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Abstract: Extracellular signal-regulated kinase (ERK) signaling plays a crucial role in regulating
immune cell function and has been implicated in autoimmune disorders. To date, all commercially
available inhibitors of ERK target upstream components, such as mitogen-activated protein (MAP)
kinase/ERK kinase (MEKs), but not ERK itself. Here, we directly inhibit nuclear ERK translocation
by a novel pharmacological approach (Glu-Pro-Glu (EPE) peptide), leading to an increase in
cytosolic ERK phosphorylation during T helper (Th)17 cell differentiation. This was accompanied by
diminished secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF), a cytokine
influencing the encephalitogenicity of Th17 cells. Neither the production of the cytokine interleukin
(IL)-17 nor the proliferation rate of T cells was affected by the EPE peptide. The in vivo effects
of ERK inhibition were challenged in two independent variants of experimental autoimmune
encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Overall, ERK inhibition had only
a very minor impact on the clinical disease course of EAE. This indicates that while ERK translocation
might promote encephalitogenicity in T cells in vitro by facilitating GM-CSF production, this effect is
overcome in more complex in vivo animal models of central nervous system (CNS) autoimmunity.

Keywords: T cells; ERK pathway; EPE peptide; experimental autoimmune encephalomyelitis;
multiple sclerosis; cell signaling

1. Introduction

Extracellular signal-regulated kinase (ERK) signaling is known to play a crucial role in regulating
cellular proliferation, differentiation, and survival [1]. Aberrant ERK signaling is involved in
carcinogenesis [2], and attempts to target the ERK cascade have shown therapeutic potential in
the fight against cancer [3–5]. Furthermore, recent studies suggest a role of the ERK cascade in the
innate immune system and in autoimmune responses [6]. The mitogen-activated protein (MAP)
kinase/ERK kinase (MEK) components upstream of ERK and ERK itself regulate multiple facets of
the immune system [7–9]. Multiple pieces of evidence point to the importance of ERK signaling in T
cells, starting from signal transduction from the T cell receptor (TCR) to the G protein Ras and further
to downstream components of the kinase cascade, namely, Raf, MEK, and ERK. In peripheral T cells,
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signaling via Ras is needed for TCR-initiated ERK activation [10,11]. T cells and macrophages showed
phosphorylation of the MAP kinases ERK, JNK, and p38, and it was suggested that phosphorylated
MAP kinases are important in the acute initiation of experimental autoimmune encephalomyelitis
(EAE), an animal model for human multiple sclerosis (MS) [7]. In the EAE model, pharmacological
inhibition of the MEK component upstream of the ERK ameliorated disease severity. Inhibition of
the ERK cascade leading to suppressed interleukin (IL)-23 and IL-1β secretion by dendritic cells
(DCs) was identified as the underlying route, subsequently leading to reduced IL-17 production by
proinflammatory T helper (Th)17 cells [8]. In contrast, our lab has previously shown that ERK1-deficient
dendritic cells are more potent at priming a T cell response [9]. Studies of ERK activity in peripheral
T cells in rheumatoid arthritis patients and in a mouse model of this disease showed augmented
ERK activity in hyperactive T cells [12]. Most of the known potentially therapeutic inhibitors of the
ERK cascade target up-stream components, such as growth factor receptors, Raf kinases, and MEKs,
and only one inhibitor, SCH772984, targets ERK itself [13]. It became clear that the low efficacy
of these drugs is mainly due to the prevention of negative feedback loops initiated by the ERK
cascade [5,14,15]. Recently, a novel motif within ERK, called nuclear translocation signal (NTS),
was identified. In resting T cells, most of the ERK1/2 molecule is localized in the cytoplasm connected
to a variety of cytosolic proteins such as cytoskeletal components and scaffold proteins as their
anchoring points [16]. Upon activation of ERK1/2, it detaches from its anchor and translocates into the
nucleus involving a TEY phosphorylation-dependent conformational change [17]. The phosphorylation
of the thereby exposed NTS then allows for binding to Importin-7 (Imp7), and consequently induces the
nuclear translocation of these kinases. The myristoylated, NTS-derived phosphomimetic peptide (EPE
peptide) inhibits the interaction of Imp7 with ERK1/2, and consequently the nuclear translocation
of the latter [18]. Stimulation-induced phosphorylation resulted in its interaction with Imp7 and
nuclear translocation of ERK [2,19]. Given the dominant role of the nuclear function of ERK in
mediating proliferation and differentiation, prevention of the nuclear translocation of ERK should
inhibit proliferation without affecting the initiation of the negative feedback loops. Indeed, studies
using peptide inhibitors of translocation prevented nuclear entry of ERKs and resulted in slower
growth of various cells without affecting the AKT pathway [18,20]. However, the potential of the
inhibition of ERK translocation in autoimmune neuroinflammation has not been tested so far.

