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Abstract: The beneficial effects of estrogen on the cardiovascular system have been reported
extensively. In fact, the incidence of cardiovascular diseases in women is lower than in age-matched
men during their fertile stage of life, a benefit that disappears after menopause. These sex-related
differences point to sexual hormones, mainly estrogen, as possible cardiovascular protective factors.
The regulation of vascular function by estrogen is mainly related to the maintenance of normal
endothelial function and is mediated by both direct and indirect gene transcription through the
activity of specific estrogen receptors. Some of these mechanisms are known, but many remain to be
elucidated. In recent years, microRNAs have been established as non-coding RNAs that regulate the
expression of a high percentage of protein-coding genes in mammals and are related to the correct
function of human physiology. Moreover, within the cardiovascular system, miRNAs have been
related to physiological and pathological conditions. In this review, we address what is known about
the role of estrogen-regulated miRNAs and their emerging involvement in vascular biology.
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1. Introduction

Estrogen is involved in many physiological processes, including sexual development and
reproduction, regulation of skeletal homeostasis, lipid and carbohydrate metabolism, electrolyte
balance, central nervous system function (including cognition and behavior), and cardiovascular
system regulation [1,2]. In addition to its physiological relevance, the effects of estrogen (or its absence)
on target tissues are related to the development of numerous diseases, which include various types
of well-known hormone-dependent cancers including breast, ovarian, endometrial, and prostate
cancer, among others. However, estrogen is also implicated in the progression of osteoporosis,
neurodegenerative diseases, metabolic disorders (insulin resistance and obesity), autoimmune diseases
(lupus erythematosus, multiple sclerosis, and rheumatoid arthritis), endometriosis, and cardiovascular
diseases [3].

Sex differences in cardiovascular diseases have been extensively reported [4], suggesting that
sex hormones have an important influence on the cardiovascular system. Indeed, statistical data
have shown that women develop cardiovascular disease 7-10 years later than men [5]. In addition,
epidemiological studies have provided evidence that cardi ovascular diseases are more frequent in men
than in premenopausal women of the same age. However, during the fifth decade of a woman’s life, the
decrease in estrogen levels that occurs in menopause is accompanied by an increase in the incidence of
cardiovascular diseases [6,7], suggesting that estrogen plays a beneficial role in cardiovascular system.
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Based on the beneficial role of estrogen, hormonal replacement therapies (HRT) have been used
in postmenopausal women with controversial findings [8,9]. The current consensus on HRT indicates
that the vascular protective effects of estrogen depend on the onset of treatment after menopause,
which has been recently reviewed in depth elsewhere [10]. The phenomenon, referred to as the
“timing hypothesis”, postulates that the beneficial effects of hormonal replacement in the prevention
of cardiovascular disease may occur only when hormonal supplementation is initiated before the
detrimental effects that aging has on the cardiovascular system have become established [11]. In this
regard, it has been reported that age moderates the vasodilatory [12] and anti-inflammatory [13] effects
that estrogen have on vascular tissue in postmenopausal women.

Estrogen can modulate the cardiovascular system by acting directly on vascular cells or indirectly
by systemic effects. Endothelial cells, vascular smooth muscle cells (VSMCs), and cardiomyocytes
are estrogen targets because they express estrogen receptors (ER) [14]. In addition, ER expression
described in monocytes, macrophages, and dendritic cells suggests that modulation of inflammatory
processes, a key event in the initiation and development of cardiovascular diseases, may also be
estrogen-dependent [15,16].

ERs function through two predominant mechanisms. In the “classical” mechanism, estrogen
diffuses into the cell and binds the ERs, creating a complex that then binds to specific DNA motifs
called estrogen response elements (EREs) in the promoter region of estrogen-responsive genes [17].
Classical mechanisms are mediated by two main ER isoforms, ERx and ER(3, which form homo- or
heterodimers before binding to EREs, and which induce changes in gene expression. Several studies
have provided evidence that ERx and ERf3 have different physiological functions [18]. Indeed, these
subtypes can have opposing gene-expression regulatory effects [19,20] and also have redundant
mediatory roles [21,22]. In addition, estrogen signaling is selectively regulated by the relative balance
between ERx and ERf3 expression in target organs [23], although studies using ERoc and ER3 knockout
mice revealed that the beneficial effects estrogen has on the vascular system are mainly mediated by
ER« [24,25].

