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Abstract: Manganese (Mn) is an essential trace element required for the development of human body
and acts as an enzyme co-factor or activator for various reactions of metabolism. While essential
in trace amounts, excessive Mn exposure can result in toxic accumulations in human brain tissue
and resulting extrapyramidal symptoms called manganism similar to idiopathic Parkinson’s disease
(PD). Quercetin (QCT) has been demonstrated to play an important role in altering the progression of
neurodegenerative diseases by protecting against oxidative stress. This study aimed to investigate the
protective effect of QCT on Mn-induced neurotoxicity and the underlying mechanism in SK-N-MC
human neuroblastoma cell line and Sprague-Dawley (SD) male rat brain. The results showed that Mn
treatment significantly decreased the cell viability of SK-N-MC cell and increased the release of lactate
dehydrogenase (LDH), which was attenuated by QCT pretreatment at 10 and 20 µg/mL. Compared
to the Mn alone group, QCT pretreatment significantly attenuated Mn-induced oxidative stress,
mitochondrial dysfunction and apoptosis. Meanwhile, QCT pretreatment markedly downregulated
the NF-κB but upregulated the heme oxygenase-1 (HO-1) and Nrf2 proteins, compared to the Mn
alone group. Our result showed the beneficial effect of QCT on hematological parameters against Mn
in rat brain. QCT decrease reactive oxygen species (ROS) and protein carbonyl levels and increased
Cu/Zn-superoxide dismutase (SOD) activity induced in Mn-treated rats. QCT administration
caused a significant reduction in the Mn-induced neuroinflammation by inhibiting the expression of
inflammatory markers such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6
(IL-6) cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). QCT lowered the Mn
elevated levels of various downstream apoptotic markers, including Bax, cytochrome c, cleaved
caspase-3 and polymerase-1 (PARP-1), while QCT treatment upregulated anti-apoptotic Bcl-2 proteins
and prevented Mn-induced neurodegeneration. Furthermore, administration of QCT (25 and
50 mg/kg) to Mn-exposed rats showed improvement of histopathological alteration in comparison to
Mn-treated rats. Moreover, administration of QCT to Mn-exposed rats showed significant reduction
of 8-hydroxy-2′-deoxyguanosine (8-OHdG), Bax, activated caspase-3 and PARP-1 immunoreactivity.
These results indicate that QCT could effectively inhibit Mn induced apoptosis and inflammatory
response in SK-N-MC cells and SD rats, which may involve the activation of HO-1/Nrf2 and inhibition
of NF-κB pathway.
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1. Introduction

Manganese (Mn) is an abundant and essential trace element, especially critical for normal
development and function of human body [1]. Mn is required as an enzyme co-factor or activator
for various metabolic reactions, i.e., Mn binds to and/or regulates several important body enzymes
such as Mn-superoxide dismutase (Mn-SOD) and pyruvate carboxylase that play important role in the
growth and development of the central nervous system (CNS) [2].

Manganism, similar to idiopathic Parkinson’s disease (PD) is a CNS disorder caused by
toxic exposure to manganese (Mn) characterized by a broad spectrum of neurological deficits
including locura manganica, motional lability, compulsive behavior and visual hallucinations [3–6].
Manganism has been reported through occupational (e.g., welder, smelters), environmental (fuel
additive methylcyclopentadienyl manganese tricarbonyl), medical (liver diseases, prolonged parenteral
nutrition and abuse of illicit drugs), and dietary overexposure of Mn [7–14]. Several studies have
reported some different aspects of manganism, and proposed the possible underlying mechanisms
but it still not well understood. It has been reported, mitochondria as the primary target organelle for
manganism [15,16]. Mn can induce reactive oxygen species (ROS) generation which significantly
affects mitochondrial function, impairs endoplasmic reticulum (ER) hemostasis and promote
apoptosis [11,17–19].

Quercetin (QCT) (3,3′,4′,5,7-pentahydroxyflavone), an important naturally occurring dietary
polyphenol present in red onions, apples, berries, citrus fruits, tea, and red wine [20–22], has been
reported to possess strong anti-oxidant, anti-inflammatory activity that can prevent many diseases
including, neurodegenerative disorder, diabetes, obesity and cancer [21,23–26]. QCT plays
an important role in altering the progression of neurodegenerative diseases by its protective effect
against oxidative stress [27]. QCT blocked both the cyclooxygenase and lipooxygenase pathways
at relatively high concentrations, while at lower concentrations; the lipooxygenase pathway was
the primary target of inhibitory anti-inflammatory activity [28]. Previous study suggested that
pretreatment of primary neuron cell cultures with quercetin significantly attenuated amyloid β-induced
cytotoxicity, protein oxidation, lipid-peroxidation, and apoptosis [29]. Treatment with QCT caused
a decrease in the carbonyl content in erythrocytes subjected to oxidative stress [30]. Recent reports
showed that quercetin may exert its protective action against inflammation through inhibition of
inducible nitric oxide synthase (iNOS)/NF-κB and induction of Nrf2/heme oxygenase-1 (HO-1)
pathways [31–34]. Studies also indicated the potential benefit of QCT treatment for conditions
involving mitochondrial dysfunction associated with increased oxidative stress [35].

In the present study, we have investigated the protective effects of QCT against Mn-induced
neuroinflammation and the underlying mechanism, including the mechanistic study of Mn
neurotoxicity in dopaminergic SK-N-MC human neuroblastoma cells and Sprague-Dawley (SD)
male rats.

