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Abstract: To unravel the mechanisms behind the higher resistance to light damage of juvenile (JR)
versus adult (AR) rats, Sprague Dawley rats were exposed to a bright luminous environment of
10, 000 lux. The light-induced retinopathy (LIR) was assessed with histology, electroretinography
and immunohistochemistry (IHC). In JR, 2 days of exposure induced the typical LIR, while >3
days added little LIR. IHC revealed a subtle migration of microglia (Iba1 marker) from the inner
to the outer retina after 3 days of exposure in JR contrasting with the stronger reaction seen after 1
day in AR. Similarly, in JR, the Müller cells expressed less intense GFAP, CNTF and FGF2 staining
compared to AR. Our results suggest that in JR the degree of retinal damage is not proportional to the
duration of light exposure (i.e., dose-independent retinopathy), contrasting with the dose-dependent
LIR reported in AR. The immature immune system in JR may explain the delayed and/or weaker
inflammatory response compared to AR, a finding that would also point to the devastating contribution
of the immune system in generating the LIR phenotype, a claim also advanced to explain the
pathophysiology of other retinal degenerative disorders such as Age-related Macular Degeneration,
Diabetic Retinopathy and Retinitis Pigmentosa.

Keywords: light-induced retinopathy; retinal structure and function; intrinsic resistance; immune
response; neurotrophic factors; juvenile and adult rats

1. Introduction

In albino rats, bright light exposure is known to trigger severe and irreversible retinal damage and
there is growing evidence linking the pathophysiology of the rodent light-induced retinopathy (LIR)
with human retinal disorders such as Retinitis Pigmentosa and Age-related Macular Degeneration [1,2].
The retinal damage is usually most pronounced in a well circumscribed region of the superior
retina [3–6], a region referred by us as the “photoreceptor hole” (due to the fact that nearly all its
photoreceptors are destroyed following light exposure). In contrast, damage in the inferior retina
remains relatively uniform (i.e., no significant variations with eccentricity), at least in the early stages of
the disease [6], thus creating distinctive superior-inferior hemiretinal differences which is the hallmark
of the LIR model. Given that this photoreceptor hole (i.e., in the superior retina) is present immediately
following the end of the light exposure, one aim of this study was to determine, in juvenile rats,
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the minimal duration of light-exposure required to cause the typical hemiretinal difference (i.e., first
appearance of the photoreceptor hole in the superior hemiretina only).

Similarly, we have previously shown that compared to adult rats, juvenile rats are more resistant
to LIR [4,6]. While in adult rats, a six-day long exposure to a luminous environment of 10,000 lux will
almost completely destroy the photoreceptors, the retina of juvenile rats exposed for 14 days to the
same environment will be significantly less affected [4,6]. The exact reason for this difference in the
degree of photoreceptor damage between juvenile and adult LIR rats remains unknown. We showed
that higher levels of neurotrophic factors (such as FGF-2 and CNTF) secreted by the Müller glial cells
were expressed in younger compared to older light-exposed retinas [7]. Neurotrophic factors are
known to play a significant role in photoreceptor survival in many models of retinal degeneration [8,9],
implying that these factors could also constitute an important endogenous mechanism of resistance
against light-induced damage in juvenile rats. Previous studies also suggested that the light-induced
photoreceptor damage could be, in part, related to an inflammatory response from activated microglial
cells [10,11]. It is believed that photoreceptor cell death triggers microglial migration towards the
injured area to phagocytose and remove cellular debris and dying cells [12]. Although the primary
role of these activated microglial cells is to defend the adjacent “healthy” retina against a potential
ongoing oxidative stress (caused by dying photoreceptor cells), they also secrete different molecules
(such as pro-inflammatory cytokines, reactive oxygen species, excitatory amino acids, etc. [13]) that
can be harmful to surrounding healthy neurons. Based on the above, another aim of our study was to
determine if age-dependent differences in the immune and cellular responses at the onset of the light
exposure could explain the higher intrinsic resistance to light-induced damage found in juvenile rats
compared to adult rats.

2. Results

2.1. Effect of Bright Light Exposure on the Retinal Function

In control animals aged P15, the scotopic recordings (Figures 1 and 2) are mostly composed of
an a-wave and with time there is a gradual increase in amplitude of both a- and b-waves to reach a
maximal amplitude at age P23. A similar maturation sequence was also observed for the photopic
b-wave with a maximum also reached at age P23, after which retinal function remained relatively
constant until P28 (Figures 1 and 2). In exposed animals, a significant decrease of all ERG components
was already evidenced following 1 day of exposure (Figure 1; P14–15 responses) and with increasing
duration of exposure, the a- and b-waves were differently affected. While the a-wave gradually
decreased in amplitude (which was more pronounced within the first 3 days of exposures), the b-wave
(scotopic and photopic) showed a transient growth in amplitude (between P15 and P20) that was
followed by a gradual decrease with longer exposures (also shown in group data at Figure 2). However,
comparison with age-matched controls revealed that the loss of function was most pronounced within
the first 3 days of light exposure, after which, a plateau-like effect was noted (as per % of control values
in Figure 2). Statistical analysis revealed that the scotopic a-wave was significantly different from
controls after 1 day of exposure [(at P15), p = 0.05, unpaired t-test], the scotopic b-wave after 2 days
of exposure [(at P16), p = 0.004, unpaired t-test] and the photopic b-wave after 3 days of exposure
[(at P17), p = 0.0005, unpaired t-test]; a statistically significant difference that remained with longer
exposures (Figure 2).