In this study, we found that inhibition of ERK translocation by the EPE peptide decreases
proliferation of splenocytes but not of autoreactive Th17 cells. We show that blockade of the ERK
cascade with the MEK inhibitor UO126 suppressed T cell proliferation rates. Th17 differentiation
increased intracellular ERK phosphorylation. The secretion of the cytokine granulocyte-macrophage
colony-stimulating factor (GM-CSF) was diminished by the EPE peptide. When tested in an animal
model of MS, the inhibitory peptide EPE did not affect the outcome of EAE. We conclude that ERK
translocation might promote encephalitogenicity in T cells in vitro by facilitating GM-CSF production,
but this effect is overcome in the more complex in vivo animal model of MS.

2. Results

2.1. ERK Translocation Promotes Encephalitogenicity in T Cells by Facilitating GM-CSF Production

Activation and proliferation of CD4+ T helper cells is crucial for the onset and progression
of EAE disease in mice, thus we first tested whether inhibition of the ERK cascade influences
proliferation in peripheral CD4+ splenocytes (Figure 1A). It has been shown before that MEK inhibitors
hinder ERK phosphorylation and restrict T lymphocyte function. Especially the MEK inhibitor
U0126 was shown to impair proliferation and cytokine secretion of T lymphocytes [21]. Therefore,
we measured the effects of U0126 and EPE on proliferation and cytokine production. CD4+ and CD8+

differentiated cells were labeled with carboxyfluorescein succinimidyl ester (CFSE) and stimulated with
anti-CD3 and anti-CD28 in the presence of dimethyl sulfoxide (DMSO, control solvent), EPE peptide,
or UO126 for 72 h. Measurement of proliferation using flow cytometry showed significant reduction in
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proliferation upon MEK inhibition. Treatment with the EPE peptide led to a slight, non-significant,
decrease in proliferation in a concentration-dependent manner (Figure 1B,C). The proliferation of
CD8 cells was unchanged after EPE treatment whereas MEK inhibition with UO126 inhibited CD8
cell proliferation (Figure 1D) significantly. Intracellular expression of the cytokine IL-17 and the
transcription factor FoxP3, which indicate changes in T cell plasticity, were analyzed by flow cytometry.
At all concentrations tested, the production of IL-17 was significantly reduced by MEK inhibition
though not by EPE. At higher concentrations there was no synergistic effect achieved by EPE and
UO126 treatment (Figure 1E). FoxP3 production was not found to be changed significantly (Figure 1E).
Interestingly, secretion of GM-CSF, a cytokine influencing the encephalitogenicity of Th17 cells,
was diminished by both EPE and UO126 (Figure 1F).
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Figure 1. Inhibition of extracellular signal-regulated kinase (ERK) decreased the expression of 
granulocyte-macrophage colony-stimulating factor (GM-CSF) but not interleukin (IL)-17 upon T 
helper (Th)17 cell differentiation. (A) Schematic illustration of the mitogen-activated protein kinase 
(MEK)-ERK pathway and illustration of pharmacological inhibitors; (B,C) CFSE-labeled CD4+ T cells 
from the spleen of C57BL/6x2d2 mice were stimulated with antibodies to CD3 (3 μg/mL) and CD28 
(2.5 μg/mL) and treated with EPE (5 μM, 20 μM) and UO126 (5 μM, 20 μM) for 72 h. Bar charts show 
the percentage of divided cells that reached four proliferation cycles and represent six independent 
experiments. Five micromolars (5 μM) EPE vs. DMSO, p = 0.66, 20 μM EPE vs. DMSO, p = 0.34. 
Division index (DI) was calculated according to FlowJo defined by the average number of divisions 
for all cells in the culture [22]. Five micromolars (5 μM) EPE vs. DMSO, p = 0.89, 20 μM EPE vs. DMSO, 
p = 0.35, 5 μM UO126 vs. DMSO, p = 0.36; (D) CFSE-labeled CD8+ T cells from the spleen of C57BL 
mice were stimulated with antibodies to CD3 (3 μg/mL) and CD28 (2.5 μg/mL) and treated with EPE 
(5 μM, 20 μM) and UO126 (5 M, 20 μM) for 72 h (control = DMSO). Bar charts show the percentage of 
divided cells that reached four proliferation cycles and represent six independent experiments. Five 
micromolars (5 μM) EPE vs. DMSO, p = 0.15, 20 μM EPE vs. DMSO, p = 0.32, 5 μM UO126 vs DMSO, 
p = 0.18. Division index was calculated according to FlowJo defined by the average number of 
divisions for all cells in the culture [22]. 5 μM EPE vs. DMSO, p = 0.19, 20 μM EPE vs. DMSO, p = 0.29; 
(E) Naïve CD4+ T cells from C57BL/6x2d2 mice were stimulated with antibodies to CD3 (3 μg/mL) 
and CD28 (2.5 μg/mL) under Th17-promoting culture conditions and treated with EPE and UO126 
for 72 h. On day three cells were stimulated again with phorbol 12-myristate 13-acetate (PMA) (1:200) 
and ionomycin (1:1000) for 4 h, harvested and stained for IL-17 (5 μM UO126 vs. DMSO, p = 0.24) and 
FoxP3 (5 μM EPE vs. DMSO, p = 0.2, 20 μM EPE vs. DMSO, p = 0.43, 5 μM EPE/ UO126 vs. DMSO, p 
= 0.13, 20 μM UO126 vs. DMSO, p = 0.21). Bar charts represent a summary of eight independent 
experiments; (F) Cell culture supernatants from five independent Th17 in vitro cultures were 
analyzed using a bead-based immunoassay measuring GM-CSF. Treating cells with either EPE or 
UO126 significantly decreased protein secretion of GM-CSF. All error bars show mean fluorescence 
intensity (MFI) and standard error of the mean (SEM). p-Values were obtained using unpaired 
student-t-test comparing two groups. * p < 0.05. 

