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Abstract: Triple-negative breast cancer (TNBC) is among the most notorious types of breast cancer,
the treatment of which does not give consistent results due to the absence of the three receptors
(estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor
2 (HER2) as well as high amount of molecular variability. Drug resistance also contributes to
treatment unresponsiveness. We studied differentially expressed genes, their biological roles, as
well as pathways from RNA-Seq datasets of two different TNBC drug-resistant cell lines of Basal B
subtype SUM159 and MDA-MB-231 treated with drugs JQ1 and Dexamethasone, respectively, to
elucidate the mechanism of drug resistance. RNA sequencing(RNA-Seq) data analysis was done using
edgeR which is an efficient program for determining the most significant Differentially Expressed
Genes (DEGs), Gene Ontology (GO) terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways. iPathway analysis was further used to obtain validated results using analysis that takes into
consideration type, function, and interactions of genes in the pathway. The significant similarities and
differences throw light into the molecular heterogeneity of TNBC, giving clues into the aspects that
can be focused to overcome drug resistance. From this study, cytokine-cytokine receptor interaction
pathway appeared to be a key factor in TNBC drug resistance.

Keywords: Triple-negative breast cancer; drug resistance; RNASeq; cytokine-cytokine receptor
interaction; basal b

1. Introduction

Breast cancer represents one of the most common cancers in women and is a major life-threatening
disease. In certain cases, due to the development of drug resistance, treatment becomes unsuccessful [1].
Triple-Negative Breast Cancer (TNBC) accounts for about 15–20 percent of the breast cancers. Drugs
normally targeted to the receptors do not apply to TNBC as they lack the three receptors, namely the
estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2
(HER2) [2]. TNBC has fewer treatment options and there is limitation of unavailability of specific
effective targeted therapy due to the absence of the three target receptors and this makes TNBC
cells unresponsive to the conventional hormonal or trastuzumab-based therapy. This results in the
comparatively high mortality rate [3]. Chemotherapy is the most effective treatment known, but
overcoming drug resistance is a big challenge. TNBC is also known to be aggressive with high
metastasis rates as well as poor prognosis [4]. The high level of molecular heterogeneity also demands
changes brought in drug administration, which makes combinatorial drug therapy favorable [4,5].
Therefore, it is essential to identify molecular targets for a more effective therapy. Targeted therapy by
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developing targeted agents like poly(ADP-ribose) polymerase-1 (PARP-1), epidermal growth factor
receptor (EGFR), fibroblast growth factor receptor 2 (FGFR2), vascular endothelial growth factor
(VEGF), and the mammalian target of rapamycin (mTOR) in combination with chemotherapy seems
promising in treatment of TNBC [3]. Pathways such as NOTCH signaling pathway and 5′ adenosine
monophosphate-activated protein kinase (AMPK) signaling pathway are being targeted for overcoming
drug resistance in cancer therapy [6,7]. Drugs targeting pathways are being developed such as those
targeting the phosphatidylinositol-3-kinase (PI3K)/AKT/mTOR pathway for the treatment of TNBC
and shows promise as stated by Gradishar W.J. et al. [8].

The subtypes of TNBC are Basal-like (BL-1, BL-2), immune-modulatory, luminal androgen
receptor, mesenchymal, and mesenchymal/stem-like subtype and claudin low subtype [9]. SUM
159 and MDA-MB-231 are widely used TNBC cell lines for in vitro studies and both are of Basal
B subtype [10]. The bromodomain inhibitor JQ1isan effectively proven drug for TNBC and is
being widely used. Bromodomains recruit proteins of transcription machinery by recognizing
acetylated-lysine residues in nucleosomal histones. Bromodomain and extra terminal (BET) inhibitors
are able to inhibit several transcription factor expressions and thereby result in growth inhibition in
several tumors [11]. Dexamethasone (Dex) is widely used as a pretreatment drug in chemotherapy to
prevent severe side effects such as nausea and vomiting as well as to prevent allergic reactions. It is a
glucocorticoid (GC) and functions by binding to the glucocorticoid receptor(GR) [12]. Bioinformatics
is an emerging field being used to analyze and interpret high-dimensional biological data using
advanced computational tools. Next-Generation Sequencing technologies (NGS)-based bioinformatics
analytics are designed to convert signals to data, data to interpretable information, and information
into actionable knowledge. RNA Sequencing (RNA-Seq) is an efficient tool for sequencing the
transcriptome using high throughput sequencing technologies, NGS. It helps to understand various
gene expressions at any point in time. For example, it helps to determine how a disease develops, how
a drug gets affected, and how gene splicing occurs. When compared to microarrays, RNASeq has
several advantages such as high technical reproducibility, low background noise, and large dynamic
range [13]. It can also be exploited for the identification of novel transcripts and splicing events
since it can be analyzed with or without a reference sequence [14]. The analysis part of RNASeq still
remains a challenge with continuous improvements occurring in the design of bioinformatic programs
used in the analysis. One of the main applications of RNA-Seq analysis lies in drug research, where
appropriate drug targets can be designed after studying the gene expression and pathways in a disease
condition [15].

