
 International Journal of 

Molecular Sciences

Review

Unique Biological Activity and Potential Role of
Monomeric Laminin-γ2 as a Novel Biomarker for
Hepatocellular Carcinoma: A Review

Hiroshi Yasuda 1,* , Masatoshi Nakagawa 2,3, Hirofumi Kiyokawa 1,2 , Eisaku Yoshida 3,
Toru Yoshimura 3, Naohiko Koshikawa 2,4,*, Fumio Itoh 1 and Motoharu Seiki 4,5

1 Division of Gastroenterology and Hepatology, St. Marianna University School of Medicine,
Kawasaki 216-8511, Japan; h2kiyokawa@marianna-u.ac.jp (H.K.); fitoh@marianna-u.ac.jp (F.I.)

2 Division of Cancer Cell Research, Kanagawa Cancer Center Research Institute, Yokohama 241-8515, Japan;
Masatoshi.Nakagawa@abbott.com

3 Diagnostics Division, Abbott Japan Co., Ltd., Chiba 270-2214, Japan; Eisaku.Yoshida@abbott.com (E.Y.);
Tohru.Yoshimura@abbott.com (T.Y.)

4 Division of Cancer Cell Research, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639,
Japan; mseiki@ims.u-tokyo.ac.jp

5 Faculty of Medicine, Institute of Medical, Pharmaceutical & Health Science, Kanazawa University,
Takara-machi, Kanazawa 920-0934, Japan

* Correspondence: hyasuda@marianna-u.ac.jp (H.Y.); nkoshi-tky@umin.ac.jp (N.K.);
Tel.: +81-44-977-8111 (H.Y.); +81-045-520-2222 (N.K.)

Received: 15 November 2018; Accepted: 2 January 2019; Published: 8 January 2019
����������
�������

Abstract: Laminin (Ln)-332 consists of α3, β3, and γ2 chains, which mediate epithelial cell adhesion to
the basement membrane. Ln-γ2, a component of Ln-332, is frequently expressed as a monomer in the
invasion front of several types of malignant tissues without simultaneous expression of Ln-α3 and/or
Ln-β3 chains. Moreover, monomeric Ln-γ2 induces tumor cell proliferation and migration in vitro.
These unique biological activities indicate that monomeric Ln-γ2 could be a candidate biomarker
for early cancer surveillance. However, the present immune method for monomeric Ln-γ2 detection
can only predict its expression, since no antibody that specifically reacts with monomeric γ2, but not
with heterotrimeric γ2 chain, is commercially available. We have, therefore, developed monoclonal
antibodies to specifically detect monomeric Ln-γ2, and devised a highly sensitive method to measure
serum monomeric Ln-γ2 levels using a fully automated chemiluminescent immunoassay (CLIA).
We evaluated its diagnostic value in sera from patients with several digestive cancers, including
hepatocellular carcinoma (HCC), and found serum monomeric Ln-γ2 to be a clinically available
biomarker for HCC surveillance. The combination of monomeric Ln-γ2 and prothrombin induced
by Vitamin K Absence II (PIVKA-II) may be more sensitive for clinical diagnosis of HCC than any
currently used combination.

Keywords: hepatocellular carcinoma; monomeric laminin-γ2; biomarker; α-fetoprotein; prothrombin
induced by Vitamin K Absence II; surveillance

1. Laminin-332

Extracellular matrix (ECM) proteins in basement membranes (BMs), such as collagen and laminin,
play an important role in cell-cell adhesion to maintain epithelial structures in vitro [1]. Among these,
Ln-332 (formerly called laminin-5) is a major macromolecule in the epithelial BMs and comprises
of three polypeptide chains: Ln-α3, -β3, and -γ2 (Figure 1) [2,3]. In normal epithelium and cancer
tissues, heterotrimeric Ln-332 exhibits dual functions of adhesion and migration, and plays important
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roles in maintaining the static epithelial structure and epithelial cell turnover. These physiopathology
functions of Ln-332 are critically regulated by interaction with integrins as a laminin receptor. Integrins
α3β1 and α6β4 are a major ligand for Ln-332 and bind the C-terminal domain of Ln-α3 chain, named
LG1-3, to promote cellular adhesion and migration [3,4]. Moreover Ln-332 is essential for anchoring
epithelia to BMs, and its interaction with integrin α6β4 causes the assembly of hemidesmosomes and
immobilization of epithelial cells onto the underlying BMs [5].