2. Results

2.1. Protective Effect of QCT on Mn-Induced Cytotoxicity in SK-N-MC Cells

The effect of QCT on the viability of SK-N-MC cells cultured under Mn-induced toxicity conditions
was measured by crystal violet assay. Pretreatment of SK-N-MC cells with QCT at concentrations
of 5, 10 and 20 µg/mL protected SK-N-MC cells from Mn toxicity. An increase in cell viability was
observed in QCT-treated cells compared to Mn alone group (Figure 1A). The result displayed that QCT
(10 and 20 µg/mL) possessed the best protective effects. Correspondingly, QCT pretreatment markedly
decreased (p < 0.01 or p < 0.001) the Mn-caused lactate dehydrogenase (LDH) release (Figure 1B).
QCT alone treatment did not change the cell viability and LDH activity, compared to the control group
(Figure 1).
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2.2. QCT Attenuated Mn-Induced Oxidative Stress in SK-N-MC Cells 

As shown in Figure 2A, B after exposed to 500 µM Mn for 24 h, the intracellular ROS level of the 
SK-N-MC cells markedly increased to 238% (p < 0.001) relative to the control. When the cells were 
pretreated with different concentrations of QCT (5, 10 and 20 µg/mL) in the presence of 500 µM Mn 
for 24 h, the intracellular ROS levels significantly decreased to 206, 159 (p < 0.01), and 125% (p < 
0.001) of the control value, respectively. Similarly, the cells were pretreated with different 
concentrations of QCT (5, 10 and 20 µg/mL) in the presence of Mn (500 µM) for 24 h significantly 
decreased (p < 0.001) the malondialdehyde (MDA) levels from 321.084% to 297.59%, 226.50% (p < 
0.01) and 168.67% (p < 0.01) (Figure 2C), respectively. Correspondingly, QCT pretreatment at 10 and 
20 µg/mL markedly increased the activities of SOD and catalase (CAT) and the intracellular levels of 
glutathione (GSH) (p < 0.01 or p < 0.001) (Figure 2D–F). QCT alone treatment at 5, 10 and 20 µg/mL 
had no effect on cellular oxidative stress. 
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Figure 1. Protective effect of Quercetin (QCT) on Mn-induced cell cytotoxicity in SK-N-MC cell lines.
(A) Cell viability; (B) lactate dehydrogenase (LDH) activity. Values were represented as mean ± SD.
## p < 0.001 as compared with the control group; * p < 0.01 ** p < 0.001 as compared with the Mn
alone group.

2.2. QCT Attenuated Mn-Induced Oxidative Stress in SK-N-MC Cells

As shown in Figure 2A, B after exposed to 500 µM Mn for 24 h, the intracellular ROS level of the
SK-N-MC cells markedly increased to 238% (p < 0.001) relative to the control. When the cells were
pretreated with different concentrations of QCT (5, 10 and 20 µg/mL) in the presence of 500 µM Mn for
24 h, the intracellular ROS levels significantly decreased to 206, 159 (p < 0.01), and 125% (p < 0.001) of
the control value, respectively. Similarly, the cells were pretreated with different concentrations of QCT
(5, 10 and 20 µg/mL) in the presence of Mn (500 µM) for 24 h significantly decreased (p < 0.001) the
malondialdehyde (MDA) levels from 321.084% to 297.59%, 226.50% (p < 0.01) and 168.67% (p < 0.01)
(Figure 2C), respectively. Correspondingly, QCT pretreatment at 10 and 20 µg/mL markedly increased
the activities of SOD and catalase (CAT) and the intracellular levels of glutathione (GSH) (p < 0.01
or p < 0.001) (Figure 2D–F). QCT alone treatment at 5, 10 and 20 µg/mL had no effect on cellular
oxidative stress.
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Figure 2. Cont.
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Figure 2. Protective effect of QCT on Mn-induced oxidative stress in SK-N-MC cell lines. (A) 
Morphologic images of intracellular ROS generation using 2’,7’-dichlorofluorescein diacetate 
(DCHF-DA) staining, scale bars: 100 µm ; (B) ROS generated relative to control were quantified; 
(C–F) impact of QCT treatment on cellular malondialdehyde (MDA), superoxide dismutase (SOD), 
catalase (CAT), and glutathione (GSH) levels, respectively. Values were represented as mean ± SD. ## 
p < 0.001 as compared with the control group; * p < 0.01 and * p < 0.001 as compared with the Mn 
alone group. 

2.3. QCT Attenuates Mn-Induced the Loss of Mitochondrial Membrane Potential (ΔΨm) and Apoptosis in 
SK-N-MC Cells 

The changes of ΔΨm were examined and analyzed using a sensitive fluorescent dye 
5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide (JC-1). As shown in 
Figure 3A, Mn exposure significantly decreased (p < 0.001) the fluorescence density of JC-1 in 
SK-N-MC cells, indicating Mn caused loss of ΔΨm. Compared to the control, the Mn-treated alone 
group showed a decreased ΔΨm at 60.60%, which could be reverted to 68.19%, 79.43% (p < 0.01) and 
89.27% (p < 0.001) of the control value by QCT pretreatment at the final concentrations of 5, 10 and 20 
µg/mL, respectively. QCT alone treatment did not affect the level of ΔΨm (Figure 3A). SK-N-MC 
cells treated with 500 µM Mn for 24 h showed typical characteristics of apoptosis, including the 
condensation of chromatin, the shrinkage of nuclei using Hoechst 33342 staining as shown in (Figure 
3B). The amount of apoptotic nuclei was markedly increased, and the apoptotic rate was 
significantly increased (p < 0.001) relative to the control group. However, the number of apoptotic 
cell was significantly decreased (p < 0.01 or p < 0.001) with QCT pretreatment at 10 and 20 µg/mL in 
the presence of Mn (Figure 3C). 
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The NF-κB proteins are present in the cytoplasm as inactive heterodimers composed of two 
subunits, P50 and P65, and are bound to the inhibitory protein IκBα. The NF-κB (P-IκBα and NF-κB 
P65), HO-1 and Nrf2 protein levels were examined using western blotting method and the results 
were showed in Figure 4. Compared to control group, Mn exposure for 24 h significantly 
upregulated the levels of P-IκBα, NF-κB P65, HO-1 and Nrf2 proteins. QCT pretreatment markedly 
inhibited the level of P-IκBα and NF-κB P65, while further increased the level of HO-1 and Nrf2 
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Figure 2. Protective effect of QCT on Mn-induced oxidative stress in SK-N-MC cell lines.
(A) Morphologic images of intracellular ROS generation using 2′,7′-dichlorofluorescein diacetate
(DCHF-DA) staining, scale bars: 100 µm ; (B) ROS generated relative to control were quantified;
(C–F) impact of QCT treatment on cellular malondialdehyde (MDA), superoxide dismutase (SOD),
catalase (CAT), and glutathione (GSH) levels, respectively. Values were represented as mean ± SD.
## p < 0.001 as compared with the control group; * p < 0.01 and ** p < 0.001 as compared with the Mn
alone group.