In view of this, the present study aimed at studying the gene expression and pathways in TNBC
cell lines SUM159 and MDA-MB-231 that show drug resistance and identify the top differentially
expressed ones so that appropriate drug targets can be designed for overcoming the mechanism
of resistance.

2. Results

At a 24-h time interval of JQ1 treatment on SUM159 and SUM159R cell lines, out of the 14,445
genes differentially expressed, a total of 2682 differentially expressed genes (DEGs) were observed to
be significantly differentially expressed between SUM159R and SUM159 (891 upregulated and 1791
downregulated genes) at a p-value of 0.05 and log fold change (log FC) of 1. At a 4-h time interval of
Dex treatment, out of the 13,280 genes differentially expressed between Dex-treated MDA-MB-231 cell
lines and vehicles (control samples), a total of 563 genes were observed to be significantly differentially
expressed (325 upregulated and 238 downregulated genes) at a p-value of 0.05 and log FC of 1 (Table 1).
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Table 1. Total number of differentially expressed genes (DEGs) at each time interval of drug treatment.

Drug Treatment Time
Interval Cell Lines Contrast Total No. of

Significant DEGs
No. of

Upregulated Genes

No. of
Downregulated

Genes

JQ1 3 h SUM159R vs. SUM159 3580 1310 2270
JQ1 24 h SUM159R vs. SUM159 2682 891 1791

Dexamethasone 2 h MDA-MB-231 vs. control 301 204 97
Dexamethasone 4 h MDA-MB-231 vs. control 563 325 238

The upregulated genes with lowest p-values were SLC37A2 and CADM1 in SUM159R cells treated
with JQ1 at 3 and 24 h, respectively, whereas the downregulated genes with the lowest p-values were
DCN and CDH11. In MDA-MB-231 cells treated with Dexamethasone at two and four hours, the
upregulated gene with lowest p-values was PDK4 in both time intervals, whereas the downregulated
genes with lowest p-values were PLK2 and PRAG1. The top most significantly up-and downregulated
differentially expressed genes are given in Table 2. The top ten pathways for each sample are given in
supplementary material (Supplementary Table S1a–d).

Table 2. Top most significantly up-& downregulated differentially expressed genes.

Regulation Entrezid Gene Symbol Log FC p-value FDR

Up-regulated

JQ1.3 h 219,855 SLC37A2 4.6143434 2.621552 × 10−164 3.786831 × 10−160

JQ1.24 h 23,705 CADM1 4.3898554 7.165931 × 10−122 2.070238 × 10−118

Dex.2 h 5166 PDK4 8.6764105 <1 × 10−3 <1 × 10−3

Dex.4 h 5166 PDK4 7.8302047 <1 × 10−3 <1 × 10−3

Down-regulated

JQ1.3 h 1634 DCN −4.8813506 1.516128 × 10−153 1.095024 × 10−149

JQ1.24 h 1009 CDH11 −7.3956023 1.073032 × 10−160 1.549994 × 10−15

Dex.2 h 10,769 PLK2 −2.5506627 5.018664 × 10−97 2.665914 × 10−94

Dex.4 h 157,285 PRAG1 −2.6394177 1.108977 × 10−207 1.132863 × 10−204

Dex—Dexamethasone; FDR—False Discovery Rate.