2.2. Differentiation Towards a Th17 Phenotype Increases ERK Phosphorylation with No Effect by EPE 
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It is known that inhibition of upstream components of the cascade abolishes ERK activatory 
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peptide should not affect phosphorylation of ERK-TEY (Figure 2A). To verify this, we carried out 
intracellular staining of the TEY phosphorylation site at the ERK molecule using an anti-phospho-
TEY antibody and analyzed the signal by flow cytometry. ERK expression was significantly increased 
after 72 h under Th17-promoting culture conditions compared to naïve CD4+ T cells (Figure 2B). 
Treatment of cells during Th17 differentiation using U0126 inhibited ERK-TEY phosphorylation, 
whereas EPE peptide had no influence on the ERK-TEY phosphorylation (Figure 2C). 

Figure 1. Inhibition of extracellular signal-regulated kinase (ERK) decreased the expression of
granulocyte-macrophage colony-stimulating factor (GM-CSF) but not interleukin (IL)-17 upon T
helper (Th)17 cell differentiation. (A) Schematic illustration of the mitogen-activated protein kinase
(MEK)-ERK pathway and illustration of pharmacological inhibitors; (B,C) CFSE-labeled CD4+ T cells
from the spleen of C57BL/6x2d2 mice were stimulated with antibodies to CD3 (3 µg/mL) and CD28
(2.5 µg/mL) and treated with EPE (5 µM, 20 µM) and UO126 (5 µM, 20 µM) for 72 h. Bar charts show
the percentage of divided cells that reached four proliferation cycles and represent six independent
experiments. Five micromolars (5 µM) EPE vs. DMSO, p = 0.66, 20 µM EPE vs. DMSO, p = 0.34.
Division index (DI) was calculated according to FlowJo defined by the average number of divisions for
all cells in the culture [22]. Five micromolars (5 µM) EPE vs. DMSO, p = 0.89, 20 µM EPE vs. DMSO,
p = 0.35, 5 µM UO126 vs. DMSO, p = 0.36; (D) CFSE-labeled CD8+ T cells from the spleen of C57BL
mice were stimulated with antibodies to CD3 (3 µg/mL) and CD28 (2.5 µg/mL) and treated with EPE
(5 µM, 20 µM) and UO126 (5 M, 20 µM) for 72 h (control = DMSO). Bar charts show the percentage
of divided cells that reached four proliferation cycles and represent six independent experiments.
Five micromolars (5 µM) EPE vs. DMSO, p = 0.15, 20 µM EPE vs. DMSO, p = 0.32, 5 µM UO126 vs.
DMSO, p = 0.18. Division index was calculated according to FlowJo defined by the average number
of divisions for all cells in the culture [22]. 5 µM EPE vs. DMSO, p = 0.19, 20 µM EPE vs. DMSO,
p = 0.29; (E) Naïve CD4+ T cells from C57BL/6x2d2 mice were stimulated with antibodies to CD3
(3 µg/mL) and CD28 (2.5 µg/mL) under Th17-promoting culture conditions and treated with EPE
and UO126 for 72 h. On day three cells were stimulated again with phorbol 12-myristate 13-acetate
(PMA) (1:200) and ionomycin (1:1000) for 4 h, harvested and stained for IL-17 (5 µM UO126 vs. DMSO,
p = 0.24) and FoxP3 (5 µM EPE vs. DMSO, p = 0.2, 20 µM EPE vs. DMSO, p = 0.43, 5 µM EPE/
UO126 vs. DMSO, p = 0.13, 20 µM UO126 vs. DMSO, p = 0.21). Bar charts represent a summary of
eight independent experiments; (F) Cell culture supernatants from five independent Th17 in vitro
cultures were analyzed using a bead-based immunoassay measuring GM-CSF. Treating cells with
either EPE or UO126 significantly decreased protein secretion of GM-CSF. All error bars show mean
fluorescence intensity (MFI) and standard error of the mean (SEM). p-Values were obtained using
unpaired student-t-test comparing two groups. * p < 0.05.

