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Abstract: Cellular DNA topoisomerases (topo I and topo II) are highly conserved enzymes that
regulate the topology of DNA during normal genome transactions, such as DNA transcription
and replication. In budding yeast, topo I is dispensable whereas topo II is essential, suggesting
fundamental and exclusive roles for topo II, which might include the functions of the topo IIa and
topo IIb isoforms found in mammalian cells. In this review, we discuss major findings of the structure
and chromosomal organization of genes regulated by topo II in budding yeast. Experimental data
was derived from short (10 min) and long term (120 min) responses to topo II inactivation in top-2
ts mutants. First, we discuss how short term responses reveal a subset of yeast genes that are
regulated by topo II depending on their promoter architecture. These short term responses also
uncovered topo II regulation of transcription across multi-gene clusters, plausibly by common DNA
topology management. Finally, we examine the effects of deactivated topo II on the elongation of
RNA transcripts. Each study provides an insight into the particular chromatin structure that interacts
with the activity of topo II. These findings are of notable clinical interest as numerous anti-cancer
therapies interfere with topo II activity.
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1. Introduction

In all eukaryotic cells, the enzymes termed DNA topoisomerases (topo I and topo II) reduce
the topological problems of DNA by producing transient breaks on the DNA strands [1,2].
Topoisomerases are of major clinical interest because they are targets of anti-cancer drugs [3]. Topo I
relaxes torsional stress of DNA by cleaving one strand and allowing the rotation of the duplex around
the other strand [4]. In contrast, topo II eliminates DNA supercoils and catenates by passing one
segment of duplex DNA through a transient double-strand break in another [5,6]. Topo II is essential
for unlinking of newly replicated DNA molecules and permits thereby chromosome condensation
and segregation [7,8]. Topo I and topo II are required to relax DNA positive and negative supercoils
produced by the movement of DNA and RNA polymerases [9]. In this respect, the mechanism of topo
II is more efficient than the mechanism of topo I in relaxing chromatinized DNA [10,11]. However,
topoisomerase activity is not limited to these fundamental roles. There is overwhelming evidence that
topoisomerases have a prominent role in gene expression. At gene promoters, negative supercoiling
facilitates the formation of the transcription complex [12,13], where positive supercoiling has the
exact opposite effect on transcription initiation [14,15]. In Saccharomyces cerevisae (SacCer), Topo I and
topo II mutually regulate the topology of DNA to maintain gene promoters in a competent state [16].
Both enzymes facilitate recruitment of RNA polymerase II to promoters [17]. In higher eukaryotes,
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topo I [18] and topo II [19,20] have been found to interact with RNA polymerase complexes during
transcriptional activation and elongation. In yeast cells, topo I and topo II were found to bind mainly
to intergenic regions of active genes [17,21]. However, despite these apparently redundant roles,
topoisomerases I and II could be implicated differently in the regulation of specific steps of gene
expression at different stages. Topo II interacts preferentially with particular gene promoter regions
in yeast [21], whereas topo I regulates transcription initiation in other subsets of yeast genes [22] by
facilitating nucleosome eviction at gene promoters [23]. Yet, ascertaining where cellular topoisomerases
play specific functions is difficult. A clearer evidence of topoisomerase specific roles is found in
mammals, which have two isoenzymes of topo II (topo IIa and topo IIb). Topo IIa is essential for
chromosome segregation, whereas topo IIb is dispensable for cell division but necessary for normal
development [1,7]. Regarding gene transcription, topo IIa and IIb operate at different steps and via
distinct mechanisms. For instance, topo IIa facilitates DNA transcription by polymerase II on chromatin
templates [19], promotes activation of RNA polymerase I by facilitating the formation of pre-initiation
complex [20], functionally interacts with chromatin remodelers [24], and opens chromatin of silent
genes during embryogenesis [25]. Topo IIb in turn regulates genes required for neural developmental
and is involved in ligand mediated gene expression [26–29]. Unlike topo IIa, topo IIb produces dsDNA
breaks at specific promoter regions to regulate transcription [30–32] and interacts with cohesin and
CTCF at topological domain borders [33]. Therefore, a key challenge in the field is to elucidate the
mechanisms by which cellular topo II activities regulate the transcription of specific gene subsets.