A multidimensional scaling (MDS) plot was generated which gives relative positions of each
sample (Figure 1a,b). This plot helps in visually representing distances or dissimilarities between
each group of datasets. The distance between the samples in the plot can be interpreted as the log
fold change for the genes. The replicate samples cluster together while the samples from different
groups are well separated [16]. Biological Coefficient of Variation (BCV) plots are used to visualize
dispersion estimates obtained from the estimate Disp function in edgeR. A dispersion parameter is a
representation of variability between biological replicates in a negative binomial distribution adopted
in edgeR [16]. BCV or square-root dispersion was plotted on the y-axis of a BCV plot. It shows the
coefficient of variation (Figure 2a,b). Heat map is a two-dimensional graphical representation of data
where the individual values contained in a matrix are represented as colors. A matrix of significant
DEGs are better represented in a heat map with upregulated and downregulated genes assigned with
different colors [16]. This heat map gives the pattern of expressional changes of the top 30 significant
differentially expressed genes (Figure 3a,b).
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Figure 1. Multidimensional scaling plots (a) for JQ1 treatment; (b) for Dexamethasone treatment. 
s1—JQ1 sensitive-3 h treatment, s2—JQ1 sensitive-3 h treatment, s3—JQ1 sensitive-24 h treatment, 
s4—JQ1 sensitive-24 h treatment, r1—JQ1 resistant-3 h treatment, r2—JQ1 resistant-3 h treatment, 
r3—JQ1 resistant-24 h treatment, r4—JQ1 resistant-24 h treatment, ctrl1—control 1, ctrl2—control 2, 
dex2_1—Dexamethasone-2 h treatment, dex2_2—Dexamethasone-2 h treatment, 
dex4_1—Dexamethasone-4 h treatment and dex4_2—Dexamethasone-4 h treatment. 
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Figure 1. Multidimensional scaling plots (a) for JQ1 treatment; (b) for Dexamethasone
treatment. s1—JQ1 sensitive-3 h treatment, s2—JQ1 sensitive-3 h treatment, s3—JQ1 sensitive-24 h
treatment, s4—JQ1 sensitive-24 h treatment, r1—JQ1 resistant-3 h treatment, r2—JQ1 resistant-3 h
treatment, r3—JQ1 resistant-24 h treatment, r4—JQ1 resistant-24 h treatment, ctrl1—control 1,
ctrl2—control 2, dex2_1—Dexamethasone-2 h treatment, dex2_2—Dexamethasone-2 h treatment,
dex4_1—Dexamethasone-4 h treatment and dex4_2—Dexamethasone-4 h treatment.
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Figure 3. Heat maps: (a) For 24 h of JQ1 treatment; (b) For four hours of Dexamethasone treatment. 
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Functional annotation was done using gene ontology (GO) enrichment analysis for studying
the biological roles of significant differentially expressed genes in the study. Broad classification of
GO terms includes three groups: biological processes (BP), cellular components (CC), and molecular
function (MF). The most significantly enriched processes found out in the study were multicellular
organismal process, cell cycle, regulation of signal transduction, and response to stimulus. All of
them belonged to biological processes (Table 3). The top GO terms for each sample are given in
supplementary material (Supplementary Table S2a–d). Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis was done to identify the most significant pathways that had been altered
in the samples of study. Cytokine-cytokine receptor interaction was the most significantly enriched
pathway for three out of four different treatment samples taken in the study. Cell cycle was the other
significantly enriched pathway (Table 4). The top ten pathways for each treatment sample are given in
supplementary material (Supplementary Table S3a–d).

Table 3. Most significantly enriched Gene Ontology (GO) terms for different samples.

Treatment GO term N Up Down p-Value(Up) p-Value (Down)

JQ1.3 h Multicellular
organismal process 4185 884 1539 0.9999998 2.897229 × 10−46

JQ1.24 h Cell cycle 1550 552 173 8.399527 × 10−38 1.000000 × 10

Dex.2 h Regulation of signal
transduction 2053 170 198 3.582583 × 10−14 2.810198 × 10−22

Dex.4 h Response to stimulus 5230 652 776 1.06389 × 10−19 1.297062 × 10−7

Table 4. Most significantly enriched Kyoto Encyclopedia of Genes & Genomes (KEGG) pathways for
different samples.

Treatment KEGG Pathway N Up Down p-Value (Up) p-Value (Down)

JQ1.3 h Cytokine-cytokine
receptor interaction 113 16 64 9.962870 × 10−1 3.082753 × 10−10

JQ1.24 h Cell cycle 117 57 5 2.416778 × 10−10 1.000000 × 10

Dex.2 h Cytokine-cytokine
receptor interaction 109 10 31 3.648702 × 10−2 9.283461 × 10−16

Dex.4 h Cytokine-cytokine
receptor interaction 109 12 44 3.591688 × 10−1 7.440649 × 10−13

The importance of the cytokine-cytokine receptor interaction pathway has been highlighted
by these studies and further investigation is required to target this pathway for therapeutic and
diagnostic purposes.