2.2. Differentiation Towards a Th17 Phenotype Increases ERK Phosphorylation with No Effect by EPE Peptide

It is known that inhibition of upstream components of the cascade abolishes ERK activatory
phosphorylation at its TEY motif [23,24], whereas inhibition of ERK’s nuclear translocation using EPE
peptide should not affect phosphorylation of ERK-TEY (Figure 2A). To verify this, we carried out
intracellular staining of the TEY phosphorylation site at the ERK molecule using an anti-phospho-TEY
antibody and analyzed the signal by flow cytometry. ERK expression was significantly increased after
72 h under Th17-promoting culture conditions compared to naïve CD4+ T cells (Figure 2B). Treatment
of cells during Th17 differentiation using U0126 inhibited ERK-TEY phosphorylation, whereas EPE
peptide had no influence on the ERK-TEY phosphorylation (Figure 2C).
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phosphorylation was significantly higher in CD4+ cells from the CNS than in CD4+ cells from the 
periphery (Figure 3D). Cells from EPE peptide-treated mice showed no effect on IL-17 or IFNγ 
production (Figure 3C), or on the expression of phospho-ERK (Figure 3D). Thereafter, the effect of 
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Figure 2. Treatment with UO126 but not EPE peptide ERK inhibits phosphoTEY-ERK expression in
differentiating Th17 cells. (A) Schematic illustration of ERK pathway and ERK phosphorylation sites
TEY and SPS [23,24]; (B) Histograms represent the pERK staining (black line) in comparison to the
isotype staining (grey line) in Th17 cells developing 72 h under Th17-promoting culture conditions.
Differentiation under Th17-promoting conditions increased the ERK phosphorylation in comparison
to naïve cells; (C) Expression of the TEY pERK sequence is only inhibited after treatment with MEK
inhibitor UO126. Bar charts represent a summary of five independent experiments; error bars show
SEM. p-Values were obtained using unpaired student-t-test comparing two groups. * p < 0.05.