Yeast provides the ideal model system to analyze topoisomerases and gene expression due to
its compact, highly gene-dense genome [34]. Despite its small size (12 Mbp), the transcription of
this genome is complex, including operon-like transcripts and different genic lengths and intergenic
spaces [35]. Transcription directionality, including several bidirectional promoters, is also relevant in
gene expression [36]. The interplay between gene position and expression is evident when transcription
is regulated within loops formed at gene boundaries [37] and DNA supercoiling throughout the
genome [14]. The response to DNA topological stress has been shown to be shaped by specific
structural properties of yeast promoters [38].

Here we integrate the findings from three separate studies describing the short term (10 min) and
long term (120 min) effects of topo II inactivation on gene transcription. Nikolaou et al. [38] performed
a genomic transcription run-on (GRO) in top2-ts cells and found a subset of genes that are directly
up- and down-regulated by topo II inactivation in SacCer and describe in detail their distinct chromatin
profiles. Tsochatzidou et al. [39] leveraged the data produced by Nikolaou et al. to investigate how the
response to DNA topological stress extends to affect long genomic regions. Finally, Joshi et al. [11]
examined long term (120 min) effects of topo II inactivation and revealed that, when topo II is unable
to relieve DNA positive supercoils, there is a stall of Pol II during elongation that causes an abrupt
decrease of transcripts of lengths >3 kb.

2. Short Term Transcriptomic Changes after Topoisomerase II Inactivation

In order to assess changes in transcription shortly after topo II inactivation in Saccharomyces cerevisiae
(SacCer), Nikolaou et al. [38] conducted a genomic transcription run-on (GRO) with TOP2 and
thermo-sensitive top2-ts strain. These GRO experiments consisted in combining in vivo labeled RNA
and array hybridization to calculate the transcription rate (TR) for all genes at a certain time point [40].
Cells were grown at 25 ◦C and during exponential growth, shifted to 37 ◦C, incubated for 10 min
to inactivate the top2-ts enzyme. GRO was subsequently performed by radio-labelling the nascent
RNA chains for five minutes. Small fluctuations in gene transcription were observed, 270 genes
increased their rate of transcription by >1.5-fold, and 158 genes decreased it by <0.65-fold. Interestingly,
these modifications were uncorrelated with RNA abundance changes observed after long inactivation
(two hours) of topo II reported in Joshi et al. [11] suggesting an alternative time-dependent mechanism
of topo II inactivation stress response. Preliminary filtering revealed 158 topo II sensitive transcripts
overlapped with environmental stress response genes [41] and subsequently discarded. In total,
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173 upregulated and 97 downregulated transcribed RNAs were deemed to be strictly and directly
affected by the inactivation of topo II.

3. Analysis of the General Functional Properties of TOP2-Associated Genes

Initial analyses of the gene subsets regulated by topo II inactivation were compared to two
published datasets: 1092 SacCer essential genes [42] and 1073 highly regulated TATA-containing
genes [43]. The upregulated subset was poor in essential genes but enriched in TATA-containing
genes, whereas the precise opposite trend was observed in the downregulated subset (Figure 1A).
Functional enrichment analysis with Gene Ontology (GO) revealed the downregulated genes were
related to remodeling of chromatin and transcriptional regulation while the upregulated genes
were enriched for membrane transport of polyamines. These differences could be explained by the
structural characteristics in the promoter architecture of the two gene sets. In SacCer, gene promoter
length is limited by the intergenic distance between ORFs, which on average is about 500 bp [44].
The genes downregulated by topo II deactivation displayed short 5′ intergenic regions whereas the
upregulated genes presented intergenic regions longer than the global average (Figure 1B). Interestingly,
the occurrence of bidirectional promoters was over-represented in both up and downregulated genes
(44% gene average, p ≤ 0.002) as compared to the SacCer genome average (26%). Considering these
differences in promoter architecture, the occupancy of 126 yeast transcriptional factors [45,46] was
evaluated. Although most gene promoters presented a wide profile of transcription factor binding
sequences (TFBS) with peak concentration at around position −200 from the transcription start site
(TSS), upregulated genes had higher occupancy of TFBS and a concentration peak farther upstream.
In turn, downregulated genes accumulated TFBS closer to the TSS, nearby position−150. Regarding the
occurrence of individual TFBS, no major differences between up- and downregulated genes were
observed. Only some TFBS tend to concentrate downstream position −200 in the downregulated
genes (e.g., AF2, OPI1, CAD1, ARO80, PDR1, PAC), while they were allocated farther upstream in the
upregulated ones. Other TFBS presented the opposite trends (e.g., MSN2, GAL4, GLN3). Therefore,
the transcriptional response to topo II inactivation was dependent on gene promoter type (essential,
TATA-containing, TFBS distribution) and size (intergenic distance).