The iPathway Guide analysis was used for further validation of our findings of significance.
This analysis revealed that the most significant altered pathway at all time intervals for both of
the drug treatments was cytokine-cytokine receptor interaction with a p-value of 5.588 × 10−6 and
1.120 × 10−8 for JQ1 and dexamethasone, respectively. The PI3K-Akt signaling pathway was also
found to be significantly altered. The list of top statistically significantly altered pathways is given
in Table 5a,b.Volcano plots for differentially expressed genes (resistant vs. sensitive) are given in
Figure 4a,b. Perturbation versus overrepresentation of disrupted pathways at 24 h of JQ1 treatment
and four hours of Dex treatment are represented in Figure 5a,b.
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Table 5. Statistically significant altered pathways (Resistant vs. Sensitive).

(a) 24 h of JQ1 Treatment

Pathway p-Value

Cytokine-cytokine receptor interaction 5.588 × 10−6

Neuroactive ligand-receptor interaction * 1.708 × 10−4

Cell adhesion molecules (CAMs) * 0.007
Systemic lupus erythematosus 0.011
Drug metabolism-cytochrome P450 * 0.017
Metabolism of xenobiotics by cytochrome P450 * 0.028
Chemical carcinogenesis * 0.028
Rap1 signaling pathway 0.028
Staphylococcus aureus infection 0.035
PI3K-Akt signaling pathway 0.048

(b) 4 h of Dexamethasone Treatment

Pathway p-Value

Cytokine-cytokine receptor interaction 1.120 × 10−8

Rheumatoid arthritis 0.002
Neuroactive ligand-receptor interaction * 0.002
AGE-RAGE signaling pathway in diabetic complications 0.007
Pathways in cancer 0.008
Hematopoietic cell lineage * 0.010
Transcriptional misregulation in cancer * 0.012
PI3K-Akt signaling pathway 0.015
Phosphatidylinositol signaling system * 0.016
Basal cell carcinoma 0.018

* overrepresentation only. AGE-RAGE: Advanced glycation end products–Receptor for advanced glycation end
products. Rap1: Ras-proximate-1.
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Figure 5. Perturbation (y-axis) vs. Overrepresentation (x-axis) reveals disrupted pathways: (a) At
24 h of JQ1 treatment; (b) At four hours of Dexamethasone treatment. The size of each dot
denotes the number of genes in the pathway. The x-axis measures p-values obtained using the
classical over-representation analysis (pORA). The y-axis represents the p-values obtained from total
perturbation accumulation (pAcc) in the pathway. Yellow: Cytokine-cytokine receptor interaction
pathway, Red: Significantly enriched pathways, Black: Non-significantly enriched pathways.

3. Discussion

The aim of the present study was to explore changes at the molecular level in the drug-resistant
TNBC cell lines, which included the study of differentially expressed genes, cellular processes,
pathways, and pathway interactions. The difference seen in these molecular aspects of sensitive
and resistant cells could throw light on the mechanism of resistance. The study could also give an
insight into the major pathways and altered gene functions to be targeted for diagnostic and prognostic
purposes in future. Among the different subtypes of TNBC, the study focused on Basal B subtypes
and, therefore, two different cell lines (SUM159 and MDA-MB-231) belonging to the same subtype
were used and checked for consistency as well as disparity between the two. The drugs used were JQ1
and Dexamethasone.

JQ1 is a bromodomain or extra terminal inhibitor or BETi and it stops cancer cells from adapting
to hypoxia. Therefore, it acts as an important therapy agent in hard-to-treat breast cancers [17].
Dexamethasone is used as a pretreatment drug in chemotherapy to prevent severe side effects such
as vomiting, nausea, and allergic reactions. They are used prior to, during and after chemotherapy
at various doses to protect the normal tissues against the long-term effects of genotoxic drugs and
to reduce toxicity. Studies have shown Dex to have an antiproliferative effect on certain types of
breast cancer cell lines. Dex, when used as comedication during chemotherapy, was found to cause
substantial immunomodulatory effects. Dex induces drug resistance in TNBC cells in some cases, in
both in vivo and in vitro conditions as reported by Li Z et al. [12].