2.3. Inhibition with the EPE Peptide Has Only Discrete Influence on the Outcome in Two Different
EAE Models

Previous studies showed that treatment with the MEK inhibitor U0126 ameliorated the course of
active EAE when administered during disease induction as well as after disease onset [8]. C57BL/6
mice were actively immunized and treated intraperitoneally (i.p.) with EPE peptide two days before
disease induction, and then every other day until day 18. Mice treated with the EPE peptide showed
a non-significant trend towards ameliorated disease symptoms (Figure 3A,B, see also Table 1 for data
on all EAE experiments). On day 18 after EAE induction, leukocytes from the central nervous system
(CNS) and the spleen were isolated and stimulated ex vivo with PMA and ionomycin and analyzed
for their cytokine profile. IL-17 and IFNγ production were both elevated in CNS-derived lymphocytes
in comparison to those from the periphery (Figure 3C). Furthermore, TEY ERK phosphorylation was
significantly higher in CD4+ cells from the CNS than in CD4+ cells from the periphery (Figure 3D).
Cells from EPE peptide-treated mice showed no effect on IL-17 or IFNγ production (Figure 3C), or on
the expression of phospho-ERK (Figure 3D). Thereafter, the effect of EPE was tested in a second model
of EAE, namely proteolipid protein (PLP)-induced relapsing-remitting EAE in SJL mice. In this model,
treatment with the EPE peptide showed almost no effect on EAE outcome when administered i.p.,
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two days before disease induction, and again every other day until day 20 (Figure 3E, see also Table 1
for data on all EAE experiments). Mild disease amelioration lasted only until the end of the treatment
protocol although the cumulative score at day 20 was significantly reduced (Figure 3E). Taken together,
these results indicate that the inhibition of nuclear ERK translocation has only minor influence in
complex in vivo models of CNS autoimmunity.
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Figure 3. The inhibitory EPE peptide has only minor impact in EAE models in vivo. (A) Active
EAE in C57BL/6 mice was induced by the injection of myelin oligodendrocyte glycoprotein
(MOG)35–55/complete Freund’s adjuvant (CFA) emulsion followed by pertussis toxin. EPE peptide
was administered intraperitoneally (i.p.) two days before disease induction, and then every other day
until day 18; (B) The cumulative score of all EAE animals treated with EPE and DMSO (as control)
was assessed. On day 18 after EAE induction, leukocytes from the central nervous system (CNS)
and splenocytes were stimulated ex vivo and stained for; (C) IL-17 and IFNγ; (D) pERK. Bar charts
represent the mean percentage of nine mice and error bars show SEM (CD4+ cells: DMSO CNS vs.
EPE CNS, p = 0.95 and DMSO Spleen vs. EPE Spleen, p = 0.09; non-CD4 cells DMSO Spleen vs. EPE
Spleen, p = 0.06); (E) Active EAE was induced in female SJL mice via injection with murine PLP139–151.
Intraperitoneal administration of DMSO as a solvent (n = 5) or EPE peptide (n = 6) started two days
before immunization, and then every other day until day 20. EPE administration slightly reduced the
EAE course; however, the cumulative score was significantly decreased by the treatment with EPE.
Error bars show SEM. p-Values were obtained using unpaired student-t-test comparing two groups.
* p < 0.05.
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Table 1. Experimental autoimmune encephalomyelitis (EAE) data from all experiments.

Groups (A) Wildtype (WT)
(B) WT + EPE

(A) Wildtype (WT)
(B) WT + EPE

n 9 per group 8 per group

Incidence (A) 8/9
(B) 7/9

(A) 5/8
(B) 6/8

Mean day of onset
(days ± SEM)

(A) 12.5 ± 0.4
(B) 14.3 ± 0.9

(A) 11.8 ± 0.4
(B) 12 ± 0.4

Mean day of disease maximum
(days ± SEM)

(A) 2.9 ± 0.4
(B) 2.6 ± 0.4

(A) 1.8 ± 0.3
(B) 1.3 ± 0.3

Mean maximal score (± SEM) (A) 2.9 ± 0.1
(B) 2.4 ± 0.3

(A) 2 ± 0.1
(B) 1.7 ± 0.1

3. Discussion

Protein kinases are considered to be attractive drug targets and a number of chemicals are in
clinical trials for the combat against cancer as well as autoimmune diseases such as rheumatoid
arthritis [25]. In this study, we show that the secretion of granulocyte-macrophage colony-stimulating
factor (GM-CSF) in Th17 cells was diminished by the inhibition of the nuclear ERK translocation with
the EPE peptide. However, the outcome of EAE models in vivo was not ameliorated. We conclude that
ERK translocation might promote encephalitogenicity in T cells in vitro, but that this effect is overcome
by cytoplasmic ERK activation in more complex in vivo situations.

It has been reported that ERK−/− mice have increased susceptibility to EAE [26], while its cellular
mechanisms are incompletely understood. In this context, one has to keep in mind that phosphorylation
of ERK is thought to play a pivotal role in a wide range of cellular activities, and a number of studies
have demonstrated a major role for the components of the ERK cascade in the regulation of the innate
and adaptive immune responses, though most of the studies only investigate the role of Th1 and Th2
cells [26–29]. All of these studies highlight the importance of ERKs as crucial regulators of Th1 and
Th2 cell activation and effector cytokine expressions of IL-4 and IL-2 [27], but these studies did not
investigate the phenotype of Th17 cells. In in vivo studies where MEK1/2 was inhibited, clinical signs
of disease were ameliorated in EAE due to a negative regulator function of ERK1 on autoimmune Th1
responses, but T cell development of other subtypes such as Th17 cells was not influenced in vivo [8].
This might explain why targeting ERK functionality in Th1 cells might have a more pronounced
impact than targeting Th17 cells in vivo. Given the current understanding that IL-23, rather than IL-12,
is the critical cytokine for the establishment and persistence of inflammatory lesions in EAE [30–32],
one study investigated the possibility of not targeting ERK signaling of Th17 cells directly. Instead,
they made use of DCs from ERK1−/− mice, which produce greater levels of IL-23, which then indirectly
resulted in enhanced IL-17 production of T cells. However, they failed to detect any differences in
IL-23 production of DCs from WT versus ERK−/− mice, again indicating a disconnection between the
significant effects of ERK1 deficiency on the induction of IL-2 and IL-10 and the only modest effects on
EAE pathogenesis [26].