Besides their classic genomic action, ERs can also trigger faster responses (in minutes) through
plasma membrane receptors. Indeed, ERx and ERf3 are present in plasma membranes and other
cytoplasmic organelles such as mitochondria and endoplasmic reticulum membranes [26]. In addition,
the recently described G protein-coupled ER (GPER) is also expressed in vascular tissues [27]. Indeed,
many of the beneficial effects of estrogen seen in human and animal models, such as reduced
myocardial pro-inflammatory cytokine expression, inhibition of VSMC proliferation, and nitric oxide
(NO)-dependent vasodilation [28], have been recently attributed to the presence of GPER in the
cardiovascular system.

2. Role of Estrogen in Vascular Physiology

As described above, vascular tissues are targets for sex hormones because specific receptors
are expressed in both endothelial cells and VSMCs [14] and clinical and experimental data have
demonstrated that estrogen has beneficial effects at the cardiovascular level [29,30]. In general, these
protective effects have been attributed to their role in increasing arterial vasodilation and inhibiting
inflammatory processes, which, in turn, prevent the development of atherosclerosis [6]. Moreover,
estrogen can also indirectly influence plaque progression by modulating systemic lipid metabolism [31]
and oxidative status [32].

The regulation of vascular reactivity by estrogen is mainly related to the maintenance of normal
endothelial function [33]. Indeed, enhanced acetylcholine-induced vasodilation mediated by NO
release in arteries isolated from estrogen-treated ovariectomized rabbits was one of the first evidence
indicating the role of estrogen in vascular tone [34]. In endothelial cells, the modulation of NO
bioavailability by estrogen has been extensively studied and is attributed to both genomic and
non-genomic effects [35-37]. In addition to NO, the action of estrogen has also been implicated
in the release of other endothelial-derived molecules such as prostacyclin [38] and angiotensin (Ang)
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1-7 [39] and a decrease in endothelin-1 bioavailability [40] and Ang II receptor type 1 expression [41],
thus reducing vasoconstriction and promoting vasodilation.

Besides their effect on vasomotor regulation, the anti-inflammatory responses induced by
estrogen have been described in in vitro assays as well as in different vascular-injury models [42-45].
In this regard, estrogen reduces cell adhesion molecule expression in endothelial cells exposed
to pro-inflammatory stimuli [46,47], and significantly decreases the cytokine-induced adhesion of
monocytes to endothelium [48,49]. Moreover, the modulation of neutrophil chemotaxis [44] and
leukocyte infiltration [45] by estradiol has been described in rat carotid arteries after acute injury.
Estrogen treatment after rat carotid artery damage [50] also attenuates neointima formation by
increasing endothelial cell growth and decreasing VSMC proliferation.

Estrogen also participates in the regulation of lipid accumulation in the vascular wall by
modulating the plasma lipid profile and inhibiting the direct action of lipids on the vascular system.
On the one hand, estrogen reduces the level of circulating cholesterol [51] and the rate of conversion of
hepatic low-density lipoprotein (LDL) into bile acids [52] while on the other, it increases high-density
lipoprotein (HDL) levels [53]. In addition, estrogen is associated with reduced lipid loading in human
monocyte-derived macrophages [54] and VSMCs [55], preventing foam cell formation. Furthermore,
estradiol exposure inhibits cellular permeability [56] and apoptosis [57] in LDL-exposed endothelial
cells. Finally, estrogen attenuates the oxidative stress-mediated increase in LDL modifications, which
accelerates lipid accumulation in arterial walls [58].