So far, it has been reported that many proteases are involved in the processing of each Ln-332
chain [6]. Interestingly, Giannelli et al. reported for the first time that proteolytic processing of the γ2
chain of Ln-332 stimulates mammary epithelial cell motility [7]. Proteolytic cleavage of the γ2 chain of
Ln-332 trimer is crucial to convert its static form to a migratory form, since proteolytic Ln-γ2 fragment,
Domain III, acts as an EGF-receptor (EGFR) ligand and promotes cell motility [8,9]. Besides integrins,
the short arm of Ln-γ2 chain binds a transmembrane heparan sulfate proteoglycan, syndecan-1 and
regulates cellular adhesion and migration through Ln-332 by suppressing integrin β4 phosphorylation
(Figure 1) [10].
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resulting in upregulation of malignant progression of tumor cells through EGFR activation. Figure 
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elucidated, each laminin chain is observed either in monomeric or dimeric form in tumor-stage 
dependent manner. Thus, monomeric and/or dimeric laminin chains are believed to be specific 
biomarkers for malignant tumors [13]. In this review, we focus on the monomeric Ln-γ2 chain, which 
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Figure 1. (A) The γ2 chain of Ln-332 trimer and monomeric Ln-γ2 chains (Ln-α3 chain: red, Ln-β3
chain: grey, Ln-γ2 chain: blue). Proteolytic processing sites of γ2 chain by MMPs ( 1©) or MMP-14
( 2©) (B) Proteolytic processing of Ln-γ2 chain occurs at cell surface for subsequent regulatory cellular
functions (red arrows). Proteolytic processing of γ2 chain converts Ln-332 function from static adhesion
to migratory substance. (C) Membrane type-1 matrix metalloproteinase (MMP14) cleaves Ln-γ2 chin at
both sites and releases the Domain III (laminin-EGF motif) from cancer cells (red arrows), resulting
in upregulation of malignant progression of tumor cells through EGFR activation. Figure 1B,C are
modified from Koshikawa et al. [8], and Shenk et al. [9].

2. Monomeric Laminin-γ2

Heterotrimeric Ln-332 expression is observed as a single layer on BMs in both normal epithelium
and carcinoma tissues in vivo; however, Ln-332 expression is generally reduced in advanced
tumors [11,12] (Figures 1 and 2). Although the mechanism of Ln-332 down-regulation has not been
fully elucidated, each laminin chain is observed either in monomeric or dimeric form in tumor-stage
dependent manner. Thus, monomeric and/or dimeric laminin chains are believed to be specific
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biomarkers for malignant tumors [13]. In this review, we focus on the monomeric Ln-γ2 chain, which
has been suggested to be involved in tumor cell invasion. The monomeric Ln-γ2 chain was originally
identified in conditioned medium obtained from gastric carcinoma cells, and its expression was
detected by immunohistochemistry in budding or disseminating tumor cells in gastric carcinoma
tissues (Figure 2) [14]. Many lines of evidence have reported similar results in pancreatic, gastric,
tongue, colorectal, lung, cervical, and esophageal carcinomas (Table 1) [14–19].
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Figure 2. Detection of the γ2 chain of Ln-332 trimer and monomeric Ln-γ2 (Ln-γ2m) chain in gastric
carcinoma in vivo. The γ2 chain of Ln-332 trimer was detected in the basement membranes of carcinoma
tissues, whereas monomeric γ2 chain was selectively detected in the leading edge of carcinomas.
Arrowheads, positive signal for the monomeric Ln-γ2 chain. Magnification: 200×. Figure 2 is modified
from Koshikawa et al. [14].