Only the significant factors common to both time intervals of each sample were considered. The
upregulated genes with lowest p-values were SLC37A2, PNMA2, and CADM1. SLC37A2 is a gene
that codes for a protein that is involved in sugar-phosphate exchange [18]. A study has pointed to the
reported role of solute carrier (SLC) proteins in drug resistance [19]. Therefore, further investigations
have to be done to elucidate the role played by the SLC37A2 gene in contributing to drug resistance.
The significantly downregulated genes with the lowest p-values were CDH11 and HGF. CDH11, also
known as OB Cadherin, has a role in the metastasis process and has already been established as an
epigenetic biomarker of drug resistance in acute myeloid leukemia. The class of proteins to which
CDH11 belongs has already been proposed as novel targets for anticancer therapy [20,21]. This is in
the case of JQ1 treatment. In the case of Dexamethasone treatment, the top three upregulated genes
with lowest p-values were PDK4, TSC22D, and KLF9. PDK4-Pyruvate Dehydrogenase Kinase 4 acts
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as a gatekeeper of the tricarboxylic acid (TCA) cycle by inactivating pyruvate dehydrogenase (PDH).
PDK4 expression is downregulated dramatically in most tumor types. PDK4 is found to be a critical
metabolic regulator of epithelial-mesenchymal transition (EMT) seen in acquired anticancer drug
resistance [22]. The top three downregulated genes with lowest p-values were ZNF703, SOX9, and
PRAG1. The ZNF703 gene is a novel oncogene seen in a small percentage of breast cancers—the ones
harboring 8p12 amplifications. Luminal breast cancer cell lines in which the ZNF703 is overexpressed
are seen to be resistant to tamoxifen through the activation of Akt/mTOR signaling [23].

Gene ontology (GO) analysis was performed for elucidation of biological roles of the differentially
expressed genes. The most significantly enriched GO category for JQ1 at three hours was multicellular
organismal processes which come under the category of biological processes, whereas at 24 h, it was
cell cycle which again came under biological processes. In MDA-MB-231 cells treated with Dex at two
hours, the most significantly enriched GO category was regulation of signal transduction, and at four
hours it was response to stimulus; both belong under biological processes. KEGG pathway analysis
was conducted in order to study the biological roles of the differentially expressed genes. The pathway
with the lowest p-value for JQ1 treatment at three hours was cytokine-cytokine interaction, which
came under the broader category of environmental information processing. At 24 h of JQ1 treatment,
the most significantly enriched pathway was the cell cycle. The cytokine-cytokine interaction pathway
was repetitively seen to be significantly enriched in both 2-h and 4-h treatment of MDA-MB-231 cells
with Dex.

Cytokine signaling is said to direct tumor cell proliferation and stromal blood vessel network
formation. There is evidence that cancer cells and their associated stroma secrete cytokines that play a
key role in a number of drug-resistant mechanisms [24]. Cancer stromal cells secrete specific cytokines
and these confer resistance to chemotherapy. Cytokines are seen to play a major role in cancer cell
progression as well as the cancer drug resistance mechanism. It is essential to establish a correlation
between the cytokine profile and cancer drug resistance. Exosomes, which are secreted by various
types of cells in the microenvironment of the tumor, transfer bioactive molecules such as micro RNAs
and cytokines that are seen to play an essential role in tumor progression and therapy resistance in the
tumor cells [25]. The gene ontology (GO) enrichment analysis and the KEGG pathway enrichment
analysis are the common downstream procedures to interpret the differential expression results in a
biological context [26]. Given a set of genes that are up- or downregulated under a certain contrast of
interest, a GO (or pathway) enrichment analysis will find which GO terms (or pathways) are over- or
underrepresented using annotations for the genes in that set.

Crucial information, like the type of each gene, the position of each gene on each pathway, and the
type and directions of the interactions with the other genes is essential to carry out a more meaningful
pathway analysis.

iPathway Guide is an implementation of a pathway analysis approach [27] introduced a few
years ago. This technique uses a systems biology approach that takes into consideration the direction
and type of every edge on every pathway, the location of every gene, etc. This has been shown to
both eliminate many of the false positives produced by the other approaches, as well as correctly
identify true positives that are otherwise missed. Our analysis with iPathway Guide cross-validated
our findings of the significance of cytokine-cytokine receptor interactions in the present study.