2.3. QCT Attenuates Mn-Induced the Loss of Mitochondrial Membrane Potential (∆Ψm) and Apoptosis in
SK-N-MC Cells

The changes of ∆Ψm were examined and analyzed using a sensitive fluorescent dye 5,5′,6,6′-
Tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide (JC-1). As shown in Figure 3A,
Mn exposure significantly decreased (p < 0.001) the fluorescence density of JC-1 in SK-N-MC cells,
indicating Mn caused loss of ∆Ψm. Compared to the control, the Mn-treated alone group showed
a decreased ∆Ψm at 60.60%, which could be reverted to 68.19%, 79.43% (p < 0.01) and 89.27% (p < 0.001)
of the control value by QCT pretreatment at the final concentrations of 5, 10 and 20 µg/mL, respectively.
QCT alone treatment did not affect the level of ∆Ψm (Figure 3A). SK-N-MC cells treated with 500 µM
Mn for 24 h showed typical characteristics of apoptosis, including the condensation of chromatin,
the shrinkage of nuclei using Hoechst 33342 staining as shown in (Figure 3B). The amount of apoptotic
nuclei was markedly increased, and the apoptotic rate was significantly increased (p < 0.001) relative
to the control group. However, the number of apoptotic cell was significantly decreased (p < 0.01 or
p < 0.001) with QCT pretreatment at 10 and 20 µg/mL in the presence of Mn (Figure 3C).

2.4. QCT Down-Regulates the P-IκBα/NF-kB and Up-Regulates the HO-1/ Nrf2 Activity in SK-N-MC Cells

The NF-κB proteins are present in the cytoplasm as inactive heterodimers composed of two
subunits, P50 and P65, and are bound to the inhibitory protein IκBα. The NF-κB (P-IκBα and NF-κB
P65), HO-1 and Nrf2 protein levels were examined using western blotting method and the results were
showed in Figure 4. Compared to control group, Mn exposure for 24 h significantly upregulated the
levels of P-IκBα, NF-κB P65, HO-1 and Nrf2 proteins. QCT pretreatment markedly inhibited the level
of P-IκBα and NF-κB P65, while further increased the level of HO-1 and Nrf2 (Figure 4).
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Figure 3. Protective effects of QCT on the cell survival in Mn-treated SK-N-MC cells. (A) Mitochondrial
membrane potential (∆Ψm) determined by monomeric JC-1 green fluorescence emission and aggregated
method; (B) representative images by Hoechst 33342 staining, arrowheads in the pictures indicate the
nuclei of the apoptotic cells (Hoechst-positive cells), scale bar: 100 µm ; (C) the apoptosis rate was
determined by calculating the percentage of Hoechst positive cells over the total number of cells. Values
were represented as mean ± SD. ## p < 0.001, compared to the control group; * p < 0.01, ** p < 0.001,
compared to the Mn alone group.
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Figure 4. Effect of QCT on Mn-induced P-IκBα, NF-κB P65, Nrf2 and HO-1 activity in SK-N-MC cells.
(A) The western blot analysis along with (B–E) relative density histograms of the P-IκBα, NF-κB P65,
HO-1 and Nrf2 levels was examined in SK-N-MC cells. The proteins expression was normalized against
β-actin. QCT down-regulates the P-IκBα and NF-κB P65, however it up-regulates the HO-1 and Nrf2
activity. Values were represented as mean ± SD from three independent experiments. Values were
presented as mean ± SD. ## p < 0.01, compared to the control group; * p < 0.01, ** p < 0.001, compared
to the Mn alone group.
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2.5. The Beneficial Effect of QCT on Hematological Parameters against Mn-Induce Toxicity in Rat Brain

In comparison with the control group, neurological deficits were observed in the Mn group
(5.63 ± 0.12 versus 0.33 ± 0.17, p < 0.001). In comparison with the Mn group, a significant difference
was observed between the Mn + QCT 25 group (3.55 ± 0.19 versus 5.63 ± 0.12, p < 0.01) and the
Mn + QCT 50 group (3.38 ± 0.81 versus 1.77 ± 0.25, p < 0.001 (Figure 5A). The brain hemorrhage
with remarkable defects in the Mn group was observed, while QCT-treated both groups showed
the beneficial effect (Figure 5B). In comparison with the control group, neutrophils and macrophage
(arrows) were observed more in the Mn-treated group, where significantly decreased in the QCT-treated
both groups (Figure 5C). Our results showed that compared with the control group, the Mn treatment
significantly decreased (p < 0.001) the lymphocytes (24.40 ± 2.1 verses 70.4 ± 7.3, p < 0.001), while
significantly increased (p < 0.001) the neutrophils (68.40 ± 4.1 verses 27.4 ± 2.3, p < 0.001) and the
eosinophils (5.50 ± 0.2 verses 1 ± 0.1, p < 0.001). Interestingly, the treatment with QCT significantly
reversed (p < 0.01 or p < 0.001) the Mn-induced changes in the lymphocytes, neutrophils and eosinophils
(Figure 5D–F).
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Figure 5. The beneficial effect of QCT on hematological parameters against Mn in rat brain. (A) 
Neurological scores; (B) effects of QCT on Mn-induced brain hemorrhage, scale bar: 100 µm; (C) 
microscopically view of neutrophils and macrophage (arrow), scale bar: 100 µm; (D–F) differential 
counts (%) of the lymphocytes, neutrophils and eosinophils. The number of blood cells was 
determined by calculating the percentage of differential blood cells over the 100 number of cells. 
Values were presented as mean ± SD. ## p < 0.001 versus control group; * p < 0.01, ** p < 0.001 versus 
Mn group. 
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Oxidative Damage in the Rat Brain 

