1).
SA with quinclorac stress generated 407 genes enriched in 108 pathways, while 31 pathways were
significantly enriched (Table S1.2). In the Q + SA vs. control comparison, a total of 649 genes were
enriched in 102 pathways with only 16 significant enrichments (Table S1.3).

Within the top five most significantly enriched pathways, glutathione metabolism and
biosynthesis of secondary metabolites were found to be the most-enriched pathways under quinclorac
stress, which proved that glutathione and secondary metabolites play important roles in herbicide
detoxification. Under quinclorac stress, a total of 46 DEGs related to the glutathione pathway were
expressed, while 260 DEGs related to secondary metabolites were expressed, whereas SA pre-treatment
regulated 27 and 97 DEGs in these two pathways, accounting for 7% and 24% of all expressed DEGs,
respectively. In the Q + SA vs. control comparison, DEGs related to ribosomal synthesis/regulation
were enriched. Besides this, porphyrin and chlorophyll metabolism, carbon fixation in photosynthetic
organisms, aminoacyl-tRNA biosynthesis pathways were also dominated pathways among other
expressed pathways.

2.5. Overview of Metabolism by Using MapMan

We downloaded MapMan software from the Genome Analysis of the Plant Biological System
(GABI) Primary Database and made a visual overview of metabolism (Figure 6). As shown in
Figure 6A–C, quinclorac induced genes related to ascorbate and glutathione metabolism and inhibited
light reaction and photorespiration to inhibit photosynthesis. The secondary metabolism contained
a number of genes participating in the synthesis of flavonoids, phenylpropanoids and phenolics.
Genes in the cell wall, lipids, amino acids and starch metabolism varied differently; some were
up-regulated and some were down-regulated (Figure 6A). SA further stimulated the expression of
ascorbate and glutathione genes. Light reaction and photorespiration were enhanced, and genes
in the cell wall and lipid metabolism were increased (Figure 6B). In the Q + SA vs. control
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comparison, genes related to secondary metabolism were abundantly expressed, particularly in
relation to the flavonoids, phenylpropanoids and phenolic metabolism (Figure 6C).Int. J. Mol. Sci. 2017, 18, 1975  8 of 23 
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further enhanced under SA pre-treatment. The expression of OsGSTU4 and Os3BGLU7, which 
determines glutathione S-transferase (GST) and β-glucosidase respectively, were quite high after 
quinclorac treatment, while SA had no significant effect on them. Other rice acetaldehyde 
dehydrogenase (ALDH) genes such as OsALDH2B5, OsALDH7 were also increased under 
quinclorac stress, and SA pre-treatment further enhanced their expressions. Moreover, SA induced 
phenylalanine deaminase genes (OsPAL1, OsPAL2, OsPAL4) and 4-coumarate: coenzyme A ligase 
gene (Os4CL4) were highly expressed (Figure 7). 

2.7. Pathway Enrichment Analysis of DEPs 

The significantly enriched pathways (p ≤ 0.05) under different treatments are presented in Table 
2. Under quinclorac application, 87% of DEPs were enriched in seven pathways. The cysteine and 
methionine metabolism, glyoxylate and dicarboxylate metabolism, and phenylpropanoid 
biosynthesis were the most remarkable pathways, while metabolic pathways had the largest number 
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biosynthesis, terpenoid backbone biosynthesis, and 2-Oxocarboxylic acid metabolism. In Q + SA vs. 
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Figure 6. Overview of differentially expressed genes involved in various metabolic processes under
different treatments. (A) Q vs. control; (B) Q + SA vs. Q; and (C) Q + SA vs. control. The images
were obtained using MapMan, showing different functional categories that passed the cutoff (less than
0.05 q value and greater than two-fold change) for differential expression. The red color represents
up-regulated genes, and the blue color represents down-regulated genes.

2.6. Quantitative PCR Analysis of Candidate Genes

According to the pathway enrichment analysis of DEGs, we randomly selected some candidate
genes from significantly enriched pathways to verify the RNA-Seq data (Figure 7). Moreover, real
time-PCR results also confirmed our RNA-Seq data. Glutathione reductase (GR) genes (OsGR2, OsGR3)
were largely up-regulated under quinclorac stress, while the expressions of said genes were further
enhanced under SA pre-treatment. The expression of OsGSTU4 and Os3BGLU7, which determines
glutathione S-transferase (GST) and β-glucosidase respectively, were quite high after quinclorac
treatment, while SA had no significant effect on them. Other rice acetaldehyde dehydrogenase
(ALDH) genes such as OsALDH2B5, OsALDH7 were also increased under quinclorac stress, and SA
pre-treatment further enhanced their expressions. Moreover, SA induced phenylalanine deaminase
genes (OsPAL1, OsPAL2, OsPAL4) and 4-coumarate: coenzyme A ligase gene (Os4CL4) were highly
expressed (Figure 7).
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Figure 7. Confirmation of expression levels of selected differentially expressed genes (DEGs) by
quantitative real time-PCR assays. (A) herbicide quinclorac treatment; (B) salicylic acid pre-treatment
under quinclorac stress; and (C) various genes expression under different treatments. The data show
the averages and the standard deviation of three independent samples.

