Table S1. qPCR primers and antibodies used in this study.

Target	Primer	Sequence (5' to 3') or catalogue \#	Annealing Temp (${ }^{\circ} \mathbf{C}$)	Reference or source
ATF4	-	QuantiTect primer assay, QT00074466	55	Qiagen
GADD34	-	QuantiTect primer assay, QT00013321	55	
Firefly Luciferase	$\begin{aligned} & \mathrm{Fw} \\ & \mathrm{Rv} \end{aligned}$	TCGAAATGTCCGTTCGGTTG CGCAACTGCAACTCCGATAA	50.6	This study
β-actin	$\begin{aligned} & \mathrm{Fw} \\ & \mathrm{Rv} \\ & \hline \end{aligned}$	TCACCCACACTGTGCCCATCTACGA TGAGGTAGTCAGTCAGGTCCC	55	[1]
CAT	$\begin{aligned} & \mathrm{Fw} \\ & \mathrm{Rv} \end{aligned}$	GCGTGTTACGGTGAAAACCT GGGCGAAGAAGTTGTCCATA	52	[2]
Company	Antibody Target		Catalogue number	
Abcam	Secondary: Goat anti-rabbit-HRP conjugate		ab97051	
ProteinTech	eIF5B		13527-1-AP	
	eIF2A		11233-1-AP	
	eIF5		11155-1-AP	
Bio-Rad	β-actin (hFAB Rhodamine)		12004163	
Abcam	GADD34		Ab126075	
	eIF1A		Ab177939	
Cell	ATF4		11815	
Signalling	eIF2 α		9722	
Tech.	Phospho eIF2 α		9721	

1. Khan, D.; Katoch, A.; Das, A.; Sharathchandra, A.; Lal, R.; Roy, P.; Das, S.; Chattopadhyay, S.; Das, S., Reversible induction of translational isoforms of p53 in glucose deprivation. Cell death and differentiation 2015, 22, (7), 1203-18.
2. Thakor, N.; Holcik, M., IRES-mediated translation of cellular messenger RNA operates in elF2alpha- independent manner during stress. Nucleic acids research 2012, 40, (2), 541-52.

B

D

F

G

C

E

H

Figure S1. Depletion of elF5B leads to increased levels of the ATF4 protein in U2OS cells. U2OS were reverse-transfected with a non-specific control siRNA (siC) or an elF5B-specific siRNA pool (si5B), incubated 96 hours, harvested in RIPA lysis buffer, and $20 \mu \mathrm{~g}$ of total protein resolved by SDS-PAGE before performing immunoblotting. (A) Representative images of immunoblots probing for eIF5B, ATF4, elF2a, P-elF2a, GADD34, or β-actin (internal control). (B-F) Quantitation of elF5B (B), ATF4 (C), elF2 (D), P-elF2 α (E), or GADD34 (F), normalized to β-actin, from U2OS cells. (G, H) Total RNA was isolated from control or elF5Bdepleted U2OS cells and subjected to RT-qPCR analysis of steady-state mRNA levels for ATF4 (G) or GADD34 (H), normalized to β-actin mRNA. Data are expressed as mean \pm SEM for at least 3 (B-E, G, H) and up to 4 (F) independent biological replicates. ${ }^{*}, \mathrm{p}<0.05 ;{ }^{* *}, \mathrm{p}<0.01$; ***, $\mathrm{P}<0.001$; ****, $\mathrm{p}<0.0001$.

Figure S2. Depletion of eIF5B increases translation of ATF4 in HEK293T cells (related to Figure 2). Control and eIF5B-depleted HEK293T cells were subjected to polysome profiling analysis as described in Materials and Methods. (A) Polysome profile from control versus elF5B-depleted cells. (B) The proportion of ATF4 mRNA for each fraction from panel (A) was normalized to an external control RNA (chloramphenicol acetyltransferase, CAT). (C) The proportion of β-actin mRNA for each fraction from panel (A) was normalized to CAT. (D) Fractions 1-3 (representing monosomes) were pooled, as were fractions 4-10 (representing polysomes). The ratio of polysomes/monosomes is shown.
Note that this experiment was conducted by N. Thakor at the Children's Hospital of Eastern Ontario (CHEO) in 2012 and thus constitutes a totally independent replicate from that shown in Figure 2.