To determine the protective effect of QCT against Mn-induced oxidative damage in rat brain, 
we examined the changes in the levels of ROS and protein carbonyl as well as the expression and 
activities of enzymes Cu/Zn-SOD. Mn treatment significantly increased (p < 0.001) ROS and protein 
carbonyl levels, while significantly decreased (p < 0.001) Cu/Zn-SOD activity in SD rat brain (Figure 
6). Interestingly, QCT treatment effectively decreased (p < 0.01 or p < 0.001) ROS and protein 
carbonyl levels and increased (p < 0.01 or p < 0.001) Cu/Zn-SOD activity induced in Mn-treated 
groups. 

Figure 5. The beneficial effect of QCT on hematological parameters against Mn in rat brain.
(A) Neurological scores; (B) effects of QCT on Mn-induced brain hemorrhage, scale bar: 100 µm;
(C) microscopically view of neutrophils and macrophage (arrow), scale bar: 100 µm; (D–F) differential
counts (%) of the lymphocytes, neutrophils and eosinophils. The number of blood cells was determined
by calculating the percentage of differential blood cells over the 100 number of cells. Values were
presented as mean ± SD. ## p < 0.001 versus control group; * p < 0.01, ** p < 0.001 versus Mn group.

2.6. QCT Decreased ROS and Protein Carbonyl Levels and Restores Cu/Zn-SOD Activity on Mn-Induced
Oxidative Damage in the Rat Brain

To determine the protective effect of QCT against Mn-induced oxidative damage in rat brain,
we examined the changes in the levels of ROS and protein carbonyl as well as the expression and
activities of enzymes Cu/Zn-SOD. Mn treatment significantly increased (p < 0.001) ROS and protein
carbonyl levels, while significantly decreased (p < 0.001) Cu/Zn-SOD activity in SD rat brain (Figure 6).
Interestingly, QCT treatment effectively decreased (p < 0.01 or p < 0.001) ROS and protein carbonyl
levels and increased (p < 0.01 or p < 0.001) Cu/Zn-SOD activity induced in Mn-treated groups.
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Figure 6. Effect of QCT on ROS and protein carbonyl levels and Cu/Zn-SOD activity in the Mn treated
rat brain. Values are expressed as mean±SD. (A) Represents ROS levels; (B) represents protein carbonyl
levels; (C) represents Cu/Zn-SOD enzymatic activity in rat brain. Values were presented as mean ± SD.
## p < 0.001 versus control group; * p < 0.01, ** p < 0.001 versus Mn group.

2.7. QCT Decreases the Expression of Inflammatory Markers against Mn-Induced Neuroinflammation in the
Rat Brain

In comparison with control group, Mn treatment significantly increased TNF-α, IL-1β, IL-6,
cyclooxygenase-2 (COX-2) and iNOS protein expression in rats brain (TNF-α, p < 0.001; IL-1β, p < 0.001;
IL-6, p < 0.001; COX-2, p < 0.001, iNOS, p < 0.001) (Figure 7), whereas QCT significantly decreased
TNF-α, IL-1β, IL-6, COX-2 and iNOS protein expression in the brain of rats (TNF-α: p < 0.01 or
p < 0.001; IL-1β: p < 0.01 or p < 0.001; IL-6: p < 0.01 or p < 0.001; COX-2: p < 0.01 or p < 0.001, iNOS:
p < 0.01 or p < 0.001, versus Mn group) and the expression of these inflammatory markers was restored
to normal levels.
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Figure 7. QCT decreases the expression of inflammatory markers in the brain of Rats. Values are
expressed as mean ± SD. (A) Representative immunoblots for TNF-α, IL-1β, IL-6, COX-2, iNOS and
β-actin in all the treated groups; (B–F) relative density analysis of the TNF-α, IL-1β, IL-6, COX-2
and iNOS protein bands. The relative density is expressed as the ratio (TNF-α, IL-1β, IL-6, COX-2,
and iNOS /β-actin). ## p < 0.001 versus control group; * p < 0.01, ** p < 0.001 versus Mn group.
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2.8. QCT Down-Regulates the NF-κB, iNOS mRNA Levels and Up-Regulates the Nrf2, HO-1 mRNA Levels
in the Rat Brain

The NF-κB, iNOS, HO-1 and Nrf2 RNA levels were examined using quantitative real time
polymerase chain reaction (qRT-PCR) method and the results are showed in Figure 8. In comparison
with control group, Mn treatment significantly (p < 0.001) upregulated the expression levels of NF-κB,
iNOS, HO-1 and Nrf2 mRNA, to approximate 3.31, 3.24, 4.4 and 3.69-folds, respectively. QCT treatment
markedly inhibited the expression level of NF-κB and iNOS mRNAs, while further increased the
expression level of Nrf2 and HO-1 mRNAs.
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Figure 8. Effect of QCT on the expressions of NF-κB, iNOS, HO-1 and Nrf2 mRNA levels in rats
brain. QCT treatment markedly inhibited the expression levels of NF-κB (A) and iNOS (B) mRNAs,
but further increased the expression levels of HO-1(C) and Nrf2 (D) mRNAs. Values were presented as
mean ± SD. ## p < 0.01, compared to the control group; * p < 0.01, ** p < 0.001, compared to the Mn
alone group.