4. Chromatin Remodeling and Histone Modification Patterns Associated with TOP2 Deregulated Genes

As discussed in the introduction, mammalian topo II interacts with particular chromatin
complexes to regulate gene expression. A study published by Yen et al. [47] described the selectivity of
eight chromatin remodeling complexes (Arp5, Isw1, Isw2, Ino80, Loc3, Loc4, Rsc8, Snf2) on nucleosome
positioning and organization in SacCer and how in turn, these remodelers shape the transcriptional
landscape. Nikolaou et al. assessed the interaction of chromatin remodelers with the TOP2 sensitive
gene set. Only Arp5 and Isw1 were both enriched in downregulated genes and depleted in upregulated
genes significantly. The chromatin remodelers that were enriched in downregulated genes only were
Isw2 and snf2. The chromatin remodelers that were enriched in upregulated genes only were Ino80
and loc3. However, relative to gene average in yeast, the downregulated genes were enriched in all
chromatin remodelers assessed, whereas the opposite occurred in the upregulated genes (Figure 1C)
suggesting an interplay between chromatin remodelers and topo II in the regulation of gene expression.
Finally, the chromatin of the genes deregulated on topo II inactivation were assessed by genome-wide
patterns of histone modifications documented for SacCer [48]. The pattern of modifications in
downregulated genes was comparable to that found in most SacCer genes (Figure 1D). Only an
increase of H2AZK14 acetylation and H3K4 methylation was denoted in promoter and ORF regions,
respectively. Upregulated genes presented a quite different landscape (Figure 1D). Histone acetylation
and H3K36 di-methylation was reduced in promoters and ORF regions. The occupancy of the histone
variant H2AZ was enhanced downstream from the TSS and depleted upstream from it.
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Figure 1. Gene promoter architecture of topo II sensitive transcripts. (A) Enrichment of essential and 
TATA-containing genes calculated as the ratio of observed (up- and down-) over total genes. (B) 
Distance between ORFs, calculated as the distance (bp) from the TSS until the 5′ or 3′ end of the most 
proximal gene. (C) Enrichment of topo II regulated genes among genes occupied by eight chromatin 
remodelers (D) Histone modification enrichments associated to gene subsets downregulated and 
upregulated after topo II inactivation. Graphs (A–D) reproduce a summary of the analyses reported 
by Nikolaou et al. [32]. *: p value is less than 0.001. 

The immediate alterations described here are probably not caused by a lack of DNA supercoiling 
relaxation during transcription elongation as constituent topo I activity is retained and may 
compensate. Moreover, as topo II inactivation downregulates many essential genes but multiple 
TATA-harboring gene promoters are upregulated, this suggests that the reported fluctuations occur 
at the point of transcription activation [49,50]. After the removal of stress-related genes from the topo 
II sensitive gene set, GO enrichment analysis reported that downregulated genes are enriched for 
chromatin remodelers and transcription regulators. The upregulated genes were enriched with 
polyamine transport functions. This was an interesting group of genes as they are rarely seen to be 
affected in other transcriptome responses. Polyamines regulate chromatin structure by changing 
DNA conformation and nucleosome stability [51]. Polyamines also change topo II interactions [52,53] 
and stimulate its activity [54]. Therefore, activating the transport of polyamines may be a homeostatic 
reaction that tries to enhance topo II activity and stabilize chromatin [38].  