The limitation of the present study was the unavailability of datasets of similar nature viz.
RNASeq data of TNBC resistant samples. More studies on the transcriptome drug-resistant samples in
TNBC would have provided greater heterogeneity in the sample subsets, and hence given a broader
perspective on the molecular aspects. The results of this study give the molecular characteristics of the
drug-resistant cell lines as compared to drug-sensitive, and these can be considered for determining
therapeutic targets. Further studies on the cytokine-cytokine interaction pathway and its components
should be carried out for arriving at further conclusions regarding overcoming of drug resistance for
successful treatment of TNBC.
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In conclusion, the present study performed an analysis of the RNAseq datasets available of
drug-resistant TNBC cell lines to identify the top differentially expressed genes, pathways, as well as
other biological functions. The cytokine-cytokine interaction pathway showed a consistent significant
differential expression in both the different cell lines. With evidence from other published literature
and our findings, we were able to conclude that this pathway could be targeted for therapy. Further
functional studies can give an insight into the role of the significantly expressed biological factors in
the resistant samples to throw light on the mechanism of resistance and how to overcome the same
using targeted therapies. Sun X. et al. confirmed that crosstalk inhibition diminishes the response of
signaling output to the external stimuli [28]. Therefore, further studies are required to confirm the
dependability on present findings to be adopted as therapeutic targets.

4. Materials and Methods

Gene expression profiling studies related to drug resistance in TNBC were identified by searching
the Gene Expression Omnibus (GEO) database [29]. The following combination of key words were
used: “triple-negative breast cancer”, “drug resistance” and “RNASeq”. RNASeq data of cell lines
exhibiting drug-resistant nature (SUM 159R and MDA-MB231) and the corresponding parental/control
cell lines were used to carry out a differential expression analysis at the provided time intervals. Two
experimental RNASeq datasets that dealt with drug resistance in TNBC cell lines were downloaded
from the GEO database (Table 6).

Table 6. RNASeq datasets used for the study and their characteristics.

GEO ID Sequencing Platform Cell Lines Time Interval Treatment

GSE63582 Illumina True-Seq

SUM 159 (sensitive) 3 h

JQ1 (500 nM)SUM 159 (sensitive) 24 h
SUM 159R 3 h
SUM 159R 24 h

GSE56022 Illumina Hi-Seq

MDA-MB 231 2 h
Dexamethasone

(100 nM)
MDA-MB 231 4 h

MDA-MB 231 (control 1) 2 h
MDA-MB 231 (control 2) 4 h

GEO—Gene Expression Omnibus.

The characteristics of the experimental setups that generated the datasets were as follows:

(1) The first study [30] was based on the effect of bromodomain inhibitors on SUM159 cell lines. In the
RNASeq experiment, SUM159 (drug-sensitive) and SUM159R (drug-resistant) were incubated
in biological duplicates for 3, 12 and 24 h with 500 nM of JQ1 or Dimethyl sulfoxide (DMSO)
treatment. For our study, available duplicate reads (GSE63582) at both 3 and 24 h of JQ1 treatment
on SUM159 and SUM159R were downloaded from the database.

(2) The second experimental study [31] focused on establishing the relationship between
dexamethasone (a coadjuvant) and drug resistance in MDA-MB-231 cell lines. MDA-MB-231
cells were treated with 100 nM Dex or 10 µM CpdA for two and four hours, respectively. For our
study, all duplicate reads (GSE56022) for control, after two and after four hours of drug treatment,
were downloaded.

RNASeq data are usually very large and require efficient algorithms which use minimum
computing resources for their analysis [19]. The major steps in an RNASeq analysis pipeline include
alignment of sequence reads to a reference genome, quantification of transcripts, and differential
expression, which output a list of up- and downregulated genes.

The RNASeq reads were assessed for their quality using the Fast QC 0.11.6 [32] program
and aligned to GRCh38 reference genome using STAR-2.5.3a [33] algorithm. The transcripts were
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quantified using subread-1.6.0 [34] and differentially expressed genes were determined using the
edgeR v3.22.2 [35] program. GO enrichment and KEGG pathway enrichment were performed. The
details of program codes are in the supplementary data. The lists of differentially expressed genes
from edgeR were further analyzed using iPathway Guide from Advaita Bioinformatics [28].

Top differentially expressed genes were identified in both of the experimental datasets (SUM159R
vs. SUM159 and MDA-MB-231 vs. control) at different time intervals of drug treatment. Drug-sensitive
samples corresponding to each treatment were taken as controls.

The edgeR program in R studio was used to determine how the genes are differentially expressed
in the drug-resistant cells when compared to the sensitive ones. edgeR uses probabilistic methods for
determining differential expression. The genes and pathways affected were determined based on a
false discovery rate (FDR) of 0.05 and a log FC of 1 [16]. edgeR filters genes with low transcript count
after which normalization of all the samples was done.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/6/
1810/s1.
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