2.9. QCT Decreased Neuroapoptosis Induced by Mn in the Rat Brain

Western blot analyses were performed to investigate the effects of Mn and QCT on the expression
of Bcl-2, Bax, cytochrome c, cleaved caspase-3 and polymerase-1 (PARP-1) proteins in the rat
brain (Figure 9). Our results showed that compared with the control treatment, the Mn treatment
significantly decreased the expression of the anti-apoptotic protein Bcl-2, increased the expression
of Bax, cytochrome c, cleaved caspase-3 and PARP-1 proteins. Interestingly, treatment with QCT
significantly reversed the Mn-induced changes in Bcl-2, Bax, cytochrome c, cleaved caspase-3 and
PARP-1 levels.
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Figure 9. QCT reversed the apoptotic marker expression and neurodegeneration in the Mn-treated
Rats. (A) The immunoblot analysis of the anti-apoptotic Bcl-2, pro-apoptotic Bax, cytochrome c, cleaved
caspase-3, and the cleaved PARP-1 proteins in rat brain; (B–F) relative density analysis of the Bcl-2,
Bax, cytochrome c, cleaved caspase-3, and the cleaved PARP-1 protein bands. The relative density is
expressed as the ratio (Bcl-2, Bax, cytochrome c, cleaved caspase-3, and the cleaved PARP-1/β-actin).
Values were presented as mean ± SD. ## p < 0.001 versus control group; * p < 0.01, ** p < 0.001 versus
Mn group.

2.10. Effect of Treatment on Histopathological and Immunohistochemical Changes

The histology of the striatum was examined under microscope (Figure 10). Exposure of Mn lead
to marked histopathological alterations in the striatum, including increased neuronal loss, ghost cells,
hemorrhage and vacuolated cytoplasm. No histopathological change was observed in striatum of
normal control, while QCT treated groups showed beneficial effect.

8-Hydroxy-2′-deoxyguanosine (8-OHdG), Bax, activated caspase-3 and PARP-1 immunoreactivity
was significantly increased in microsection of rats treated with Mn when compared to control group
(Figure 11). Moreover, immunoreactivity was significantly inhibited in groups treated with QCT
(Figure 11).
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3. Discussion 

In the present study, we investigated the protective role of QCT on Mn-induced neurotoxicity 
and the potential mechanism in neuroblastoma SK-N-MC cells and SD male rats. 

Figure 10. Photographs showing histopathological changes in striatum in different groups. (A) Control
group (Normal saline); (B) MnCl2 (15 mg/kg) treated group; (C) MnCl2 (15 mg/kg) + QCT (25 mg/kg);
(D) MnCl2 (15 mg/kg) + QCT (50 mg/kg) treated group. Damage (d), Ghost cells (g), hemorrhage (h),
and vacuolated cytoplasm (c). Scale bar: 100 µm.
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Figure 11. Immunohistochemistry (IHC) of QCT treatment along with Mn in striatum of rats under
different treatment condition. (A) The 8-OHdG was examined in the striatum region; (B) the Bax was
examined in the striatum region; (C) the activated caspase-3 was examined in the striatum region;
(D) the activated PARP-1 was examined in the striatum region. Scale bar: 100 µm.

3. Discussion

In the present study, we investigated the protective role of QCT on Mn-induced neurotoxicity and
the potential mechanism in neuroblastoma SK-N-MC cells and SD male rats.
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We determined the beneficial effects of QCT against the Mn-induced cytotoxicity by conducting
cell viability and LDH release assays in SK-N-MC cells. Our results showed that Mn exposure at 500 µM
significantly decreased cell viability (Figure 1A) and increased LDH activity (Figure 1B) in SK-N-MC
cells after 24 h. However, pretreatment with QCT significantly attenuated Mn-induced alteration of
cell viability and LDH activity, which could protect the SK-N-MC cell from cytotoxicity [36].

To understand the antioxidant effects of QCT against the Mn-induced oxidative stress,
we quantified the intracellular ROS, MDA and GSH level and SOD and CAT activities in vitro
(Figure 2). We found that Mn treatment resulted in a significant increase in the ROS and MDA
levels, while significantly decreases GSH levels, SOD and CAT activities compared with the control
treatment and QCT alone treatment, while QCT applied to Mn treated cells reverted these events
suggesting QCT acted as a potent antioxidant against oxidative stress [36,37].

The main target of ROS-induced oxidative damage is mitochondria. In the present study,
Mn-treatment significantly decreased ∆Ψm of SK-N-MC cells (Figure 3A), which was an indicative
character of mitochondrial dysfunction. However, QCT pretreatment effectively attenuated) the
disruption of ∆Ψm which was the integrators of intrinsic and extrinsic apoptotic signals and plays
an important role in initiating mitochondria mediated apoptosis [37]. There are several pathways
involved in the apoptosis process, including the mitochondrial pathway, death receptor pathway,
and ER pathway [38,39]. Our previous study demonstrated Mn could induce the cell apoptosis in
SK-N-MC cell line via the involvement of ER stress and mitochondria dysfunction [19]. In the present
study, we found that Mn exposure significantly caused chromatin condensation, nucleus condenses,
and formation of apoptotic bodies in SK-N-MC cells and finally lead to significant increase of the
apoptotic rates [38]. Interestingly, pretreatment of QCT attenuated Mn-induced cytotoxicity involving
the inhibition of cell apoptosis (Figure 3B,C).