Although the antioxidant properties of steroids were first attributed to their phenolic structure [59],
estrogen can also modulate antioxidant enzyme expression [60,61]. For instance, estradiol attenuates
Ang Il-induced superoxide production by increasing superoxide dismutase activity and protein
expression in VSMCs [60] and endothelial cells [61]. Estradiol also reduces superoxide production by
inhibiting nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression, thus reducing
adhesion molecule and cytokine expression in VSMCs [62] and, in an experimental murine model
of menopause, by reverting cyclooxygenase (COX) 2-dependent superoxide production in aortic
tissue [63].

3. miRNA as Epigenetic Regulatory Mechanism

As previously described, classical regulation of physiological processes by estradiol includes
estrogen signaling induced by direct and indirect target gene transcription. However, epigenetic
mechanisms have recently emerged as another important source of gene expression regulation and are
being widely studied. At the molecular level, epigenetics is based on three main pathways: (1) DNA
methylation; (2) histone density, variants, and post-translational modifications; and (3) RNA-based
mechanisms [64]. Together, these pathways are characterized by their ability to influence gene
expression without changing the DNA sequence and many have been established as fundamental
determinants of cardiovascular health and disease [65,66].

There is some evidence that epigenetic estrogen-regulation mechanisms are implicated in the
regulation of cardiovascular function. For example, genes encoding ERs are more methylated
(denoting the suppression of estrogenic activity) in atherosclerotic plaques compared to non-plaque
regions in vascular tissues [67,68], thus suggesting that epigenetic ER inhibition plays an important
role in atherosclerosis formation. On the other hand, histone modifications and chromatin
remodeling also likely have estrogen-dependent effects on the vasculature [69,70]. Indeed, divergent
estrogen-dependent gene expression in endothelial cells and VSMCs is linked to differential target-gene
promoter histone acetylation [69]. Moreover, the vascular dysfunction prevented by estradiol
is associated with histone 3 acetylation in a post-menopausal metabolic syndrome experimental
model [70]. Finally, RNA-based epigenetic gene-expression regulatory mechanisms mediated by
sequence-specific interactions have more recently been described and are our main focus in this review.

Regulatory non-coding RNA can be classified depending on the RNA length. Long non-coding
RNA (IncRNA) is a heterogenic class of RNA that includes intergenic IncRNA, antisense transcripts,
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and enhancer RNA. All of them are described as non-protein-coding transcripts larger than
200 nucleotides (nt) so as to differentiate them from small non-coding RNAs [71]. These include
microRNA (miRNA), small interfering RNA (siRNA), and Piwi-interacting RNA (piRNA), and are
defined as small (20-30 nt) RNAs, which are associated with Argonaute (AGO) family proteins [72].
Moreover, a new class of non-coding RNAs derived from sequences located adjacent to miRNAs,
termed miRNA offset RNA (moR), has been described [73]. Although moRs were first considered a
by-product of miRNA biogenesis, recent studies have provided evidence that are biologically active
and can alter gene expression to regulate cell proliferation in VSMCs [74].

miRNAs about 20-22 nt long are the dominant class of small non-coding RNA in most tissues and
are derived from nuclear transcripts with characteristic stem—-loop structures (pri-miRNAs). The first
step in miRNA biosynthesis is pri-miRNA cleavage, mediated by a processing complex comprising the
RNase III Drosha and DiGeorge syndrome critical region 8 (DGCRS), also known as the microprocessor
complex. Nuclear processing involves cropping the stem-loop to release a small hairpin-shaped RNA
(pre-miRNA), which is then transported into the cytoplasm through exportin 5 where maturation can
be completed. The second processing step is mediated by the RNase III, DICER1, which cleaves the
pre-miRNA into 22-nt miRNA duplexes. Usually, one strand from the cleavage products remains as
a mature miRNA due to a selective process that depends on thermodynamic stability. Finally, RNA
generated is loaded into an AGO protein to form the effector RNA-induced silencing complex (RISC)
along with other component such as TAR RNA-binding protein (TRBP) or protein kinase R-activating
protein (PACT). miRNAs function as a guide by base pairing with their target messenger RNAs
(mRNAs), while AGO proteins recruit factors that induce this translational repression; miRNA-binding
sites are usually located at the 3’-untranslated region (UTR) of the target mRNA [75]. Figure 1 shows a
schematic of the miRNA biosynthesis pathway along with most of the relevant implicated molecules.