2.7. Pathway Enrichment Analysis of DEPs

The significantly enriched pathways (p ≤ 0.05) under different treatments are presented in Table 2.
Under quinclorac application, 87% of DEPs were enriched in seven pathways. The cysteine
and methionine metabolism, glyoxylate and dicarboxylate metabolism, and phenylpropanoid
biosynthesis were the most remarkable pathways, while metabolic pathways had the largest number
of DEPs (Table 2, Q vs. control). On the other hand, SA + Q treatment regulated 20 proteins in five
pathways, including alanine, aspartate and glutamate metabolism, riboflavin metabolism, arginine
biosynthesis, terpenoid backbone biosynthesis, and 2-Oxocarboxylic acid metabolism. In Q + SA vs.
control, DEPs were involved in the biosynthesis of antenna proteins, amino acids, valine, leucine
and isoleucine, and the metabolism of pyrimidine, pentose and glucuronate. In a comprehensive
perspective, cysteine is the product of methionine metabolism and an important part of GSH.
Simultaneously, it is a crucial component of the DNA-binding domain. The enrichment of proteins in
different pathways was consistent with the transcriptome results.
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Table 2. The significant enrichment pathways with differential expressed proteins.

Comparison Pathway Differential Proteins with
Pathway Annotation (121)

All Proteins with Pathway
Annotation (1871) p Value Pathway ID

Q vs. control

Cysteine and methionine metabolism 9 (7.44%) 39 (2.08%) 0.0005958267 ko00270
Glyoxylate and dicarboxylate metabolism 8 (6.61%) 47 (2.51%) 0.009008489 ko00630

Phenylpropanoid biosynthesis 9 (7.44%) 58 (3.1%) 0.01050140 ko00940
Carbon metabolism 18 (14.88%) 159 (8.5%) 0.01124338 ko01200

C5-Branched dibasic acid metabolism 2 (1.65%) 5 (0.27%) 0.03646180 ko00660
Ascorbate and aldarate metabolism 4 (3.31%) 22 (1.18%) 0.04913111 ko00053

Metabolic pathways 55 (45.45%) 710 (37.95%) 0.04918179 ko01100

Q + SA vs. Q

Alanine, aspartate and glutamate
metabolism 5 (5.15%) 28 (1.5%) 0.01281717 ko00250

Riboflavin metabolism 3 (3.09%) 11 (0.59%) 0.01644878 ko00740
Arginine biosynthesis 4 (4.12%) 21 (1.12%) 0.02056896 ko00220

Terpenoid backbone biosynthesis 3 (3.09%) 12 (0.64%) 0.02111914 ko00900
2-Oxocarboxylic acid metabolism 5 (5.15%) 32 (1.71%) 0.02229215 ko01210

Q + SA vs. control

Photosynthesis 11 (6.29%) 52 (2.78%) 0.006954811 ko00195
Metabolic pathways 82 (46.86%) 710 (37.95%) 0.007189333 ko01100

Photosynthesis-antenna proteins 4 (2.29%) 13 (0.69%) 0.02696767 ko00196
Biosynthesis of amino acids 18 (10.29%) 123 (6.57%) 0.03282929 ko01230

Pyrimidine metabolism 6 (3.43%) 27 (1.44%) 0.03444194 ko00240
Valine, leucine and isoleucine biosynthesis 3 (1.71%) 9 (0.48%) 0.04427594 ko00290
Pentose and glucuronate interconversions 4 (2.29%) 15 (0.8%) 0.04442334 ko00040
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2.8. Transcription Factor Analysis

The transcription factor (TF) is also called the trans-acting factor, a kind of protein which can
uniquely bind genes of 5′ upstream specific sequences, thereby ensuring target gene expression with
a given rate in a particular time and space. We used hmmsearch to search for the characteristics
of the domain in PlantTFDB database (http://plntfdb.bio.uni-potsdam.de/v3.0/), then conversely
to predict if a gene can code TF. Meanwhile, TF was aligned from China Rice Data Center
(http://www.ricedata.cn/gene/).