In this study, we examined the protective effect of QCT against Mn-induced oxidative stress
and neuroinflammation in an experimental rat model. Our data showed that, QCT improved
neurobehavioral deficits (Figure 5A) and possessed the beneficial effect on hemorrhage (Figure 5B)
and hematological parameters against Mn-induced toxicity in SD rats (Figure 5C–F) [27,40,41].

We examined the changes in the levels of ROS and protein carbonyl as well as the expression and
activities of enzymes Cu/Zn-SOD to assess the effect of QCT against Mn-induced oxidative damage
in rat brain. Our result demonstrated that, Mn treatment significantly elevated ROS and protein
carbonyl levels and decreased Cu/Zn-SOD activity in SD rat brain. However, QCT-treated groups
showed strong protection against Mn-induced alteration of ROS, protein carbonyl and Cu/Zn-SOD
(Figure 6) [42,43].

Our results showed that Mn exposure resulted in the release of proinflammatory cytokines
(TNF-α, IL-1β and IL-6) and the induction of enzymes (iNOS and COX-2) caused by activation of
NF-κB (Figure 7). As a result, these changes may lead to brain inflammation and neurotoxic reactive
nitrogen species (RNS) generation [44]. Interestingly, when the activation of NF-κB was inhibited by
QCT, the inflammatory response was attenuated in the Mn + QCT groups (Figure 7).

NF-κB protein consists of P50 and P65 subunits, and κBα protein bound with them to prevent
from the translocation into the nucleus of the cell [45]. 26S proteasome mediated pathway involved
in phosphorylation and proteolytic degradation of IκBα that lead to translocation of NF-κB into the
nucleus and regulates gene transcription [46]. The western blot analysis of NF-κB p65 was done to
investigate whether QCT could affect nuclear translocation of NF-κB in SK-N-MC cell line. The NF-κB
p65 protein expression was markedly increased in Mn alone group, while QCT significantly attenuated
it (Figure 4). We also investigate the mode of translocation of NF-κB by analyzing phosphorylation
of IκBα in cytoplasm using western blot analysis. We found that QCT significantly attenuated IκBα
phosphorylation in SK-N-MC cells (Figure 4). Consistently, in the present the study, Mn exposure
could significantly increase the expressions of NF-κB mRNA and iNOS mRNA that could attenuate
with QCT pretreatment in SD rats (Figure 8A,B). Nrf2 is a critical transcription factor regulating the
anti-oxidant genes such as GSH, CAT, SOD and HO-1 by binding to antioxidant response elements [47].
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It has been reported that the upregulation of these enzymes due to Nrf2 transcription contributes to
the cytoprotective adaptive response and plays an important role in response to oxidative stress [48].
In this study, we found that Mn exposure significantly increased the expression levels of HO-1 and
Nrf2 mRNA gens (Figure 8C,D) and protein expressions (Figure 4). Consistently, QCT pretreatment
further activated the Nrf2 and HO-1 mRNA (Figure 10C,D) and protein expressions (Figure 4).

Oxidative stress causes the depolarization of mitochondrial membrane, resulting in release of
cytochrome c from the mitochondria into the cytosol, followed by the activation of caspase pathway,
thus leading to apoptosis [49]. The activation of the pro-apoptotic protein Bax involved the intrinsic
mitochondrial apoptotic pathway, resulting in the release of cytochrome c from the mitochondria
into the cytosol, followed by the activation of caspase-9 and caspase-3, subsequently the activation of
PARP-1 protein [50,51]. Our result showed that QCT treatment significantly prevented the Mn-induced
neurodegeneration by attenuating various apoptotic markers (Figure 9).

We investigated the protective effects of QCT on Mn-induced neuronal toxicity in the striatum of
SD male rats treated with MnCl2 at a dose regimen of 15 mg/kg. The striatum was chosen because Mn
affects the striatum regions more severely than any other area of the CNS [41]. Exposure of Mn caused
histopathological alterations in the striatum (Figure 12). Administration of QCT (25 and 50 mg/kg) to
Mn-exposed rats showed improvement of histopathological alteration in comparison to Mn treated
rats (Figure 10).
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Figure 12. The proposed mechanism of action of QCT against the Mn-induced neurotoxicity.
The schematic diagram showing the proposed mechanism underlying neuroprotective effect of
QCT against Mn-induced ROS production, carbonyl stress, neuroinflammation and apoptotic
neurodegeneration. This diagram shows that QCT prevents the Mn-induced ROS production, carbonyl
stress, neuroinflammation and neurodegeneration by enhancing antioxidant activity through regulation
of apoptosis, iNOS/NF-κB and HO-1/Nrf2 pathways. Arrow (→) lines indicate a stimulatory effect
and T-bar indicates inhibitory effect.
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Oxidative stress causes neurological disorders such as Alzheimer’s disease (AD) and PD which are
associated to 8-OHdG, produced during oxidation of DNA bases [52]. Our result revealed that 8-OHdG
immunoreactivity was significantly increased in striatum region of Mn-exposed rats compared to
normal control rats, whereas 8-OHdG immunoreactivity was markedly attenuated in QCT treated
rats. Caspase upregulation and significant reduction of Bax immunoreactivity indicates alterations of
neuron in the vulnerable brain regions of AD patients [53,54]. Administration of QCT to Mn-exposed
rats showed significant reduction of activated caspase-3 and PARP-1 immunoreactivity (Figure 11).