Although no specific research has so far focused on the influence estrogen might exert on
miRNA biosynthesis in vascular tissues, our group’s work on human endothelial cells treated
with estradiol produced mRNA microarray data revealing the deregulation of key miRNA
biosynthesis pathway genes [76]. Our data shows DGCRS8 upregulation and DICER1 and AGO-2
downregulation in estradiol-treated cells (Table 1), suggesting that estrogen regulates endothelial
miRNA production machinery.

Table 1. Microarray expression data for key miRNA biosynthesis pathway molecules. mRNA
expression data were obtained from previously published mRNA microarray data obtained for human
umbilical vein endothelial cells (HUVECsS) treated with 1 nmol/L estradiol for 24 h. The probe set ID,
gene symbol, official full name, p-value, and fold change are shown. These mRNA microarray data
are deposited in NCBI's Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo), accessible
through GEO series accession number GSE16683.

Probe Set ID Symbol Official Full Name Fold Change p Value

218269_at DROSHA drosha, ribonuclease type III —-1.117 0.586
DiGeorge syndrome critical

64474_g_at DGCRS8 . 2.376 0.016
region gene 8

223056_s_at XPO5 exportin 5 1.514 0.259

213229_at DICER1 dicer 1, ribonuclease type III —1.979 0.012

225569_at AGO-2 argonaute-2 —1.290 0.002
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Figure 1. MicroRNA biosynthesis pathway. MicroRNAs (miRNAs) are transcribed by RNA
polymerase II (Pol II) activity to generate the primary transcripts (pri-miRNAs). miRNA production is a
two-step process involving nuclear cropping and cytosolic dicing processes. First, pri-miRNA cleavage
is mediated by a processing complex comprising the RNase III, Drosha, and DiGeorge syndrome critical
region 8 (DGCRS), which is also known as the microprocessor complex. This generates a hairpin-shaped
pre-miRNA, which is recognized by nuclear exportin 5 and is exported to the cytoplasm where the
RNase III, Dicer, cleaves pre-miRNA into 22-nucleotide miRNA duplexes. One strand from the cleavage
products remains as a mature miRNA on the Argonaute (AGO) 1-4 proteins, whereas the other strand
is degraded. Dicer, TAR RNA-binding protein (TRBP), protein kinase R-activating protein (PACT),
and AGO 1-4 proteins mediate the assembly of the RISC (RNA-induced silencing complex). Finally,
miRNAs guide translational repression by base-pairing with their target mRNAs, while AGO proteins
recruit factors that induce this translational repression.

In addition to data obtained in estradiol-treated endothelial cells, the relationship between
estrogen action and miRNA biosynthesis has been extensively described in breast cancer samples,
where differences in key miRNA-processing genes have been observed between ER+ and ER— breast
cancer cells [77,78]. Specifically, the expression of DICER1, DGCRS, and DROSHA was higher, and
that of AGO-2 lower, in ER+ breast tumors. In addition, of the miRNA processing genes this group
studied, only DICERI1 contains an ER« binding site in its regulatory region [79]. Indeed, miRNAs that
are differentially expressed between ERox— and ERa+ breast cancer cells negatively control DICER1
expression [80], suggesting that a regulatory loop exists between ERs and miRNAs. In addition, other
studies suggest that ERs interact with DROSHA to modulate its activity in breast cancer cells [81]
and that a significant increase in Exportin-5 mRNA is induced in the mouse uterus by the action of
estrogen [82].