The chromatin remodeling and histone modification analysis revealed a disparity of promoter 
architecture between genes affected by topo II inactivation (Figure 2). A possible explanation for the 
chromatin remodeling change could be due to the presence of nucleosomes relative to the TSS [55]. 
The enrichment of chromatin remodelers at downregulated genes may be required to displace well-
positioned nucleosomes found at −1 and −2. This trait is less important in the upregulated group that 
has weak peaks of nucleosome position upstream of the TSS. The downregulated group is also 
enriched in genes with increased marks of transcriptional activation, namely, H3K4 methylation at 
the ORF and H2AZK14 acetylation at the promoter regions [56,57]. The upregulated genes exhibit a 
strong bias towards histone marks associated to hypo-acetylation, a heterochromatic hallmark 
[58,59], and to H3K36 methylation, a repression mark [60,61]. The upregulated genes may thus have 
chromatin more compacted, which may counteract their fuzzy nucleosome organization and high 
turnover rate of H2AZ-containing nucleosomes [62,63]. Interestingly, many of the chromatin 
remodeling and histone modification activities observed here resemble gene sets also regulated by 
topo II in mammals [24,64,65]. Therefore, fundamental mechanisms of transcription activation and 

Figure 1. Gene promoter architecture of topo II sensitive transcripts. (A) Enrichment of essential
and TATA-containing genes calculated as the ratio of observed (up- and down-) over total genes.
(B) Distance between ORFs, calculated as the distance (bp) from the TSS until the 5′ or 3′ end of
the most proximal gene. (C) Enrichment of topo II regulated genes among genes occupied by eight
chromatin remodelers (D) Histone modification enrichments associated to gene subsets downregulated
and upregulated after topo II inactivation. Graphs (A–D) reproduce a summary of the analyses reported
by Nikolaou et al. [32]. *: p value is less than 0.001.

The immediate alterations described here are probably not caused by a lack of DNA supercoiling
relaxation during transcription elongation as constituent topo I activity is retained and may compensate.
Moreover, as topo II inactivation downregulates many essential genes but multiple TATA-harboring
gene promoters are upregulated, this suggests that the reported fluctuations occur at the point of
transcription activation [49,50]. After the removal of stress-related genes from the topo II sensitive gene
set, GO enrichment analysis reported that downregulated genes are enriched for chromatin remodelers
and transcription regulators. The upregulated genes were enriched with polyamine transport functions.
This was an interesting group of genes as they are rarely seen to be affected in other transcriptome
responses. Polyamines regulate chromatin structure by changing DNA conformation and nucleosome
stability [51]. Polyamines also change topo II interactions [52,53] and stimulate its activity [54].
Therefore, activating the transport of polyamines may be a homeostatic reaction that tries to enhance
topo II activity and stabilize chromatin [38].

The chromatin remodeling and histone modification analysis revealed a disparity of promoter
architecture between genes affected by topo II inactivation (Figure 2). A possible explanation for
the chromatin remodeling change could be due to the presence of nucleosomes relative to the
TSS [55]. The enrichment of chromatin remodelers at downregulated genes may be required to displace
well-positioned nucleosomes found at −1 and −2. This trait is less important in the upregulated group
that has weak peaks of nucleosome position upstream of the TSS. The downregulated group is also
enriched in genes with increased marks of transcriptional activation, namely, H3K4 methylation at
the ORF and H2AZK14 acetylation at the promoter regions [56,57]. The upregulated genes exhibit
a strong bias towards histone marks associated to hypo-acetylation, a heterochromatic hallmark [58,59],
and to H3K36 methylation, a repression mark [60,61]. The upregulated genes may thus have chromatin
more compacted, which may counteract their fuzzy nucleosome organization and high turnover
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rate of H2AZ-containing nucleosomes [62,63]. Interestingly, many of the chromatin remodeling
and histone modification activities observed here resemble gene sets also regulated by topo II in
mammals [24,64,65]. Therefore, fundamental mechanisms of transcription activation and repression
mediated by the activity of topo II on gene promoters might be highly conserved in eukaryotic cells,
from yeast to humans.
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Figure 2. Illustration of the distinctive promoter architecture of yeast genes regulated by topo II.
Most significant features of the regulatory regions of SacCer genes positively and negatively regulated
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5. The Role of Topo II beyond Single Gene Loci