4. Materials and Methods

4.1. Cell Viability

Crystal violet assay was used to determine Mn-induced cell death. Briefly, SK-N-MC cells were
seeded in 24-well plates with 5 × 104 cells per well in culture media and allowed to attach overnight.
The cells were pretreated with the doses of QCT at 5, 10 and 20 µg/mL at 37 ◦C in a humidified
atmosphere of 5% CO2/95% air for 6 h followed by the incubation with 500 µM Mn for 24 h. After 24 h
of incubation, removed medium and washed the cells with phosphate buffer solution (PBS) and added
0.2% crystal violet solution to each well. After 10 min of incubation, the crystal violet solution was
removed carefully by washing with water. Finally, added 100 µL 1% sodium dodecyl sulfate (SDS) to
solubilize the color solution until the color is uniform and no areas of dense coloration in bottom of
wells. The samples were read at 590 nm in a microplate reader (Spectra MAX, Gemini EM, Molecular
Device, Sunnyvale, CA, USA). The cell viability is expressed as the relative abundance of viable cells.

4.2. Lactate Dehydrogenase (LDH) Activity

LDH release into the media was taken as an indicator of cell damage and the assay is based
on the principle of reduction of nicotinamide adenine dinucleotide (NAD) by LDH. The reduced
NAD (NADH) is utilized in the stoichiometric conversion of a tetrazolium dye which is measured
spectrophotometrically using an assay kit Tox-7 (Sigma, Saint Louis, MO, USA). Briefly, SK-N-MC
cells were seeded (5 × 104 cells/well) and cultured in 24-well culture plates. The cells were then
preincubated with or without different concentrations of QCT (5, 10, and 20 µg/mL) at 37 ◦C for 6 h
followed by incubation with 500 µM MnCl2 (CAS: 7773-01-5, Sigma, Saint Louis, MO, USA) for 24 h.
After treatment was over, cells were centrifuged at 240× g for 4 min and culture supernatant was
transferred in a new plate. The assay mixture was prepared and added to each well and the plate
incubated wrapped in foil at room temperature for 30 min. Reaction was terminated by adding the stop
solution to each well. The plate was read at 490 nm at a reference wavelength of 690 nm. The extent of
LDH leakage is expressed as the fold of absorbance of control.

4.3. Measurement of Intracellular Reactive Oxygen Species (ROS) Level

ROS level was measured by using 2′,7′-dichloro-dihydro-fluorescein diacetate (DCFH-DA)
method [55]. DCFH-DA is a non-fluorescent compound, and it can be enzymatically converted
to a highly fluorescent compound, DCF, in the presence of ROS. In brief, after the treatment, SK-N-MC
cells were washed with PBS and incubated with DCFH-DA at a final concentration of 10 µmol/L for
30 min at 37 ◦C in darkness. The fluorescence intensity was measured in the microplate reader (Spectra
MAX, Gemini EM, Molecular Device, Sunnyvale, CA, USA) at an excitation wave length of 485 nm
and an emission wave length of 538 nm after the cells were washed three times with PBS to remove
the extracellular DCFH-DA. To avoid photo-oxidation of DCF, the fluorescence image was collected by
a single rapid scan (4-line average, total scan time of 4.33 s). The level of intracellular ROS was showed
as a percentage of non-treated control.
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4.4. Antioxidant Status

Antioxidant status of QCT was examined by measurement of intracellular malondialdehyde
(MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). The activities of SOD
and CAT and the levels of MDA and GSH were measured using specific assay kits according to the
manufacturer’s instructions (Nanjing Jiancheng Co., Ltd., Nanjing, China). In brief, SK-N-MC cells
were plated into 12-well plates at a density of 2 × 105 cells per well and pre-treated with QCT (5, 10
or 20 µg/mL) at 37 ◦C for 6 h. After removing the medium containing QCT, the cells were incubated
with or without Mn (500 µM) for 24 h. Cells were washed with cold PBS and lysed using the cell lysis
buffer provided by the manufacturer. The cell lysates were centrifuged at 14,000× g for 10 min at 4 ◦C.
Supernatants were collected and assayed for the levels of MDA and GSH and the activities of SOD and
CAT. Protein concentrations were quantified using the BCA protein assay kit (Intron Biotechnology,
Inc., Gyeonggi, Korea).

4.5. Measurement of Mitochondrial Membrane Potential (∆Ψm)

Harvested SK-N-MC cells the day before the experiment and seed 6-well plate with 2 × 105

cells per well in culture media and allowed to attach overnight. The cells were pretreated with the
doses of QCT at 5, 10 and 20 µg/mL at 37 ◦C for 6 h; the cells were washed and treated with Mn at
the final concentration of 500 µM for additional 24 h. In the control group, cells were treated with
QCT at 5, 10 and 20 µg/mL for 6 h, then replaced with the fresh medium containing 0.1% dimethyl
sulfoxide (DMSO) for additional 24 h. finally, the seeded cells on the 6-well plate PBS were washed
once, then incubated with 5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide
(JC-1) for 30 min at 37 ◦C in the dark, including blank wells (with non-stained cells). After incubation,
the cells were washed twice with PBS and visualized using an inverted fluorescence microscopy.
Monomeric JC-1 green fluorescence emission and aggregate were measured at excitation wavelength
488 nm, emission wavelength 530 nm on a microplate reader (Spectra MAX, Gemini EM, Molecular
Device, Sunnyvale, CA, USA).

4.6. Apoptosis Assay

Hoechst33342 staining was conducted to distinguish apoptotic cells from normal cells. Briefly,
SK-N-MC cells were seeded in 6-well plates with 2 × 105cells per well in culture media and allowed to
attach overnight. The cells were pretreated with the doses of QCT at 5, 10 and 20 µg/mL at 37 ◦C for
6 h followed by the incubation with 500 µM Mn for 24 h. After incubation, wash the cells seeded on the
6-well plate PBS once, then incubated with 5 µg/mL Hoechst 33342 for 15 min. Finally, washed twice
with PBS and observed by inverted fluorescence microscopy (Axioskop 2 plus microscope, Carl Zeiss,
Oberkochen, Germany). The apoptotic nuclei were counted from five non overlapping fields and
expressed as a percentage of the total number of nuclei counted.