Specific miRNAs target ERs and could therefore act as important ER-dependent gene expression
modulators. Indeed, some estrogen-induced miRNAs such as miR-18a, miR-19b, and miR-20b target
and regulate ERx expression, thus forming a negative feedback loop [83]. Other miRNAs, including
miR-18a, miR-22, miR-206, and miR-221/222 have also been implicated in ER« targeting [84]. Finally,
the only miRNAs identified as targeting ERB [85] and GPER [86], respectively, are miR-92 and miR-424.
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4. Vascular miRNA and Estrogen Action

The importance of miRNAs in vascular biology was first observed in 2005 by Yang et al., who
described impaired vascular formation in DICER1 knockout mice [87]. In endothelial cells, DICER1
knockdown resulted in impaired proliferation and vessel formation, as well as altered expression of
key proteins implicated in vascular tone regulation and angiogenesis, such as vascular endothelial
growth factor receptor 2 (VEGFR), interleukin 8 (IL-8), and endothelial NO synthases (eNOS) [88,89],
thus suggesting a role of miRNAs production in endothelial and vascular function.

Sex differences in miRNA expression have also been described in different physiological and
pathological conditions [90,91], providing evidence for a role for sex hormones in miRNA regulation.
Nevertheless, the relationship between sex-dependent miRNA expression and cardiovascular diseases
has so far been little explored [90], although regulation of miRNA expression by estrogen was observed
in different cell types and tissues [92]. In addition, the role of estrogen in the circulating miRNA
profile has been described in both ovariectomized rats and postmenopausal women receiving hormone
replacement treatments [93,94]; based on these results, different authors have proposed using these
miRNA profiles as possible biomarkers for pathologies involving estrogen.

4.1. Estrogen-Dependent miRNA and Cardiovascular Function

Different studies have proposed that estrogen exerts its vascular protective effects, at least in
part, via miRNA activity. For instance, the role of estrogen-induced miRNAs in heart tissue, VSMCs,
and endothelial cells has been described; Table 2 summarizes the main miRINNAs involved in the
action of estrogen at cardiovascular level. Additionally, sex-dimorphic miRNA expression in heart
tissue from males versus females has been noted, including for miR-222. As previously mentioned,
this miRNA is involved in ERx regulation [84] and is implicated in modulating eNOS expression in
cardiomyocytes by directly inhibiting the transcription factor ets-1 [95]. These results suggest that
estrogen plays a role in regulating both the miRNA expression profile in cardiac tissues as well as the
key molecules involved in cardiac function. In addition, miR-21, miR-24, miR-27a/b, and miR-106a/b
were among the sex-specific miRNAs expressed via ERf3 modulation in a murine model of pressure
overload-induced cardiac fibrosis [96] and could help explain the differences in adaptation to pressure
overload and vascular remodeling observed between women and men [97].

Important roles for miR-23a and miR-22 have also been described in cardiac function involving
the action of estrogen. Specifically, miR-23a has regulatory regions containing ERx binding sites
and plays a protective role in estrogen deficiency-induced cardiac gap-junction damage in rats [98].
The authors showed that estradiol inhibits miR-23-dependent downregulation of connexin 43 in a
menopausal rat model, and provide new mechanisms of post-menopause-related arrhythmia [99].
In addition to its role in cardiac function, miR-23a levels also differ in males and females after cerebral
ischemia and are related to accelerating apoptosis by regulating X-linked inhibitor of apoptosis (XIAP)
expression and XIAP-caspase complex formation [100]. Thus, this evidence provides new insights into
the molecular mechanisms underlying the sex-dependent responses observed following stroke [101].
Moreover, miR-22 provides estrogenic cardioprotection in female rats by controlling myocardial
oxidative stress [102]. This same study also described a reciprocal feedback loop between ERx and
miR-22, suggesting that estrogen action is closely regulated via post-transcriptional control of ER«
expression. Similarly, the sex-specific regulation of miR-22 processing in muscle lipid metabolism has
also recently been described and may contribute to understanding the well-described differences in
muscle metabolism and body weight between males and females [103].

Considering vascular tissue, some studies show that VSMC proliferation is affected by miRNAs
and highlight their potential as therapeutic agents in the treatment of proliferative cardiovascular
diseases. In the case of mouse aorta, miR-203 contributes to the inhibition of VSMC proliferation
because its upregulation is ER-dependent [104]. Estradiol induces miR-143 and miR-145 expression
in pulmonary artery VSMCs via specific ER binding sites located in their promoter regions [105].
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Moreover, estradiol-treated VSMCs secrete exosomes enriched with miR-143 and miR-145 which
regulate VSMC-endothelium crosstalk in pulmonary arterial hypertension [105].