In the Q vs. control comparison, we found 14 TF families, mainly distributed in AP2-EREBP, MYB,
and WRKY TFs of AP2-EREBP transcription families; the WRKY family were mostly up-regulated,
but the MYB family showed mixed expression. It indicated that, under quinclorac stress alone, most
genes were up-regulated (Table S2.1). OsDREB2A (LOC_Os01g07120), OsERF922 (LOC_Os01g54890),
OsEREBP1 (LOC_Os02g54160) genes were expressed 5.16, 16.35, 2.81 times higher than control.
OsPHR3 (LOC_Os02g04640) gene belonging to MYB family was up-regulated more than tenfold.
Some TFs from the no apical meristem (NAM), ATAF, and cup-shaped cotyledon (CUC) transcription
factor amily, OsNAC10 (LOC_Os11g03300) and ONAC131 (LOC_Os12g03040) were expressed up to
62.64 and 125 times higher, respectively. In the Q + SA vs. Q comparison, we found nine TF families,
and SA pre-treatment mainly repressed NAC family TFs (Table S2.2). OsIRO2 (LOC_Os01g72370) gene,
an Fe-deficiency-inducible Bhlh family TF involved in Fe homeostasis in rice, was expressed nearly
30 times. ONAC095 (LOC_Os06g51070) gene was found to be up-regulated while the expression of
OsNAC10 (LOC_Os11g03300) and ONAC131 (LOC_Os12g03040) genes were inhibited. Some WRKY
family TFs, including OsWRKY45 (LOC_Os05g25770) and OsWRKY76 (LOC_Os09g25060), showed
decreased transcript abundance. In the SA + Q vs. control comparison, there were also 14 TF families
responding the treatment (Table S2.3). Most of TFs were found to be up-regulated, however only
MYB-related TFs were inhibited.

2.9. Correlation Analysis of Transcriptome and Proteome Data under Different Treatments

An expression correlation analysis was performed between DEPs and their corresponding
transcripts (Table 3). Detailed correlation analysis results have been shown in supplementary
data (Table S3). In total, 44 correlated proteins were observed under quinclorac treatment alone;
however, exogenous SA pre-treatment only generated five proteins (Table 3). In the Q + SA vs.
control, we detected 35 correlated proteins. Among those proteins, 30 proteins which included
four up-regulated and 26 down-regulated proteins exhibited the same expression tendency.
Proteins which are related to the synthesis of chlorophyll such as Mg-chelatase H subunit (OsChlH,
LOC_Os03g20700), catalase (CAT) (OsCATA, LOC_Os02g02400), geranylgeranyl reductase (LYL1,
LOC_Os02g51080) and protochlorophyllide oxidoreductase B (OsPORB/FGL, LOC_Os10g35370)
were inhibited. Under quinclorac stress, the synthesis of chlorophyll-related DEGs/DEPs
were considerably down-regulated. Only cytosolic pyruvate kinase (OsPK1, LOC_Os11g05110),
indole-3-glycerol phosphate synthase family protein (LOC_Os08g23150.1|PACid: 24101120),
glucose-6-phosphate dehydrogenase 4 (LOC_Os03g20300.1|PACid: 24121754), lactate/malate
dehydrogenase 1 (LOC_Os12g43630.1|PACid: 24149304) were expressed at differential levels
(Table S3). SA pre-treatment had less significantly correlated proteins including phenylalanine
ammonia-lyase (OsPAL1, LOC_Os02g41630), rice ferritin (OsFER2, LOC_Os12g01530), manganese
superoxide dismutase 1 (LOC_Os05g25850.1|PACid: 24151755), phosphoenolpyruvate carboxylase
family protein (LOC_Os12g08760.1|PACid: 24145205), eukaryotic aspartyl protease family protein
(LOC_Os12g39360.1|PACid: 24145239) (Table S3). In the Q + SA vs. control, there were 27 correlated
proteins in the same trend, and only rice heat shock protein 70 (LOC_Os03g16860.1|PACid:
24123810) was up-regulated (Table S3). In general, the correlated proteins and genes mostly showed
a down-regulation trend.

http://plntfdb.bio.uni-potsdam.de/v3.0/
http://www.ricedata.cn/gene/
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Table 3. Correlation analysis of transcriptomic and proteomic data under different treatments.