One of the key characteristics of the SacCer genome is its global gene density as ~70% is made
up of coding-genes, many of which exist in tandem. This high genic complexity is compacted into
a very small genome of 12 Mb. The controlled response of accumulated topological stress at gene
promoters is crucial for transcription [32]. Leveraging GRO data produced by Nikolaou et al. [38],
Tsochatzidou et al. [39] assessed the response of extended helical tension to broader genomic regions
or gene clusters. Gene clusters were defined as a linear genomic regions where all genes were either
upregulated or all downregulated (Figure 3A). Based on permutation analyses of eukaryotic gene
order [66], the authors considered significant a cut-off of seven or more contiguous genes. In total,
116 clusters were found. Of these clusters, 50 included exclusively upregulated and 66 entirely
downregulated genes with a median number of eight genes for both categories. In total, the clusters
comprised 1074 genes representing ~20% of the initial dataset, suggesting that topological stress affects
both whole gene clusters as well as single gene promoters.

As inactivation of topo II required cells to be shifted from 25 to 37 ◦C, for the observed
changes in genes expression to be attributed to topological stress and not as a secondary response
to heat shock/stress conditions, the authors employed an identical clustering approach in gene
expression obtained upon heat shock stress conditions as published in Gasch et al. [41]. Even though
a certain degree of clustering was observed, the overlap between the two conditions was insignificant,
with limited similarity in the gene expression patterns. Therefore, these results provided evidence that
genes allocated within specific chromatin domains were co-regulated by topo II.

6. Topologically Co-Regulated Gene Clusters in Linear Chromosomes

The chromosomal distribution of the 116 gene clusters with seven or more genes or topologically
co-regulated gene clusters (TCGC) were non-randomly localized throughout the genome (Figure 3A).
Downregulated TCGCs were generally found to be located within the vicinity of centromeres or inner
regions of chromosomes while upregulated clusters tend to be outward, proximal to the periphery
of linear chromosomes. There was also the presence of super-clusters, which were arrays of multiple
clusters all up or downregulated by topologically-stressed domains at chromosomes 12, 6 and 7
(Figure 3B). Gene ontology (GO) and gene set enrichment analyses [67] (Figure 3C) showed broad
differences between the two types of TCGCs, indicating that their positioning inside the cell nucleus is
related to their functional roles. Upregulated gene clusters enriched in peripheral functions are those
unrelated to the core molecular processes, as opposed to the downregulated ones that are associated
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with basic cell functions such as to RNA production, processing and protein synthesis. The three
main clusters found were: (i) GO terms enriched in upregulated clusters had functions related to
cellular transport, cofactor metabolism and general stress response; (ii) Downregulated GO terms
contained basic functions related to RNA transcription, processing and translation; (iii) Functions
enriched in both types of clusters include DNA and secondary metabolism. Next, the authors sought to
examine the TFBS for both types of TCGCs (Figure 3D). Upregulated clusters presented more complex
regulation patterns, with significant enrichments for factors related to chromatin structure and amino
acid transport. Downregulated clusters were mostly depleted of TFBS, which can be explained by the
enrichment of genes of constitutive expression with less complex regulation. These observations
support the observations by Nikolaou et al. [38] where downregulated genes were enriched in
essential functions and poor in TATA-boxes. Therefore, topologically co-regulated gene clusters
were non-randomly localized throughout the nuclear space and their localization appeared to depend
on their promoter architecture and functional relevance.
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Figure 3. Functional enrichment and regulatory modes of non-random topologically co-regulated
clusters. (A) Top: example of individual gene genomic transcription run-on (GRO) values and their
location in a section of chromosome IV. Red represents increased gene expression (positive) and blue
presents decreased (negative). Bottom, cluster definition as a number of contiguous genes with similar
GRO values; (B) Chromosomal distribution of 116 topologically co-regulated gene clusters (TCGCs).
(C) GO term enrichment of up and down regulated TCGCs; (D) Enrichments of transcription factor
binding sequences (TFBS) for 102 yeast transcription factors; (E) Top: mean intergenic region length
for clusters of 11 consecutive genes. Bottom: same analysis for mean gene length. Shaded bands
are 95% confidence intervals. Graphs (A–E) reproduce a summary of the analyses reported by
Tsochatzidou et al. [39].
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7. Genic Spacing of TCGCs