Table 1. Reported studies of expression of Ln-γ2 in cancer of gastrointestinal tract.

Organ Detection Rate by IHC Detection Rate by Serological Assay References

esophagus 44% (44/100) N/A [18]

stomach 23% (35/153) N/A [20]

colon 65% (29/39) N/A [21]

liver 63% (25/40) CLIA, 63% (36/57) [22,23]

pancreas 53% (8/15) ELISA, 72% (36/50) [16,24]

biliary tract 57% (35/61) N/A [25]

N/A; not available.

Similar to the γ2 chain of Ln-332 trimer, the monomeric Ln-γ2 chain is also cleaved by proteases.
Membrane type-1 matrix metalloproteinase (MT1-MMP/MMP-14) cleaves domain III of Ln-γ2 chain,
which contains a laminin-EGF-like motif and promotes malignant cancer progression via EGFR and its
downstream signaling (Figure 1) [26].

3. Development of a Specific Antibody against Monomeric Ln-γ2 Chain

Since monomeric Ln-γ2 chain is believed to be a promising target for invasive cancers, previous
studies have extensively reported the expression and localization of monomeric Ln-γ2 chain in
cancer tissues [2,14,21,25,27–29]. For detecting monomeric Ln-γ2 chain by an immunoassay, two
different laminin chain antibodies (Abs) (e.g., anti-Ln-α3 and Ln-γ2 mAbs) are required. For example,
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existence of the monomeric Ln-γ2 chain can be determined from Ln-α3 (negative) and Ln-γ2 (positive)
immunostaining. The present immune method for monomeric Ln-γ2 detection only predicts its
expression, since no antibody that specifically reacts with monomeric γ2, but not with the γ2 chain
of Ln-332 trimer, is commercially available. Moreover, immunoassay with multiple antibodies is
complicated and exhibits low detection sensitivity. Due to these major reasons, monomeric Ln-γ2 has
not been applied in clinical cancer diagnosis yet.

To overcome this limitation, we generated specific antibodies against monomeric Ln-γ2,
and subsequently isolated two different hybridoma clones (1H3 and 2H2 mAbs) using screening assays
such as enzyme-linked immunosorbent assay (ELISA) and western blotting [30]. The equilibrium
dissociation constant (Kd) of 2H2 mAb for monomeric Ln-γ2 was determined to be 7.61 × 10−8 M using
surface plasmon resonance (SPR), though the same for the γ2 chain of Ln-332 trimer was not detected
(Figure 3A). Therefore, 2H2 mAb was established, for the first time, as a powerful tool for the specific
detection of monomeric Ln-γ2, and could be used for immunoassays, including immunoprecipitation,
ELISA, immunohistostaining, and western blotting (Figure 3B,C).
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Ln-γ2 (left), and 2H2 mAb and Ln-332 (right); 2H2 reacts with monomeric Ln-γ2 chain but not with
the γ2 chain of Ln-332 trimer. (B) Immunoprecipitation (IP) of Ln-γ2 chain by 1H3 and 2H2 mAbs.
Purified monomeric Ln-γ2 or Ln-332 (0.5 µg) protein was incubated with mouse immunoglobulin
(IgG), 1H3 mAb, or 2H2 mAb (2 µg/mL each). Antibody-antigen complexes were then precipitated
and subjected to western blotting (WB) using anti-Ln-γ2 polyclonal antibody (pAb). In addition to
the intact form of Ln-γ2 (140 kDa), NH2-terminal (70 kDa) and COOH-terminal (100 kDa) fragments,
processed by MMP-14 or mTLDs (Figure 1, right 2©), are detected and indicated as γ2, DIII/IV, and γ2’,
respectively. Left, sample proteins (monomeric Ln-γ2 and Ln-332) used for the assay were directly
analyzed by WB using anti-Ln-γ2 pAb. Figure 3B is from Koshikawa et al. [30]. (C) Use of 2H2 and
D4B5 mAbs in WB analysis. D4B5 is a commercially available anti-Ln-γ2 mAb. Purified monomeric
Ln-γ2 (1 µg) and Ln-332 trimer (3 µg) proteins were separated by 7.5% SDS-PAGE and blotted on PVDF
membranes under non-reducing conditions, and then detected either by D4B5 or 2H2 mAb. Arrows,
Ln-γ2 homo-oligomer (γ2 oligo), monomer (γ2), its processed fragment (γ2’), and Ln-332.