Comparison Type Proteins Number Genes Number Correlations Number

Q vs. control
Identification 2300 27,342 2202

Differ expressed 147 2207 44

Q vs. Q+SA
Identification 2300 27,342 2205

Differ expressed 124 697 5

Q+SA vs. control
Identification 2300 27,342 2205

Differ expressed 202 1120 35

2.10. Functional Networks of the Selected Differentially Regulated Proteins

A Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database of
protein interaction was used to reveal a putative protein association network between herbicide
quinclorac-treated alone and SA + quinclorac treatment (Figure 8). The nodes represent
the proteins, and the line colors between the nodes indicate protein-protein interaction
modes (Figure 8). Under down-regulated proteins, a larger participated protein interaction
was found in the ribosomal proteins and RNA polymerase subunits, while other interactions
involving photosynthesis and peptidase and glutamine-related proteins had a higher level of
co-expression (Figure 8A). Under up-regulated proteins, higher co-expression between ribosomal
proteins such as ribosomal protein L13 (LOC_Os03g54890.1), S10/S20 domain containing
ribosomal protein (LOC_Os03g10060.1; LOC_Os08g15278.1), eukaryotic translation initiation
factor 3 (LOC_Os07g03230.1; LOC_Os04g16832.1), S1 RNA binding domain-containing protein
(LOC_Os03g62780.1) and chloroplast ribosomal proteins such as chloroplast 30S ribosomal protein
S8 (LOC_Os04g16832.1; LOC_Os05g22718.1) were found. These interacted proteins are involved
in tRNA binding and also operated as a transcriptional elongation factor to initiate protein
synthesis. In addition to this, the strong co-expression of predicted protein-protein interaction (PPI)
revealed strong association between proteins involved in regulation of the citric acid cycle, which
includes dehydrogenase (LOC_Os01g46610.1), citrate synthase (LOC_Os02g10070.1), citrate synthase,
putative (LOC_Os11g33240.1), and phosphoenolpyruvate carboxykinase (LOC_Os03g15050.1) protein
(Figure 8B).
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3. Discussion

In our previous experiment, we found that quinclorac considerably arrested rice growth, while
SA pre-treatment alleviated quinclorac toxicity effectively [12]. Therefore, to find the changes
at transcription/translation levels, we performed RNA-Seq and iTRAQ analyses respectively to
investigate the changes in the transcriptome and proteome of rice leaves under quinclorac alone
and SA pre-treated quinclorac stressed plants at an early stage (6 h). Under quinclorac stress, there
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were 2207 DEGs (1427 up-regulated, 780 down-regulated), which were enriched in the metabolic
processes of glutathione, porphyrin and chlorophyll, amino acid, ribosome, glyoxylate and carbon
fixation. TFs were primarily distributed in AP2-EREBP, MYB, WRKY family. However, SA + Q
treatment induced 697 genes and inhibited 382 genes. The pathway analysis of these genes showed
that the metabolism of glutathione, phenylpropane, tyrosine, flavonoid, lipids and glyoxylate
were significantly enriched pathways. The TF family contained bHLH, MYB, Tify, WRKY and
other classes of TF. Proteomic data showed that quinclorac stress induced 49 DEPs, and inhibited
the expression of 98 proteins. Pathway enrichment analysis showed that these proteins were related to
cysteine and methionine metabolism, glyoxylate and dicarboxylate metabolism and phenylpropanoid
biosynthesis. The pre-treatment of SA induced the expression of 56 proteins, while 68 proteins were
down-regulated. The most abundant pathways were alanine, aspartate and glutamate metabolism,
riboflavin metabolism, arginine biosynthesis, terpenoid backbone biosynthesis, and 2-oxocarboxylic
acid metabolism. Correlation analysis between transcriptome and proteomics exhibited that, under
quinclorac stress, proteins related to the synthesis of chlorophyll such as Mg-chelatase H subunit,
CAT, geranylgeranyl reductase and protochlorophyllide oxidoreductase B were inhibited, whereas SA
regulated the expression of phenylalanine ammonia-lyase, rice ferritin and Mn-SOD family proteins.

Glutathione metabolism plays an important role in plant abiotic stress response. Glutathione is
a tripeptide with γ-glutamic acid, cysteine and glycine, which is effective in eliminating ROS and exotic
hazardous compounds and metabolites [15]. GR, as the only electron donator for using nicotinamide
adenine dinucleotide phosphate (NADPH), can catalyze oxidized glutathione (GSSG) to reduced
GSH to maintain high GSH/GSSG ratio in the cell [16]. In our study, two important genes (OsGR2
and OsGR3) encoding GR were strongly expressed. Kaminaka et al. [17] and Hong et al. [18] found
OsGR2 and mRNA mainly exist in root and callus. Abscisic acid (ABA), low temperature, drought,
salinity and other stresses can induce significant expression of OsGR2 [16]. Another gene OsGR3 is
primarily expressed in roots at seeding stage and ubiquitously expressed in all tissues except the sheath
at heading stage [19]. The results of qPCR demonstrated that the expression of OsGR2 and OsGR3
was higher in SA pre-treatment than in quinclorac alone treatment. Moreover, Dat et al. [20] also
demonstrated that SA can elevate the activity of GR in Brassica juncea.