Focusing on the endothelium, microarrays were recently used to reveal that physiological
(1 nmol/L) estradiol concentrations induce changes in the miRNA expression profile of endothelial
cells [106]; among these, the miRNAs with the strongest differential expression were miR-30b-5p,
miR-487a-5p, miR-4710, miR-501-3p, miR-378h, and miR-1244. Functional analysis using bioinformatic
tools revealed that estradiol-modulated miRNAs were associated with key molecular pathways such as
extracellular signaling from signal-regulated kinase/mitogen activated protein kinase (ERK/MAPK),
integrins, and actin cytoskeleton signaling, which are important pathways in the regulation of vascular
physiology in health and disease [106]. Additionally, most validated estradiol-regulated miRNAs were
modulated by ERe, and to a lesser extent, by ER and GPER [106], thus lending weight to the idea that
ER« plays a crucial role in estradiol-dependent effects on vascular tissues. On the other hand, estradiol
is also implicated in the increased miR-126-3p expression observed in endothelial cells, resulting in
increased cell migration, proliferation, and tube formation and decreased monocyte adhesion [107].

As previously described, estrogen plays a key role in modulating the immune system and this
is probably the underlying cause of the sex differences observed in the inflammatory processes
of atherosclerosis [108]. For instance, estradiol is involved in nuclear factor-kB (NF-kB) activity
inhibition by regulating let-7a and miR-125b expression in stimulated macrophages [109]. Moreover,
specific estradiol-regulated miRNAs—miR-146a and miR-223—have been described as key regulators
of lipopolysaccharide-induced interferon-gamma (IFNvy) in lymphocytes [110]. Therefore, selective
miRNA expression regulated by estrogen in immune cells could also be involved in the sex dimorphism
observed in vascular diseases.

Table 2. miRNA-dependent estrogen actions. Focusing on the role of estrogen in cardiovascular system
and in HRT, estrogen-dependent effect and its associated estrogen-related miRNA are shown.

Estrogen Action miRNA References
. . miR-1 miR-106b miR-720 miR-29b miR-144
Sex differences in heart miR-34b-5p miR-205 miR-222 [95]
. . e miR-21 miR-24
Sex differences in cardiac fibrosis miR-27a/b miR-106a,/b [96]
Cardiac gap junction regulation miR-23a [98]
Regulatu?n of oxidative stress in the miR-22 [102]
myocardium
Inhibition of VSMC proliferation miR-203 [104]
VSMC and endothelial cell communication =~ miR-143 miR-145 [105]
Endothelial cell proliferation miR-126-3p [107]
miRNA expression profile in miR-30b-5p miR487a-5p miR-4710 [106]
estradiol-treated endothelial cells miR-501-3p miR-378h miR-1244
Regulation of NF-kB pathway in let-7a and miR-125b [109]
macrophages
Regulation of IFNY released in lymphocytes ~miR-146a miR-223 [110]
Regulation of Insulin/IGF-1 pathway in miR-182 and miR-223 [111]
skeletal muscle
Circulating . .
Inflammation markers miR-21 miR-146a [105]
Negative regulation of bone mass. miR-127 and miR-136 [112]
Serum biomarker in osteoporosis miR-30b-5p [93]
Circulating miRNA miR-106-5p miR-148a-3p miR-27-3p [94]