4. Detection of Ln-γ2 or Its N-Terminal Domain Fragment in Serum Specimens of Patients
with Cancer

Katayama et al. established a sandwich ELISA for Ln-γ2 Domain IV–V fragment using a
mAb against the DIV-V fragment [31,32], and evaluated it in serum specimens of patients with
cancer. The sandwich ELISA revealed that patients with head and neck squamous cell carcinoma,
hepatocellular carcinoma, bile duct carcinoma, gallbladder carcinoma, and pancreatic carcinoma
with liver metastasis exhibited higher serum Ln-γ2 DIV-V fragment levels than healthy volunteers.
Moreover, the study revealed that patients with benign digestive diseases also showed higher
DIV-V levels than healthy volunteers. Furthermore, it was possible to monitor the lung epithelial
repair process by measuring the serum Ln-γ2 DIV-V level in patients with acute lung injury [33].
Presumably, in sandwich ELISA, the mAb reacts with DIV-V fragments derived from both heteromeric
and monomeric Ln-γ2 chains and cannot distinguish between patients with cancer and those with
inflammatory diseases that release Ln-332 from BMs through ECM degradation.

A recent study by Kosanam et al. evaluated Ln-γ2 in the serum of patients with pancreatic
carcinoma using a commercially available ELISA kit [24]; the serum Ln-γ2 level in patients with
pancreatic carcinoma was found to be significantly elevated compared to that in patients with
chronic pancreatitis and healthy volunteers in three cohort studies. This result strongly suggests
that monomeric Ln-γ2 might be a potential candidate biomarker for cancer.

5. Establishment of an Automated Chemiluminescent Immunoassay (CLIA)

Based on previous findings, we established a detection system using a chemiluminescent
immunoassay (CLIA) for estimating serum monomeric Ln-γ2 levels using 2H2 mAb, and applied it for
clinical cancer diagnosis. The CLIA is a highly sensitive protein detection system with low background,
compared to sandwich ELISA, and is a common biomarker assay in clinical diagnosis (Figure 4A).
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The 2H2 mAb was introduced in CLIA assay to eliminate cross-reaction with the γ2 chain of Ln-332
trimer directly [22,34]. The CLIA assay with 2H2 mAb can reduce false-positive reactions and enhance
the diagnostic accuracy. Indeed, a standard curve using recombinant monomeric Ln-γ2 protein shows
that the CLIA can measure from 0 to 20,000 pg/mL of the protein (Figure 4B). The lower detection
limit is 10 pg/mL, and serum monomeric Ln-γ2 levels in healthy volunteer’s average to 44.3 ± 17.6
pg/mL (mean ± SD) [22]. These data collectively indicate that measurement efficiency of the CLIA
exceeds that of sandwich ELISA (Table 2). Therefore, we evaluated the serum monomeric Ln-γ2 level
in serum specimens of patients with digestive cancers, using CLIA, and found it to be a promising
biomarker for early detection of hepatocellular carcinoma (HCC), as described below.
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Figure 4. (A). Detection method for Chemiluminescent immunoassay (CLIA) (B), and its standard
curve at different ranges using recombinant monomeric Ln-γ2 protein. RLU; Relative Light Unit.