Endogenous aldehyde is a common metabolic intermediate produced from a number of
pathways, including the metabolism of amino acids, protein, lipids and carbohydrates [21], meanwhile
xenobiotics are important sources of aldehydes production [22]. ALDH is also a common and
important detoxifying enzyme in plant tissues, which is responsible for eliminating endogenous
and exogenous aldehydes [23]. At present, a number of studies have revealed that ALDH genes
can be induced under salinity and drought stress, suggesting possible roles in improving abiotic
stress tolerance [24,25]. Under flooding stress, OsALDH2B5 is induced to stimulate the synthesis
of ABA [26]. Further, Wu et al. [27] found that OsALDH7 was induced by biotic or abiotic factors
such as ultraviolet, blast and mechanical injury in rice leaves. Exogenous plant growth regulators
treatment, such as SA, ABA and methyl ester of jasmonic acid (JA) induced the expression of OsALDH7.
OsALDH2B5 is located in the mitochondrion and OsALDH7 is located in the cytoplasm [28,29]. In our
present study, three ALDH genes (OsALDH2B5, OsALDH6B2, OsALDH7) were significantly expressed
under quinclorac stress, whereas exogenous SA pre-treatment further increased the expression of
OsALDH2B5 and OsALDH7. The proteomics data also showed that quinclorac induced glycolate
oxidase (GLO), which is a crucial enzyme in photorespiration and catalyzes the oxidation of glycolate
to glyoxylate, with an equimolar amount of H2O2 production [30]. Noctor et al. [31] found nearly
70% H2O2 content in C3 plants coming from photorespiration via GLO catalysis. Moreover, GLO has
been observed in response to abiotic or biotic stresses, such as drought and pathogens [32,33]. In our
study, the GLO was significantly induced under quinclorac stress, leading to the overproduction of
H2O2 that may inhibit the activity of CAT. Zhang et al. [34] also demonstrated that GLO physically
interacts with CAT in rice leaves, and the interaction can be down-regulated by SA. OsSCP46 is a serine
carboxypeptidase gene and can be induced by ABA and inhibited by brassinolide [35]. Quinclorac
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improved OsSCP46 gene expression, which may contribute to overproduction of ABA. 4-Coumarate:
coenzyme a ligase is a vital enzyme in the phenylpropanoid metabolic pathways for monolignol and
flavonoid biosynthesis. Rice genome has five Os4CL genes without tissue specific expression but with
apparent differences in expression levels. The rank in order of transcript abundance was as Os4CL3
> Os4CL5 > Os4CL1 > Os4CL4 > Os4CL2 [36]. SA may influence Os4CL gene expressions to adjust
the synthesis of lignin and flavonoid. OsBIABP1 gene is involved in the regulation of AMP-binding
protein in rice defense system. Some small molecules such as SA and JA can respectively induce
the expression of OsBIABP1 to regulate the defense signaling pathways related to SA and JA/ethylene,
respectively [37]. The treatments of quinclorac and SA both enhanced OsBIABP1 gene expression,
which suggests that plant responds to different types of stress factors by reprogramming the expression
of similar signaling pathways.

TFs almost participate in all of the biochemical reactions and processes. AP2-EREBP TFs
are known to be unique in plants and have more than 180 members in rice. According to
a number of AP2-EREBP structural domains, this family can be divided into an EREBP subfamily
containing one domain and AP2 subfamily containing two domains. The EREBP subfamily includes
dehydration responsive element binding (DREB), ethylene responsive element binding factors
(ERF) and other subfamilies. Most EREBP subfamily TFs take part in plant stress response [38,39].
Our results showed that OsDREB2A, OsERF922, OsEREBP1 were induced to express under quinclorac
stress. Over-expressed OsDREB2A in transgenic soybean can improve salinity stress tolerance [40].
Cui et al. [41] also observed the overexpression of OsDREB2A under drought and salinity stress.
ABA and salinity application, as well as blast fungus, strongly induce the expression of OsERF922.
Transgenic rice with OsERF922 overexpression down-regulated the expression of defense genes
and decreased tolerance to salinity with an increased Na+/K+ ratio [42]. When OsEREBP1 is
overexpressed, JA and ABA synthesis and signal pathways are activated to enhance drought and
flooding tolerance [43]. NAC TFs, refer to new largest TF family in plants in recent years and they play
important roles in the regulation of plant growth and development and participate in defense reactions
of several adverse abiotic stresses including drought, high salt, low temperature [44]. Our results
showed that OsNAC10, ONAC131 were highly induced by quinclorac application. Jeong et al. [45]
found that over-expressed OsNAC10 significantly strengthened stress tolerance. In our experiment,
we also found that quinclorac induced bHLH family gene OsIRO2, which has been found to be a key
regulatory gene for Fe acquisition. Overexpression of OsIRO2 can increase secretion of mugineic
acid family phytosiderophores without any adverse effect on the plant [46,47]. TFs from the NAC
family had inconsistent changes with SA pre-treatment, so OsNAC095 was induced while OsNAC10
and ONAC131 were down-regulated. Although OsNAC10 and ONAC131 can be induced, this varies
depending on time [48]. Huang et al. [49] found drought, salt, heat and ABA (except cold) enhanced
the expression of OsNAC095. TFs from WRKY superfamily also take part in several physiological and
resistance reactions [50,51]. Researchers have identified 109 WRKY TFs in rice [52]. OsWRKY45 has
two allelic genes (OsWRKY45-1, OsWRKY45-2), these two genes also have different transcriptional
responses to ABA and salt stress [53]. OsWRKY45 was expressed under exogenous SA pre-treatment
in our study, consistent with the results of Ryu et al. [54]. The overexpression of OsWRKY76 has
been documented to suppress the induction of gene expressions involved in disease resistance and
phytoalexins synthesis, leading to the increased expression of abiotic stress-associated genes such as
peroxidase and lipid metabolism genes [55].