Another important point is that most of the published EAE studies target MEK components and
inhibit upstream of ERK to ameliorate disease outcome, which then is accompanied by a reduced
ability of T cells to produce IL-17 and IFNγ [7–9,26]. Thereby, we conclude that ERK itself, being
downstream of MEK, does not play a pivotal role in Th17 cell-mediated pathogenicity in EAE. However,
the approach to target nuclear ERK itself by using the inhibitory EPE peptide provided significant
insight into this pathway, in comparison to several components targeting upstream of ERK. In this
context, PD98059 and U0126 are directed against MEK1 and MEK2 [33,34]. MEK inhibitors such as
PD0325901 [21] and PD98059 [35,36] have been shown to exhibit negative effects on T-lymphocyte
proliferation and cytokine secretion and were thereby excluded for any experimental set ups.
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Studying the animal model of MS, one has to keep in mind that the formation and maintenance
of a functional blood brain barrier (BBB) plays a pivotal role and relies on a unique crosstalk of brain
microvascular endothelial cells with their neighboring cells such as astrocytes, microglia and neurons.
In mice suffering from EAE, encephalitogenic T cells breach the BBB which is associated with the
severity of MS and little is known so far whether the BBB integrity in MS might be influenced by
ERK-inhibition or the reduction of the nuclear translocation of ERK. During inflammation CCL2 is
one of the principal chemokines secreted by astrocytes, endothelial cells, and neurons at the BBB [37]
leading to immune cell recruitment to areas prone for infiltration. One previous study investigated the
molecular pathways involved in the migratory pattern of DCs versus T cells and dissected the roles of
the signaling molecules p38-MAPK and ERK1/2 on cellular trafficking [38]. Interestingly, in response
to CCL2 ERK-dependent migratory response in DCs was highlighted, whereas T-cell migration clearly
depended on p38-MAPK signaling [38], thus indicating a minor role of ERK inhibition on T cell
migration patterns, though thus far the effect of EPE itself has not been tested on brain endothelial
cells and their integrity.

Additionally, other pathways besides the ERK cascade might play a more prominent role in Th17
cell pathogenicity since cytokines regulating Th17 differentiation can be mediated through a selective
signal transducer and activator of transcription (STAT) transcription factor that functions to regulate
lineage-specific gene expression [39–41]. It has been reported that STAT3 is required for commitment
of naive T cells towards the Th17 developmental pathway, thus suggesting the potential involvement
of the STAT3 pathway in mediating CNS inflammatory diseases [39,42].

When investigating the EPE peptide and its functionality, one must consider whether the
pharmacology of this specific peptide is suitable for experiments in a rather complex animal model
such as EAE. Phosphorylation of the SPS sequence is necessary for binding of ERK to Importin 7 [43].
As a result, ERK is thought to be prevented from binding to Importin 7, a prerequisite enabling ERK to
translocate to the nucleus [18,44]. For T lymphocytes, it was shown that interruption of MEK pathway
using PD98059 inhibited antigen-induced T cell proliferation [45]. Another study showed that U0126
decreased ERK phosphorylation and restricted T lymphocyte proliferation [21]. All of these inhibitors
show beneficial effects upstream of ERK. One future experiment to clarify a clear effect of ERK for
autoimmune CNS disorders would be to use a MEK and ERK inhibitor at the same time in mouse
models of CNS inflammation. Indeed, we did not address whether this small myristoylated peptide
manages to overcome the blood brain barrier (BBB) and thereby has any direct effect in the CNS
during EAE. EPE peptide is a competitive inhibitor, therefore the dose-effect curve has to be carefully
titrated for each cell type and the bioavailability has to be taken into prospect. Pharmacodynamic
and pharmacokinetic properties of brain targeting drugs are still mostly studied with in vivo/in situ
methods such as internal carotid perfusion or intracerebral dialysis fibers, and human studies are
restricted to post mortem investigations or imaging techniques such as magnetic resonance imaging
(MRI) and positron emission tomography (PET) with limited resolution, thus explaining why most
of the BBB studies are still restricted to animal models. For our results, more studies are necessary
to evaluate the impact of inhibiting pERK in the context of disruption/ crossing of the BBB and
to determine the bioavailability of the EPE peptide in the CNS to dissect the poor response in our
in vivo model. Possible approaches might be the usage of isolated brain microvessels [46], an easy
accessible model maintaining many structural and functional properties of the BBB or the use of the
most common and widely used transwell-systems, which are monolayers of endothelial cells grown
on a semipermeable membrane separating a luminal and abluminal compartment [47] which is ideal
for testing cellular transmigration processes and permeability and binding affinity measurements [48].
Several other in vitro models of the BBB have been developed in recent years, but none of these
models replace animal or human studies. Novel possibilities to investigate the bioavailability of
certain therapeutics have been published in cancer models where penetration enhancers are coated on
biodegradable polymeric nanogels loaded with cytotoxic drugs to determine the chemotherapeutic
potential [49]. Alternatively, nanoparticles have been conveniently modified to access a specific