During transcription, DNA torsional stress accumulates and produces (+) supercoiling in front and
(−) supercoiling behind the transcriptional complex [2,9]. Therefore, the size of genes, their intergenic
space and the direction of transcription in TCGCs are important for the dissipation of helical stress and
concomitant regulation of genome expression. The effect of topo II deactivation is mostly independent
of gene size in yeast [16], but is strongly inhibitory in long transcripts (discussed below) therefore
correlations of DNA topology with structural genomics are expected TCGCs in TCGCs with similar
GRO values. Tsochatzidou et al., observed a high correlation (p value ≤ 10−12) between the length
of intergenic regions and the GRO value of TCGCs, suggesting longer up and downstream regions
have a higher capacity to dissipate transcription-induced topological stress. Further analysis of these
TCGCs and their GRO values revealed the upregulated clusters and mainly in central genes had long
intergenic distances compared to the genome average. Downregulated gene clusters were flanked by
much shorter intergenic regions, suggesting that genes with shorter intergenic spacers are more prone
to accumulate DNA supercoiling during transcription and be thereby more sensitive to topo II activity.
In turn, genes where dissipation of supercoiling can take place throughout long non-transcribed
regions are less affected by topo II activity (Figure 3E).

The presence of TCGC in the SacCer genome indicates that not only is the functional role of
topological constrains effective locally, as discussed above, but is also determinant across whole gene
clusters. The location of these clusters is also relevant to their functional roles as downregulated
clusters are primarily found towards the center of the chromosome and include mainly of conserved
essential genes. Torsional stress accumulation expectedly shuts down gene expression at sites of high
transcription rates such as rRNA transcription where helical tension would build up rapidly upon topo
II inactivation. Upregulated clusters, on the other hand, predominantly comprise stress-responsive
genes, whose very nature of long intergenic spacers, structural and physical organization and gene
transcriptional co-directionality allows these areas of the genome to control DNA supercoiling in order
to achieve optimal transcription levels. These features may also extend to gene regulation, function
and evolution [36,68–70] as the intergenic size has also been found to shape expression levels [71].
Altogether, these observations suggest that chromosomal position and internal organization of TCGC
is optimized to interplay with the DNA torsional stress produced during gene transcription.

8. Long Term Transcriptomic Changes after Topoisomerase II Inactivation

Joshi et al. [11] analyze the effects of long term (120 min) topo II inactivation. Similar to the short
term analysis, Joshi et al. grew wild type SacCer and its top2-ts derivative at 25 ◦C until exponential
growth. Both the TOP2 and top2-ts cells were subsequently shifted to 37 ◦C during 120 min. Total RNA
was extracted and yeast transcriptomic microarrays were used to assess whole transcript changes as
a cause of topo II inactivation. Comparison of polyA+ RNA levels revealed that, following topo II
inactivation, only 176 transcripts augmented and 195 diminished at significant levels. GO analysis
showed 29% of augmented transcripts belonged to networks related to ribonucleoproteins associated
with ribosome biogenesis, whereas 39% of the downregulated genes corresponded to categories related
to oxidative metabolism. However, though topo II inactivation resulted in minor changes in the
yeast transcriptome, a striking observation was that nine percent of the transcriptome representing all
transcripts longer than ~3 kb, reduced significantly in expression independently of their functional
role (Figure 4A).