Transcriptome and proteome constantly adjust to each other at the same time when plants are
under environmental stresses [56]. The correlation analysis between transcriptome and proteome
showed that the majority of proteins correlated under quinclorac stress were inhibited and OsChlH,
OsCATA, LYL1, OsPORB/FGL were significantly down-regulated (Table S3). OsChlH encodes
the Mg2+-chelatase H subunit, which is involved in chlorophyll biosynthesis [57,58]. LYL1 is a light
responsive gene participating in the final step of chlorophyll biosynthesis and prevents the rice from
lipid peroxidation and reactive oxygen damage [59]. Yang et al. [60] also found OsPORB/FGL mutant
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had phenotypically pale-green leaves with significantly decreased chlorophyll (a and b) and carotenoid
contents. In addition to this, we observed that quinclorac dramatically repressed the synthesis
of chlorophyll (Chl), which may be the reason of stunt growth of rice plants. In the porphyrin
and chlorophyll metabolism pathway, 21 DEGs were inhibited, while only six DEGs were induced.
Protoporphyrin IX, as the precursor of Chl, is synthesized by 5-aminolevulinate acid [61]. This early
enzymatic reaction was suppressed by quinclorac so that the subsequent catalyzed product protoheme
was simultaneously restrained. In the last step of Chl biosynthesis, prenylation of chlorophyllide
was also affected, which is believed to be catalyzed by Chl synthase with phytyl diphosphate or
geranygeranyl diphosphate [62,63]. The final step in converting chlorophyllide to Chl a or Chl b is
taken place in the thylakoid membrane, which play important roles in the stabilization of the thylakoid
membranes [64]. Recently, Wang et al. [12] observed that quinclorac application damage the thylakoid
membranes, which may be due to the reduction in the biosynthesis of Chl in treated rice plants.
However, pre-treatment of SA under quinclorac stress prevented the thylakoid membrane disruption
by accelerating Chl production and scavenging ROS, indicating a key role in SA-induced oxidative
stress tolerance in rice plants [12].

4. Materials and Methods

4.1. Plant Materials

The seeds of quinclorac tolerant japonica variety (Oryza sativa L. cv. Xiushui 134), were obtained
from the College of Agriculture and Biotechnology, Zhejiang University, Hangzhou China [12]. It is
widely cultivated in southeast China. Seeds were surface sterilized in 0.1% NaClO for 15 min, then
rinsed and soaked with distilled water for another 20 min. Seeds were sowed in plastic germination
boxes (18 cm × 12 cm × 10 cm) with moistened filter paper. Under dark conditions for two days,
germinated seedlings were selected and cultured in a growth chamber with day/night temperatures
of 25/20 ◦C, a 14 h photoperiod, irradiance of 300 µmol m−2 s−1 and relative humidity of 70%–80%.
The nutrient solution was replaced after every five days with Hoagland solution. Samples were
divided into three groups including the control group, the group treated with quinclorac, and the group
pre-treated with SA under quinclorac stress. According to our previous findings [12], the quinclorac
herbicide (0.1 mM) was applied in a solution at four-leaf stage. SA at 10 mg/L was applied in a solution,
two days before quinclorac treatment. The treatment concentrations were based on pre-experimental
studies (data not shown). After 6 h herbicide exposure, leaf tissues were harvested and frozen in liquid
nitrogen for RNA extraction. All materials were stored at −80 ◦C until further processing.

4.2. RNA Isolation and Library Preparation for Transcriptome Analysis

RNA was first extracted and mixed with DNase I to avoid DNA contamination Gill et al. [65].
The oligo (dT) magnetic beads were used to enrich mRNA, and cDNA was synthesized by
the fragments of mRNA. After purification with magnetic beads, end reparation and 3′-end
single nucleotide A (adenine) addition, sequencing adaptors were ligated to the fragments.
Finally, the fragments were amplified by PCR for library construction. The sample library was
used for quality and quantity test by Agilent 2100 Bioanaylzer (Agilent, Santa Clara, CA, USA) and
ABI StepOnePlus Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). After passing
the quality control (QC), the library products were ready for sequencing via Illumina HiSeqTM2000
(Illumina, San Diego, CA, USA).