Int. J. Mol. Sci. 2017, 18, 1990 9 of 14

promoter region of a cancer’s genome which can be exploited to manipulate the expression of many
genes implicated in cancer or also in other diseases [50]. Innovative approaches like these could help
to define the impact of the ERK pathway in MS and might improve our poor in vivo response in
EAE models, for example, by a sustained release of an inhibitor via nano-drug delivery systems for
enhancing the bioavailability of these.

Though EPE peptide shows clear effects in tumor cells and in a xenograft tumor mouse
model [18], the response of primary cells to this peptide might differ completely. Furthermore,
the relevance of the SPS phosphorylation site needs to be evaluated in more detail in comparison to
the phospho-TEY sequence.

4. Materials and Methods

4.1. Mice

C57BL/6J (B6) and SJL/J mice were purchased from Janvier Labs (Saint-Berthevin Cedex, France).
Animal procedures were performed under the supervision of authorized investigators in accordance
with the European Union normative for care and use of experimental animals, conducted according to
the German Animal Protection Law, and approved by the appropriate state committees for animal
welfare (TVA# 23 177-07/G10-1-008, date of approval 8 April 2013).

4.2. Induction of Experimental Autoimmune Encephalomyelitis (EAE)

Mice were bred under specifically pathogen-free conditions and kept in-house for experiments
in individually ventilated cages. Active EAE in SJL/J mice was induced by subcutaneous four-point
immunization with 250 µg PLP peptide and 800 mg H37RA emulsified in Complete Freund’s Adjuvant,
followed by two doses of 200 ng pertussis toxin in phosphate buffered saline (PBS) given i.p. at the
time of immunization. Active EAE in C57BL/6 mice was induced similarly, with Hooke Kit EK
2110 according to manufacturer’s instructions using MOG35–55 peptide instead of the PLP peptide.
ERK inhibitory peptide EPE, and MEK inhibitory compound U0126 were diluted in DMSO to a stock
concentration of 100 µM and kept at −80 ◦C. Treatment (15 mg/kg of SCR or EPE or 5 mg/kg of UO126)
was given every other day after the clinical assessment at a volume of 50 µL per i.p. administration
per mouse, starting two days before immunization. The control mice were given 50 µL DMSO.
After induction of EAE, mice were scored daily. Clinical signs of EAE were translated into clinical
scores as follows: 0 = no detectable signs of EAE; 1 = complete tail paralysis; 2 = partial hind limb
paralysis; 3 = complete bilateral hind limb paralysis; 4 = total paralysis of forelimbs and hind limbs;
5 = death.

4.3. Synthesis of Peptide Constructs

The N-myristoylated, C-amidated linear peptides GQLNHILGILGEPEQEDL and GNILSQELP
HSGDLQIGL (random control sequence) were manufactured synthetically (Peptide 2.0, Chantilly, VA,
USA). Peptide was dissolved to 100 µM in DMSO for further use.

4.4. Cell Isolation from Spleen and the Central Nervous System (CNS)

Mice were anesthetized with a 1.5% ketamine solution. The spleen was removed and placed in
media substituted with 5% fetal calf serum (FCS) on ice. The rib cage was opened and a needle was
inserted into the left ventricle and a small incision was performed in the right atrium. The vascular
system of the body circuit was rinsed with 20 mL cold PBS to remove blood cells from the vasculature.
The brain and the spinal cord were removed and placed in a tube with 5 mL Iscove’s Modified
Dulbecco’s Medium (IMDM). Brain and spinal cord were cut into small pieces and then digested for
30 min at 37 ◦C with collagenase IV (Sigma, Taufkirchen, Germany), DNase I (Roche, Mannheim,
Germany; Novartis, Nürnberg, Germany) and collagenase/dispase (Roche, Mannheim, Germany),
mashed through a 100-µm cell strainer and washed, then the cell pellet was resuspended in 4 mL of
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a 40% Percoll solution with IMDM, placed on 70% Percoll, and centrifuged for 30 min at 750 g at room
temperature (RT) with a very small acceleration and deceleration to generate a gradient. The top layer
was discarded and the cell layer of the phase between Percoll at the bottom and IMDM at the top was
collected with a 1-mL pipette and washed. Spleens were mashed through a 100-µm cell strainer and
washed. To remove erythrocytes, cells were resuspended in lysis buffer (NH4Cl (8.29 g/L), KHCO3

(1 g/L), NA2EDTA (37.2 mg/L)) and washed.