9. Long Term Inactivation of Topo II Diminishes Long Transcripts

Variation of transcript levels according to the gene size uncovered that average levels do not
change for transcripts <2.5 kb. However, an initial reduction appears for all transcripts at ~2.5 kb
with a rapid decrease observed at ~3.5 kb (Figure 4A). This reduction of long transcripts is unique
to topo II inactivation as the authors performed the same analysis with strains harboring different
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topoisomerase mutants (∆top1 single mutants ([14,22]) and ∆top1 top2-ts double mutants ([14,17]).
The ∆top1 single mutant showed no difference in transcript abundance at any length whereas ∆top1
top2-ts double mutant displayed overall global reduction of transcription without regard to transcript
length relative to controls. This was in agreement with previous studies [13,17,72]. This decrease was
not a consequence of transcription initiation as the authors observed no difference in transcript
abundance of differing gene lengths in a transcription run-on (GRO) experiment upon topo II
inactivation. Therefore, the decrease of long transcripts was attributed to a stall during transcription
elongation. The authors subsequently examined the intragenic distribution of Pol II by means of
chromatin immunoprecipitation (ChIP). The distribution of Pol II in the top2-ts relative to TOP2 cells
presented a similar pattern irrespective of transcript size (Figure 4B). Topo II inactivation did not alter
Pol II allocation up to 2 kb downstream the TSS. However, Pol II accumulated at distances around
3 kb from the TSS; and was depleted beyond 4 kb from the TSS. These observations corroborated that
topo II inactivation does not reduce transcription initiation of long genes, as revealed by the GRO
experiments. However, the absence of topo II activity produced an obstacle for the progression of Pol
II after transcribing 3 kb.
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Figure 4. Long term effects of topo II inactivation on transcription. (A) Effects of topo II inactivation
on transcription according to gene size. Data from GRO experiments TOP2 vs top2-ts (green line) and
RNA abundance observed by microarrays (red line); (B) Intragenic distribution of RNA polymerase
II after topo II inactivation. Histograms show the ratio of Pol II density of top2-ts relative to control
cells; (C) Role of topo II during the transcription of long genes. During transcriptional elongation,
(+) torsional stress increases in a transcript-length dependent manner. (+) torsional stress diffuses to
downstream regions, where it is buffered by chromatin and nucleosome architecture. When this
buffering capacity is surpassed, downstream chromatin enters the supercoiling regime. In this
chromatin conformation, the DNA strand-rotation mechanism of topo I is not efficient and only
the DNA cross-inversion mechanism of topo II is able to remove the (+) DNA supercoils, which would
otherwise stall the progression of the RNA polymerase. Graphs (A–C) reproduce results and the model
reported by Joshi et al. [11].
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Previous studies have described the function of DNA topoisomerases in relieving helical stress
generated during transcription elongation [1,2]. Failure to do so results in a stall of polymerases as
described in vitro [19,73] and an ensuing impairment of transcription in vivo [74]. Hence, this dependence
on the length of transcripts is expected in cells with reduced topoisomerase activity, as longer transcripts
will accumulate more (+) supercoiling stress. Up to ~3 kb, (+) torsional stress can be either removed by
topo I or not accumulated sufficiently to stall the advancement of Pol II. Beyond this length, topo II is
essential to avoid stalling of Pol II. This critical length of DNA reveals how intracellular chromatin
allows for plasticity to buffer low levels of (+) topological stress. When this buffering power of
chromatin is exceeded, the supercoiling regime takes place [75–77]. This transition is likely to happen
during general transcription, since the generation rate of DNA torsional stress by Pol II is higher than
the relaxation rate operated by topoisomerases [76,78]. The abrupt reduction of transcripts >3 kb is
likely due to this transition of chromatin structure from the buffering regime to the supercoiling one
(Figure 4C). This model is further supported by in vitro studies showing that chromatin is optimally
relaxed by topo II when the superhelical density of DNA is >0.04 [10], the point in which chromatin
enters the supercoiling regime [75–77].

10. Conclusions and Perspectives

Topoisomerase II is the only cellular enzyme that alters DNA topology by means of a DNA
cross-inversion mechanism. This capacity allows the removal and introduction of supercoils into
DNA, as well as catenate–decatenate and knot–unknot DNA molecules. As DNA topology is one of
the fundamental determinants of chromosome and chromatin structure and dynamics, it could be
anticipated that topo II is implicated at multiple steps of the regulation of gene expression. The studies
summarized in this review corroborate these expectations. Topo II seems to regulate numerous genes
according to their promoter architecture. Future research might uncover whether this regulation
involves DNA topology changes, only DNA cleavage, or only a structural interaction to facilitate
or preclude the initiation of transcription. During transcription elongation, topo II DNA relaxation
activity emerges also as a regulator of the progression of RNA polymerases. Future studies might
assess how this function affects the stability of transcribing factories and other associated processes,
such as RNA splicing. Finally, the occurrence of DNA supercoiling waves that can spread beyond
a single gene substantiates the authentic notion of DNA topological domains, allowing TCGCs to be
co-regulated by topo II. All these regulatory mechanism and pathways were inferred from studies in
budding yeast, but are likely to be conserved in all eukaryotic cells. Their better understanding will
permit to optimize the anti-cancer therapies that target human topo II activities.
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