4.3. Analysis of RNA-Sequencing Data

Primary sequencing data was produced by Illumina HiSeqTM 2000, and raw reads were filtered
into clean reads. Because raw data may contain low quality reads, adapters and other useless reads,
to guarantee the reliability of analysis, the reads containing adapter, poly-N and low quality were
removed from the raw data to obtain clean reads. Bowtie2 [66] and BWA [67] were used to map
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clean reads to reference gene and reference genome, respectively. The alignment with gene/genome
reference included genome alignment visualization, map rate statistics, distribution of reads on gene,
sequencing saturation and distribution of reads and genes on genome. With good secondary QC,
further gene expression analyses were proceeded. RNA-Seq by Expectation-Maximization (RSEM) [68]
was applied to use the modeling of the paired-end, the length of reads, fragment length distributions
and quality values to distinguish which transcripts were isoforms of the same gene. The fragments per
kilobase of transcript per million mapped fragments (FPKM) method [69] can eliminate the influences
of gene expression caused by the length of gene or the size of sequencing. By this method, calculated
quantification of gene expression level was used to compare the DEG expression level between different
samples. NOISeq method [70] was used to screen DEGs between two groups. DEGs were screened
according to the following default criteria: Fold change ≥2 and diverge probability ≥0.8.

4.4. qRT-PCR Analysis

Total RNA of three different groups were extracted from frozen leaf samples with RNAiso Plus
(TaKaRa, Japan). Two micrograms total RNA was subjected to reverse transcription using TaKaRa
PrimeScript™ RT reagent Kit with gDNA Eraser (Perfect for Real Time). Real-time PCR was carried
out by using SYBRs Premix Ex Taq II (Tli RNaseH Plus) (TaKaRa) in CFX96TM Real-Time System
(BIO-RAD, USA). All primers used for qRT-PCR are listed in Table S4.

4.5. Protein Extraction

Total leaf proteins were extracted from the same samples for RNA-Sequencing analysis according
to Yang et al. [71]. Leaf samples were ground fully in liquid nitrogen and homogenized with 0.1 g of
PVPP, 10 mL of Tris-phenol and 1 mL of phenol extraction buffer (with 2% Beta-mercaptoethanol and
1 mM PMSF) at 4 ◦C. After vortex for 10 s every 5 min with 3 repeats and centrifugation at 6000 rpm
for 20 min, the phenolic phase was collected and precipitated overnight with five volumes of 100 mM
ammonium acetate in methanol at −20 ◦C. The pellet was collected after centrifugation (20 min,
6000 rpm, 4 ◦C) and suspended in 10 mL of methanol, which was repeated in 10 mL of methanol,
10 mL of acetone and 1 mL of acetone again, respectively. The pellet was collected after centrifugation
at 12,000 rpm for 20 min, air-dried and suspended in 150 µL of radioimmunoprecipitation assay
(RIPA) lysis buffer containing 0.1% (v/v) TritonX-100, 1% (w/v) sodium deoxycholate, 0.1% (w/v) SDS,
150 mM NaCl and 50 mM Tris-HCl (pH 8.0).

4.6. Trypsin Digestion and iTRAQ Labeling

Proteins were digested with trypsin (Promega, Madison, WI, USA) at 37 ◦C at a ratio
of 1:50 (enzyme/substrate) overnight. The iTRAQ labeling was performed according to
the manufacturer’s protocol (Applied Biosystems, Sciex, Foster City, CA, USA). All labeled peptides
were pooled together.

4.7. High-pH Reversed-Phase Chromatography

The Ultimate3000 HPLC system (Dionex, Sunnyvale, CA, USA) equipped with a 2.00-mm-inner
diameter × 150-mm-long Gemini-NX 3u C18110A columns (Phenomenex, Torrance, CA, USA) was
used for High-pH fractionation. Peptides were loaded onto the column and washed isocratically at
95% eluent A (20 mM HCOONH4, 2 M NaOH) (pH 10). Peptide fractionation was performed by using
a linear binary gradient from 15% to 50% B (20 mM HCOONH4, 2 M NaOH, 80% acetonitrile ACN)
(pH 10) at 0.2 mL/min over 45 min. Finally, the column was washed at 90% B for 10 min and returned
to 95% A for 10 min. The UV detector was set at 214/280 nm, and fractions were collected every 1 min.
In total, 10 fractions were pooled and dried by vacuum centrifuge for subsequent nano-reversed phase
liquid chromatography (nano-LC) fractionation.
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4.8. RPLC-MS/MS Analysis

Each fraction was suspended in loading buffer (0.1% FA, 2% ACN) and separated using
an Ultimate 3000 nano-LC system equipped with a C18 reverse phase column (100-µm inner diameter,
10-cm long, 3-µm resin from Michrom Bioresources, Auburn, CA, USA). The peptides were separated
using the following parameters: (1) mobile phase A: 0.1% FA, 5%ACN, dissolved in water; (2) mobile
phase B: 0.1% FA, 95% ACN; (3) flow rate: 300 nL/min; (4) gradient: B-phase increased from 5% to 40%,
70 min. Then, the eluent was transferred to Triple TOF 6600 containing multichannel TDC detector
with four-anode channel detect ion (AB SCIEX, Concord, ON, Canada). The machine parameters
were as follows: 2.5 kv ion source spray voltage, 30 psi nitrogen curtain gas, 15 psi nebulizer gas,
150 ◦C interface heater temperature. The mass range was about 400–1250 m/z in high resolution mode
(>30,000) with 250 ms accumulation time per spectrum.

