Table S1. The rescue assay of <i>cycB3</i> m	utants by the transgenic	line of P{ <i>attB-cycB3-qDNA</i> }

		Germaria				
Genotype	Age ¹	Empty	0 GSC (cysts only)	1 GSC	2-3 GSCs	Total
cycB3²/cycB3²	day1	3.0%	2.0%	5.6%	89.4%	198
	day14	41.8%	11.6%	23.3%	23.3%	146
attB-cycB3-gDNA;	day1	2.1%	0	1.6%	96.3%	190
cycB3 ² /cycB3 ²	day14	0	0.9%	0.9%	98.2%	108*
сусВ3²/сусВ3 ^{ЕY08012}	day1	2.5%	1.7%	2.5%	93.3%	120
	day14	24.0%	5.3%	24.0%	46.7%	167
attB-cycB3-gDNA;	day1	0	2.5%	1.0%	96.4%	196
cycB3 ² /cycB3 ^{EY08012}	day14	0	0	2.6%	97.4%	193*

¹the days after eclosion. **P*<0.001 (χ^2 test) when the total percentages of abnormal germaria (containing 1 GSC, 0 GSC and empty) from different *cycB3*-rescuing ovaries were compared with their corresponding mutants. 14-day-old flies were selectively analyzed.

_		Germaria					
Genotype	Age ¹	Empty	0 GSC (cysts only)	1 GSC	2-3 GSCs	Total	
cycB3 ² /cycB3 ²	day1	2.4%	2.4%	7.0%	88.2%	212	
	day14	40.3%	12.9%	23.7%	23.1%	186	
UASp-cycB3;nosP-gvp,	day1	1.0%	0	3.3%	95.7%	210	
cycB3 ² /cycB3 ²	day14	0	0.7%	3.0%	96.3%	134*	
nosP-cycB3;	day1	0	0	2.2%	97.8%	312	
cycB3 ² /cycB3 ²	day14	1.2%	0.5%	1.2%	97.1%	347*	
cycB3²/cycB3 ^{EY08012}	day1	2.0%	0.5%	5.0%	92.5%	200	
	day14	34.7%	13.5%	26.5%	25.2%	230	
UASp-cycB3/nosP-gvp;	day1	0	0.4%	2.1%	97.5%	237	
<i>cycB3²/cycB3^{EY08012}</i>	day14	0	0	4.0%	96.0%	125*	
nosP-cycB3;	day1	0	0	2.7%	97.3%	339	
сусВ3²/сусВ3 ^{ЕY08012}	day14	0	0	1.9%	98.1%	159*	
c587-gal4;UASp-cycB3;	day1	4.5%	0.8%	9.1%	85.6%	132	
cycB3 ² /cycB3 ²	day14	32.9%	5.1%	32.9%	29.1%	237#	
c587-gal4;UASp-cycB3;	day1	2.3%	0	8.7%	89.0%	219	
cycB3²/cycB3 ^{EY08012}	day14	44.8%	10.5%	17.5%	27.2%	257#	

Table S2. cycB3 is intrinsically required for GSC maintenance in Drosophila ovary

¹the days after eclosion. **P*<0.001 (χ^2 test) when the total percentages of abnormal germaria (containing 1 GSC, 0

GSC and empty) from different cycB3-rescuing ovaries were compared with their corresponding mutants. *P>0.05 (χ^2 test) when the total percentages of abnormal germaria from cycB3-rescuing ovaries were compared with their corresponding mutants. 14-day-old flies were selectively analyzed.

Genotype	The percentages of apoptotic GSCs between wild type and <i>cycB3</i>
	mutant fly ovaries
Oregon-R	1.4% (N=210)
cycB3²/cycB3²	1.8% (N=223)
FRT control	1.5% (N=201)
FRT cycB3 ²	1.0% (N=197)

Table S3. The analys	sis of the cell	death in cycB3	mutant ovaries.
----------------------	-----------------	----------------	-----------------

N, the total number of GSCs examined.

No.	Primer Sequences	Restriction enzymes (underlined)	
P1	5'-AAACCTGCAGGCCAATGTTGCCCTAAGAAATTCATAATGGG-	SbfI	
	3'(forward)		
P2	5'-TTT <u>GGTACC</u> TTAACCTTTGACATCTAGGAGTTTATGCTC-	KpnI	
	3'(reverse)		
Р3	5'-TTT <u>GGCGCGCC</u> ATGGCGCCCACAAAAGCAACAAC -3' (forward)	AscI	
P4	5'-TTT <u>GGTACC</u> CTACGACAGATTGCTTTCGTTC-3' (reverse)	KpnI	
P5	5'-TTT <u>GGCGCGCC</u> CGACAGATTGCTTTCGTTCAGGTCAAG-	AscI	
	3'(reverse)		
P6	5'- AAA <u>GGTACC</u> GCCGCTGTGGGCAAAGGA-3'(forward)	KpnI	
P7	5'- TTT <u>GGTACC</u> TTACTTGTACAGCTCGTCCATGCCG-3'(reverse)	KpnI	

Table S4. Primers used for generating *cycB3* transgenic vectors.