4.7. Experimental Animal and Treatments

Animal study was conducted using Sprague-Dawley (SD) male rats of seven week, weighing
220–250 g each were purchased from Damool Science (Daejeon, Korea). All rats were conditioned
at 25 ± 2 ◦C and 45–55% relative humidity with 12 h light/dark cycle and kept in clean and
dry polypropylene cages. A standard laboratory diet and water ad libitum were provided.
After acclimatization, the animals were randomly divided into four groups. The study was approved by
Institutional Animal Care and Usage Committee (IACUC) of Chonbuk National University, Republic
of Korea (Approved number: CBNU 2016-45; 1 July 2016).

Details of the experimental design are described in the supporting information, supplementary
materials and methods.
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4.8. Neurological Scoring

Details of the Neurological scoring are described in the supporting information, supplementary
materials and methods.

4.9. Preparation of Peripheral Blood Smears and Differential Counts of WBC

Details of the preparation of peripheral blood smears and Differential counts of WBC are described
in the supporting information, supplementary materials and methods.

4.10. Tissue Homogenates

Animals were deeply anaesthetized and sacrificed. Brains were promptly dissected and perfused
with ice-cold 50 mM (pH 7.4) PBS. Details of the methods for tissue homogenates are described in the
supporting information, supplementary materials and methods.

4.11. Collection of Brain Slices

Details are given in the supporting information, supplementary materials and methods. Coronal
sections (12 µm) from cryofixed tissue were collected on 3-aminopropyl-trimethoxysilane-coated slides
(Sigma-Aldrich, St. Louis, MO, USA) and stored at −70 ◦C. Details of the collection of brain are
described in the supporting information, supplementary materials and methods.

4.12. Assay of ROS

Measurement of ROS was based on the oxidation of DCFH-DA to 2′7′-dichlorofluorescein,
previously described method. Details of the assay of ROS are described in the supporting information,
supplementary materials and methods.

4.13. Protein Carbonyls Assay

Protein carbonyl content was determined as a marker of oxidative damage to proteins. Details
of the protein carbonyls assay are described in the supporting information, supplementary materials
and methods.

4.14. Assay of Cu/Zn-SOD Activity

Chemicals used in the assay, including xanthine, xanthine oxidase, cytochrome c, bovine serum
albumin (BSA) and SOD, were purchased from Sigma-Aldrich. Cu/Zn-SOD activity was measured
according to previously described method. Details of the assay of Cu/Zn-SOD activity are described
in the supporting information, supplementary materials and methods.

4.15. Quantitative Real Time Polymerase Chain Reaction (qRT-PCR)

In order to investigate the protective mechanism of QCT, the expression of NF-κB, iNOS, HO-1
and Nrf-2 were examined by quantitative real time polymerase chain reaction (qRT-PCR). Total RNA
was extracted from rat brain using Trizol reagent (sigma-Aldrich, Saint Louis, MO, USA). Details are
given in the supporting information, supplementary materials and methods.

4.16. Western Blot Analysis

Proteins extracted from either brain tissues (80 µg) or SK-N-MC cells (40 µg) were analyzed
by Western blotting. Details are given in the supporting information, supplementary materials
and methods.
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4.17. Histology and Immunohistochemistry

Histological evaluation was performed following the method of Wang et al. [41], on the striatum
of brains from control and experimental groups after embedded in optimal cutting temperature
(OCT, Leica Biosystems Melbourne Pty Ltd., DB Maarn, The Netherland) medium. The pathological
changes were viewed under light microscope after staining with hematoxylin and eosin. In order to
determine the effect of the treatments on the reactivity of oxidative protein 8-OHdG, pro-apoptotic
protein Bax, apoptotic protein caspase-3 and PARP-1 immunohistochemistry was performed in the
striatum of all experimental groups, respectively. Details are given in the supporting information,
supplementary materials and methods.

4.18. Statistical Data Analysis

All the data were expressed as mean ± SD and one way ANOVA (Analysis of variance) followed
by Dunnett’s test was used for the statistical analysis using SPSS software (version 16, SPSS, Inc.,
Chicago, IL, USA). * p < 0.01 and ** p < 0.001 were considered significant.

5. Conclusions

In conclusion, the present study reveals that carbonyl stress, mitochondrial apoptotic pathway and
inflammatory response participate in Mn-induced neurotoxicity (Figure 12). Importantly, QCT could
effectively attenuate the Mn-induced ROS production, carbonyl stress, neuroinflammation and
neurodegeneration by enhancing antioxidant activity through regulation of apoptosis, iNOS/NF-κB
and HO-1/Nrf2 pathways (Figure 12).

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/18/9/1989/s1.
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Mn Manganese
QCT Quercetin
LDH Lactate dehydrogenase
WBC White blood cell
h Hour
ER Endoplasmic reticulum
PD Parkinson’s disease
AD Alzheimer’s disease
ROS Reactive oxygen species
MDA Malondialdehyde
SOD Superoxide dismutase
CAT Catalase
GSH Glutathione
HO-1 Heme oxygenase 1
WBC White blood cell
8-OHdG 8-Hydroxy-2′-deoxyguanosine
TNF-α Tumor necrosis factor-α
IL-1β Interleukin-1β
IL-6 Interleukin-6
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COX-2 Cyclooxygenase-2
iNOS Inducible nitric oxide synthase
SD Sprague-dawley
PBS Phosphate buffer solution
DCFH-DA 2′,7′-dichloro-dihydro-fluorescein diacetate
qRT-PCR Quantitative real time polymerase chain reaction
OCT Optimal cutting temperature
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