4.9. Proteomic Data Analysis

The primary data files (formatted as wiff and wiff. scan) were converted to MGF files using
MSConvert and the MGF files were searched. Protein identification was performed by using
Mascot search engine (Matrix Science, London, UK; version 2.3.02) against database. The database
we selected was Osativa_204 (49061 sequences) with the link http://genome.jgi.doe.gov/pages/
dynamicOrganismDownload.jsf?organism=PhytozomeV9.

For protein identification, a mass tolerance of 0.05 Da (50 ppm) was permitted for intact peptide
masses and 0.1 Da for fragmented ions, with allowance for one missed cleavages in the trypsin digests.
Gln- > pyro-Glu (N-term Q), Oxidation (M), Deamidated (NQ) as the potential variable modifications,
and Carbamidomethyl (C), iTRAQ8plex (N-term), iTRAQ8plex (K) as fixed modifications. The charge
states of peptides were set to +2 and +3. Specifically, an automatic decoy database search was
performed in Mascot by choosing the decoy checkbox in which a random sequence of database is
generated and tested for raw spectra as well as the real database. To reduce the probability of false
peptide identification, only peptides with significance scores (≥20) at the 99% confidence interval by
a Mascot probability analysis greater than “identity” were counted as identified. At least one unique
peptide was involved in each confident protein identification.

The peptide data were analyzed using Protein Pilot Software 4.0 (AB SCIEX, Redwood City, CA,
USA). Data with a false discovery rate (FDR) of less than 1% were used for the Unused ProtScore
measurement. Peptides with scores of over 1.3 (confidence over 95%) were chosen. For quantitative
changes, a 2-fold cutoff was set to determine up-regulated and down-regulated. The DEPs were then
imported to the clusters of orthologous groups of proteins (COG) database (http://www.ncbi.nlm.nih.
gov/COG) for phylogenetic classification and the KEGG database (http://www.genome.jp/kegg/
pathway.html) for metabolic pathway analysis.

4.10. Correlation Analysis between Transcriptome and Proteome

According to RNA-Sequencing data and proteome analysis, DEGs were identified with the default
criteria (Foldchange ≥ 2 and diverge probability ≥ 0.8) by NOISeq method, while DEPs were filtered
with the standard (Foldchange ≥ 1.2 and p value < 0.05) by protein abundance level. When one protein
is expressed in transcriptome level, it is regarded as correlated.

4.11. Protein-Protein Interaction Analysis

All identified up-regulated/down-regulated, protein-protein interaction (PPI) was searched
against the STRING database (version 10.0) for protein-protein interactions. This database contains
interaction from previously published interaction studies as well as genomic analysis established in
gene neighborhood, domain fusion and phylogenetic profiling methods. PPIs belong to uploaded data
set was selected, whereas confidence score of ≥0.9 was selected to minimize false positive/negative
interactions. Stronger associations are represented by thicker lines.

http://genome.jgi.doe.gov/pages/dynamicOrganismDownload.jsf?organism = PhytozomeV9
http://genome.jgi.doe.gov/pages/dynamicOrganismDownload.jsf?organism = PhytozomeV9
http://www.ncbi.nlm.nih.gov/COG
http://www.ncbi.nlm.nih.gov/COG
http://www.genome.jp/kegg/pathway.html
http://www.genome.jp/kegg/pathway.html
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5. Conclusions

In summary, we have explored and analyzed the transcriptome and proteomics of Oryza sativa
ssp. japonica to identify and annotate transcripts and proteins associated with quinclorac toxicity
and its subsequent alleviation by the exogenous application of SA. Our study suggests that multiple
pathways are involved in quinclorac-induced toxicity, which resulted in chlorophyll degradation and
the accumulation of endogenous aldehyde, glycolate and other reactive oxygen molecules such as
H2O2 to affect the redox homeostasis. Genes and proteins involved in the crucial steps of chlorophyll
synthesis pathways were significantly repressed under quinclorac stress. However, pre-treatment of
SA not only modulated plant defense systems but also triggered detoxifying enzymes such as GSH,
ALDH, GLO to degrade herbicide or eliminate xenobiotics. Additionally, SA application maintained
the chlorophyll content in rice leaves by preventing chlorophyll breakdown and simultaneously
accelerating its de novo synthesis. These findings will contribute to an increased understanding of
the SA-mediated stress tolerance in rice and also provide experimental data for the development of
herbicide resistance in rice breeding programs.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/9/1975/s1.
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