4.5. Th17 Cell Culture

Spleens and lymph nodes from B6.2d2 mice (6–10 weeks old) were isolated and sorted naïve as
CD4+ and CD62L+ cells with a purity of >86% of total cells. Th17 cell differentiation was achieved
by the addition of 5 ng/mL TGF-β, 10 ng/mL murine recombinant (mr) IL-6, 10 µg/mL anti-IL-4,
and 10 µg/mL anti-IFNγ. Cells were kept in cell culture medium for three days and split on day 5.
T cells were generally taken on day 3 after a restimulation with PMA and ionomycin and checked for
their cytokine expression (Th17 cells: 15–40% IL-17+). GM-CSF levels were analyzed by the use of the
Mouse GM-CSF Flex Set (BD Cytometric Bead Array (CBA)) according to the manufacturer’s protocol.

4.6. Proliferation Assay

CD4+ or CD8+ T cells were incubated in prewarmed Roswell Park Memorial Institute medium
(RPMI) + 1% Hepes. CFSE was added with a final concentration of 2.5 µM and incubated for 10 minutes
at 37 ◦C. Cells were stimulated with plate-bound antibodies against CD3 (3 µg/mL) and CD28
(2.5 µg/mL) in the presence of different concentrations of MEK and ERK inhibitors. Naïve T cells were
administered cytokines for the differentiation of Th17 cells. Cells were incubated for at least 72 h prior
to analysis of proliferation using flow cytometry. Division index was calculated according to FlowJo
defined by the average number of divisions for all cells in the culture [22].

4.7. Antibodies

Surface molecules were stained and washed in PBS buffer. Dead cells were stained using Fixable
Viability Stain 450 (BD, Bioscience, Heidelberg, Germany) or propidium iodide. For all intracellular
and intranuclear staining procedures, the Foxp3/Transcription Factor Staining Buffer Set (eBioscience,
Frankfurt, Germany) was used according to the manufacturer’s instructions. The following antibodies
were used: CD4-PeCy7 (BD Bioscience, San Jose, CA, USA), IL-17A- AF647 (BD Bioscience), IFNγ-
Horizon (BD Bioscience), FoxP3-PE (eBioscience, San Diego, CA, USA) and pERK-APC (eBioscience).
Stained cells were measured by FACSCanto II (BD Biosciences) and analyzed with FlowJo software
(Treestar, Inc., San Carlos, CA, USA).

4.8. Statistics

Statistical analyses were performed using unpaired two-tailed Student’s t test. Mann-Whitney test
was used for nonparametric tests, not assuming Gaussian distributions. Unless otherwise indicated,
data are presented as the mean ± standard error of the mean (SEM). *, p < 0.05; ns, p > 0.05.

5. Conclusions

In this study, we directly inhibit nuclear ERK translocation by a novel pharmacological approach
(EPE peptide), leading to diminished secretion of granulocyte-macrophage colony-stimulating factor
(GM-CSF), a cytokine influencing the encephalitogenicity of Th17 cells. Neither the production of
the cytokine interleukin (IL)-17 nor the proliferation rate of T cells was affected by the EPE peptide.
The in vivo effects of ERK inhibition had only a minor impact on the clinical disease course of EAE.
In summary, we conclude that while ERK translocation might promote pathogenicity in Th17 cells
in vitro by facilitating GM-CSF production, intervention of this pathway did not translate into beneficial
effects in the EAE model.
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Abbreviations

BBB Blood brain barrier
CFA Complete Freund's adjuvant
CFSE Carboxyfluorescein succinimidyl ester
CNS Central nervous system
DCs Dendritic cells
DMSO Dimethyl sulfoxide
EAE Experimental autoimmune encephalomyelitis
EPE Glu-Pro-Glu
ERK Extracellular signal-regulated kinase
FCS Fetal calf serum
GM-CSF Granulocyte-macrophage-colony-stimulating factor
MAP Mitogen-activated protein
MFI Mean fluorescence intensity
MOG Myelin oligodendrocyte glycoprotein
MS Multiple sclerosis
NTS Nuclear translocation signal
PBS Phosphate buffered saline
PLP Proteolipid protein
PMA Phorbol 12-myristate 13-acetate
STAT Signal transducer and activator of transcription
TCR T cell receptor
WT Wildtype
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