miR-126-5p miR-28-3p miR-30a-5p

4.2. miRNA and Hormone Replacement Therapy

The use of HRT has recently been associated with the miRNA content of circulating exosomes
in women [94]. In addition, the miRNA-mediated effects of this type of estrogenic therapy appear to
improve the parameters of some disorders such as osteoporosis and sarcopenia and help to reduce the
inflammation markers associated with these phenomena in postmenopausal women using HRT.
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Although the relationship between estrogen levels and osteoporosis has been established for
decades [113], changes in the miRNA expression profile in bone tissue from ovariectomy-induced
osteoporotic mice and in postmenopausal women have recently been described [93,112]. Specifically,
from among the miRNAs that are differentially expressed in estrogen-depleted mice, miR-127 and
miR-136 negatively regulate bone mass [112], whereas miR-30b-5p may be a suitable serum biomarker
for osteoporosis and osteopenia in postmenopausal women [93]. Moreover, suppressing the expression
of miR-182 and miR-223, both implicated in regulating the insulin/insulin-like growth factor (IGF-1)
pathway, in the skeletal muscle of postmenopausal women using HRT plays a central role in
muscle mass regulation [111]. Therefore, the identification of estrogen-regulated miRNAs could
be used as possible therapeutic targets to provide new insights into aging-related disorders such as
sarcopenia. In addition, a study in monozygotic twin pairs revealed a relationship between changes in
serum inflammatory markers and inflammatory-related miRNAs such as miR-21 and miR-146a, in
postmenopausal women using HRT [114]. Thus, estrogen-sensitive miRNAs could be used as potential
biomarkers for specific physiological deteriorations associated with female aging.

In another study, in premenopausal women and their monozygotic postmenopausal twins using
estrogenic HRT, other circulating miRNAs included in exosomes, such as miR-148a-3p, miR-27-3p,
miR-28-3p, miR-30a-5p, miR-106b-5p, and miR-126-5p were associated with serum estradiol levels [94].
miR-148a is related to regulation of plasma LDL/HDL ratio by directly regulating hepatic LDL
receptor (LDLR) [115]. This effect could be related to the previously demonstrated effects of estrogen
on circulating cholesterol levels as estrogen is implicated in the reduction of circulating cholesterol
by increasing LDLR expression [116]. Another estrogen-related miRNA, miR-27, is also implicated in
LDLR expression without producing changes in plasma cholesterol levels [117]; this miRNA is also
related to angiogenic processes [89] and was recently suggested as a biomarker for stenotic progression
in asymptomatic carotid stenosis [118]. In this regard, there are sex-related differences in patients with
this pathology [119] that may be partly related to the role of estrogen-regulated miRNAs. Therefore,
a better understanding of the mechanisms underlying these processes could improve new sex-specific
therapeutic approaches.

MiR-106b-5p decreases tumor necrosis factor (TNF) «-induced apoptosis by repressing
phosphatase and tensin homolog (PTEN)-caspase activity in vascular endothelial cells [120]. Moreover,
these effects correlate with the repressive effects that estrogen have on PTEN and apoptosis [121,122].
miR-126-5p is required to produce correct vascular integrity and is key in angiogenic processes [123,124]
and also decreases leukocyte-endothelium interactions by suppressing vascular cell adhesion molecule
(VCAM)-1 [125]. In line with the aforementioned studies, miR-126-5p is among the estradiol-regulated
miRNAs present in endothelial cells [107]. Therefore, the estradiol-sensitive miRNAs described could
provide insight into the mechanisms by which estrogen modulates important endothelial processes
such as apoptosis or angiogenesis to provide correct vascular physiology.

5. Conclusions

The differences observed in cardiovascular diseases between the sexes attribute a protective
role to estrogen, which is mediated through the regulation of transcription processes and, in turn,
cellular physiology. Indeed, sex-biased gene expression in the cardiovascular system and mediated
by estrogen has already been reported. It is estimated that miRNAs regulate the expression of
approximately 30% of all protein-coding genes in mammals, implying their importance in correctly
functioning human physiology, including that of the cardiovascular system. However, although there
is increasing evidence to establish epigenetic mechanisms, including miRNAs, as crucial regulators of
vascular function, the role of miRNAs in estrogen-mediated vascular functions must still be elucidated.
Therefore, future research focused on characterizing the role of specific estradiol-mediated miRNAs
involved in vascular function will be required to provide new knowledge about how the levels of sex
hormones can contribute to sex-related differences in cardiovascular diseases.
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