Table 2. Comparison of measurement efficiency between LISA and CLIA.

ELISA Automated CLIA

Dynamic range Narrow *1 Wide *2

Detection sensitivity Low High

Diagnostic accuracy Low High

Background High Low

Throughput Low High

Reaction time > 2.5 h 30 min

*1: Note that dynamic range of ELISA is 15–4000 pg/mL *2, and CLIA is 10–20,000 pg/mL.

6. Hepatocellular Carcinoma Surveillance and Biomarkers

There has been remarkable development in therapeutic options for HCC recently. Nevertheless,
curative options are only feasible in case of early diagnosis. Screening programs in an increased-risk
population could lead to more frequent detection of HCC at early stages and reduce HCC mortality [35].
The subjects of regular HCC surveillance include patients with chronic hepatitis B virus (HBV),
chronic hepatitis C virus, and non-viral liver cirrhosis. Tests that can be used in HCC surveillance
include serological and imaging examinations. Ultrasonography is the most widely used method
for HCC surveillance. In Taiwan, residents aged between 45 and 69 years, with a high prevalence of
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hepatitis B surface antigen (HBsAg), were invited to community-based abdominal ultrasonography
screening for HCC, followed by subsequent reduction in HCC-related mortality compared to that
in those who were not invited [36]. The American Association for the Study of Liver Diseases has
recommended six monthly ultrasonography screening for HCC [37]. Ultrasonography is not invasive,
but is relatively expensive and operator- and patient-dependent. In contrast, serological biomarkers
can be used at relatively low costs, without any burden to the patient. α-fetoprotein (AFP) is the
most frequently used biomarker for HCC worldwide. Screening with six monthly AFP assays in
HBV-positive individuals resulted in earlier diagnosis of HCC, but did not affect five-year survival [38].
Randomized controlled trial indicated that biannual screening with combination of AFP and ultrasound
reduced HCC-mortality in individuals with HBV infection or history of chronic hepatitis. Patients with
early and surgically respectable stages of HCC were found significantly more often in the screened
group than in the control [35]. Surveillance program of patients with liver cirrhosis combined AFP and
ultrasound to prolong survival rate of patients with HCC-mortality [39]. Thus, the Japan Society of
Hepatology has recommended surveillance with six monthly ultrasonography and biomarker assays
every three to four months for high-risk populations [40].

In surveillance, biomarkers are used to complement imaging tests, alone or in combination. AFP
and prothrombin induced by Vitamin K Absence II (PIVKA-II), also known as des-gamma-carboxy
prothrombin, are the most commonly used biomarkers for HCC surveillance. Currently,
the recommended clinical cut-off values are 20 ng/mL for AFP and 40 mAU/mL for PIVKA-II.
A case-control study in patients with chronic HBV infection with or without HCC, showed sensitivity
57.5% and specificity 88% for AFP, and sensitivity 51.9% and specificity 97% for PIVKA-II [41]. A recent
systematic review has indicated sensitivity 59% and specificity 86% for AFP, and sensitivity 63%
and specificity 91% for PIVKA-II [42]. AFP is the most commonly used biomarker; however, small
HCCs are not always associated with elevated AFP in serum, and even among large HCCs, only
about 80% show elevated AFP. Therefore, an appropriate combination of these markers might increase
sensitivity. Combination of AFP and PIVKA-II increased the sensitivity to 78.3% [41]. Among early
stage HCC, the receiver operating characteristic area under curve (ROC curve AUC) of PIVKA-II, AFP,
and combination of both markers were 0.84, 0.68, and 0.83, respectively; the combination of PIVKA-II
and AFP did not seem to be better than PIVKA-II in detecting early stages of HCC [42]. Development
of more effective biomarker combination would be required for early HCC diagnosis.

Biomarker monitoring is also useful in detecting HCC recurrence after therapeutic intervention.
Positive AFP and PIVKA-II status became negative at 6 months post-hepatectomy in 80.3% and 99.6%
patients, respectively. AFP and PIVKA-II levels in patients showing recurrence in ≤6 months correlated
with the levels measured before hepatectomy [43]. Postoperative AFP level is, therefore, a useful tool
for predicting recurrence after curative hepatectomy. A positive level of post-operative AFP might
suggest a site of residual viable cancer [44].

7. Serum Monomeric Ln-γ2 as a Novel Biomarker for Hepatocellular Carcinoma

Although heterotrimeric Ln-332 is not detected in normal hepatic tissues [29], increased expression
of monomeric Ln-γ2 in HCC tissue has been shown to be associated with a more proliferative and
metastatic phenotype [23]. In HCC, invasive tumor cells secrete TGF-β1, which triggers invasiveness
and motility in Ln-332 by inducing the expression of the transmembrane integrin receptor α3β1.
Ln-332 upregulates the expression of the transcriptional repressors Snail and Slug, which induce the
EMT together with TGF-β1, and downregulating E-cadherin, followed by translocation of β-catenin
to the nucleus [45]. According to a previous report, indeed all HCC cells tested expresses Ln-γ2,
MT1-MMP and MMP2. It is believed that the Ln-γ2 processing presumably occurs and plays roles in
their growth, motility and invasiveness through the EGFR activation [46].

As shown in Figure 5, cytoplasmic staining of Ln-γ2 was observed in surgically removed HCC
nodules. Ln-γ2 immunoreactivites are preferentially observed in marginal-moderately to poorly
differentiated parts of HCC nodules [22], as is observed in gastric carcinoma tissue [14]. Monomeric
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Ln-γ2 is also expressed in human HCC-derived cell lines. Recent report indicated that Ln-γ2 is highly
found in HCCs expressing the biliary marker keratin 19 [47]. Aberrant activation of Wnt/β-catenin
signaling is a common genetic abnormality in human HCC [48]. Previous studies on the mechanism of
Ln-γ2 expression had demonstrated that its gene and protein expression are up-regulated in gastric
and colon cancer cells by transcriptional factor 4 (TCF4)/β-catenin and/or Wnt-5a [20,49]. Moreover,
a study on comparative genomic hybridization (CGH), using cancer specimens, demonstrated that
copy number of the gene encoding Ln-γ2 is frequently increased in both early and advanced stages of
hepatocellular carcinoma (HCC) and lung squamous cell carcinoma [27]. Furthermore, expression of
Ln-332 was seen to be lost in many types of cancers due to gene methylation [50–54]. These reports
together support the increased expression of monomeric Ln-γ2 in HCC tissue.
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Since monomeric Ln-γ2, rather than heterotrimeric Ln-γ2, is expressed preferentially in HCC
nodules, we have evaluated the diagnostic value of monomeric Ln-γ2, AFP, and PIVKA-II in sera
from patients with HCC and chronic liver diseases (CLD) using the above-mentioned automated
CLIA along with ARCHITECT [22]. A significant increase in monomeric Ln-γ2 levels was observed in
patients with HCC compared to patients with CLD and healthy volunteers (Figure 6). ROC curve AUC
of monomeric Ln-γ2, PIVKA-II, and AFP were 0.952, 0.825, and 0.929, respectively, when comparing
healthy volunteers and patients with HCC. The discriminative ability of monomeric Ln-γ2 significantly
surpassed that of PIVKA-II, and was as effective as AFP (Figure 7). When discriminating patients with
non-malignant CLD from those with HCC, ROC curve AUC of monomeric Ln-γ2, PIVKA-II, and AFP
were 0.793, 0.845, and 0.788 respectively [22]. Therefore, serum monomeric Ln-γ2 seems to be more
effective than AFP in differentiating patients with HCC from those with CLD.
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In addition, the positivity rate in patients with HCC for the combination of Ln-γ2 and PIVKA-II
was 89.5%, whereas that for monomeric Ln-γ2 and AFP was 80.7%, and for PIVKA-II and AFP was
82.5%. The combination of Ln-γ2 and PIVKA-II seemed to make a more sensitive pair of biomarkers
compared to a conventional marker (Figure 8).

Increase of monomeric Ln-γ2 levels is observed with the stepwise progression of CLD,
and according to tumor stages. The optimal cutoff value for Ln-γ2 to distinguish between HCC
and nonmalignant CLD was 116.6 pg/mL. Positivity rate of monomeric Ln-γ2 in patients with HCC
for each TMN stage was 50% in stage I, 67% in stage II, 62% in stage III, and 75% in stage IV, respectively,
whereas that of AFP was 20% in stage I, 44% in stage II, 67% in stage III, and 75% in stage IV, respectively,
and of PIVKA-II was 50% in stage I, 56% in stage II, 76% in stage III, and 88% in stage IV, respectively
(Figure 9) [32]. Positivity rate of monomeric Ln-γ2 is clearly higher than AFP and comparable to
PIVKA-II. Among patients with early-stage HCC (T1 or T2; the T factor includes three criteria: solitary
tumor, maximum tumor diameter < 2 cm and no vascular invasion. T1 meets all three criteria, T2
meets two of the three criteria), the positivity rates of monomeric Ln-γ2 may be higher than AFP or
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PIVKA-II. Taken together, these results indicate the potential clinical applicability of monomeric Ln-γ2
for the detection of early-stage HCC. Besides being a diagnostic marker, it would be of particular
interest, in the future, to examine the potential of serum monomeric Ln-γ2 as a biomarker to monitor
therapeutic effects.
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Figure 8. Serum monomeric Ln-γ2 levels were measured in 57 patients with HCC. HCC positive
rates, obtained when combining two biomarkers, were compared. Three patients were negative for
all three biomarkers. HCC detection rates for the combination of Ln-γ2 and PIVKA-II, Ln-γ2 and
AFP, and PIVKA-II and AFP, were 89.5% (51/57), 82.5% (47/57), and 80.7% (46/57), respectively.
A combination of all three markers was detected in 54/57 patients (94.7%). Figure 8 is modified from
Kiyokawa et al. [22].
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8. Conclusions

Monomeric Ln-γ2 was identified as a biomarker, which is specifically expressed on the cancer
invasion front. Although monomeric Ln-γ2 has long been of interest as a potential biomarker for cancer
diagnosis owing to its unique biological features, development of an assay system for Ln-γ2 single
chain faced many obstacles, considering that Ln-γ2 is a part of Ln-332 trimer and most antibodies
that react with Ln-γ2 chain also recognize the Ln-332 trimer. We have therefore developed mAbs that
specifically detect monomeric Ln-γ2. Previous research has indicated important roles of Ln-γ2/Ln-322
in pathophysiology of HCC. Using this tool, we have thus further developed highly sensitive CLIA for
serum monomeric Ln-γ2. Serum monomeric Ln-γ2 may be considered a clinically available biomarker
for HCC surveillance. Moreover, the combination of monomeric Ln-γ2 and PIVKA-II may become a
sensitive tool for clinical diagnosis of HCC at early stages, hence preventing HCC-related deaths.
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Abbreviations

AFP α-fetoprotein
BM basement membrane
PIVKA-II prothrombin induced by Vitamin K Absence II
CLIA chemiluminescent immunoassay
CLD chronic liver disease
ECM extracellular matrix
HBV hepatitis B virus
HCC hepatocellular carcinoma
HCV hepatitis C virus
IP Immunoprecipitation
Ln-332 laminin 332
Ln-γ2 laminin-γ2
mAb monoclonal antibody
pAb polyclonal antibody
ROC curve AUC receiver operating characteristic area under curve
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