Interestingly, some scotopic ERG tracings evoked to the brightest intensity used (0.9 log cd.sec.m−2)
appeared to disclose relatively better preserved oscillatory potentials, especially in the P14–17 and
P14–20 rats (Figures 1 and 3A). This is best illustrated at Figure 3B with filtered OP tracings evoked
to stimuli ranging between (0.9 to −4.5 log cd.sec.m−2) and belonging to a representative P14-20 LIR
rat (upper tracings) and an age-matched control rat (lower tracings). In control rats (Figure 3B,C),
the largest number of OPs (7–9 OPs) was reached in responses evoked to stimuli ranging between −3.3
and −4.5 log cd.sec.m−2 in intensity, while brighter (−1.2 to 0.9 log cd.sec.m−2) intensities yielded a
lower OP count (i.e., 4–6 OPs). In contrast, at high intensities (i.e., between 0.9 and −0.3 log cd.sec.m−2),
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the total number of OP obtained from P14-20 LIR rats was identical to that measured in control rats at
dimmer intensities (i.e., between −3.3 and −3.6 log cd.sec.m−2). Of interest, the OP sequence appeared
to be delayed compared to control (Figure 3). With shorter (P14–15 and P14–16) and longer (P14–27
and P14–28) exposures (Figure 3A), the OPs were almost completely abolished in exposed rats, while
they were still present in age-matched control responses.Int. J. Mol. Sci. 2019, 20, x 3 of 18 

 

 
Figure 1. Representative scotopic and photopic ERGs recorded from light-exposed (10,000 lux) and 
control (unexposed) animals (n = 3–4 animals per group). For the exposed animals, all the ERGs were 
recorded immediately after the cessation of light exposure and compared to age-matched controls. 
For example, pups that were exposed for 1 day (P14–P15) were tested at P15 and compared to P15 
controls. Horizontal calibration: 40 ms; vertical calibration: 400 µV (scotopic) and 100 µV (photopic). 
A 20 ms prestimulus baseline is included in all tracings. Vertical arrows indicate the flash onset. 
Abbreviations: a-wave (a) and b-wave (b). Light intensity used: 0.9 log cd.sec.m−2, flash duration 20µs, 
inter stimulus interval 10ms (scotopic condition) and 1ms (photopic condition). A background light 
of 30cd/m2 was also used in photopic conditions. 

 

Figure 2. Graphic representation of the global retinal function [(A) scotopic a-wave; (B) scotopic b-
wave and (C) photopic b-wave] recorded from light-exposed (10,000 lux; gray bars) animals following 
different exposure regimens and from age-matched control (unexposed; black bars) groups (n = 3–4 
animals per group). Asterisks represent statistically significant differences (* p < 0.05) compared to 
age-matched control groups. For each exposed group, the percentage of control is shown below each 
graph. Amplitudes are reported as mean ± 1SD. 
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Figure 1. Representative scotopic and photopic ERGs recorded from light-exposed (10,000 lux) and
control (unexposed) animals (n = 3–4 animals per group). For the exposed animals, all the ERGs were
recorded immediately after the cessation of light exposure and compared to age-matched controls.
For example, pups that were exposed for 1 day (P14–P15) were tested at P15 and compared to P15
controls. Horizontal calibration: 40 ms; vertical calibration: 400 µV (scotopic) and 100 µV (photopic).
A 20 ms prestimulus baseline is included in all tracings. Vertical arrows indicate the flash onset.
Abbreviations: a-wave (a) and b-wave (b). Light intensity used: 0.9 log cd.sec.m−2, flash duration 20
µs, inter stimulus interval 10ms (scotopic condition) and 1ms (photopic condition). A background light
of 30cd/m2 was also used in photopic conditions.
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Figure 2. Graphic representation of the global retinal function [(A) scotopic a-wave; (B) scotopic
b-wave and (C) photopic b-wave] recorded from light-exposed (10,000 lux; gray bars) animals following
different exposure regimens and from age-matched control (unexposed; black bars) groups (n = 3–4
animals per group). Asterisks represent statistically significant differences (* p < 0.05) compared to
age-matched control groups. For each exposed group, the percentage of control is shown below each
graph. Amplitudes are reported as mean ± 1SD.
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Figure 3. (A): Representative scotopic oscillatory potentials (OPs) recorded from light-exposed
(10,000 lux; upper tracings) animals following different light exposure regimens and from age-matched
control (unexposed; lower tracings) groups (n = 3-4 animals per group). Light intensity used: 0.9
log cd.sec.m−2. (B): Representative scotopic oscillatory potentials (OPs) tracings recorded to stimuli
ranging between 0.9 and −4.5 log cd.sec.m−2 (as indicated on top of each tracing) from a representative
P14–20 LIR animal (upper tracings) and an age-matched control animal (lower tracings). Numbers 1
to 9 indicate the total number of OPs at each intensity in both groups. Horizontal calibration: 20 ms;
vertical calibration: 15 µV (exposed) or 40 µV (control). A 20 ms prestimulus baseline is included in
all tracings. Vertical arrow indicates the flash onset. Abbreviations: control (Ctrl) and light-induced
retinopathy (LIR) animals. OPs recording parameters: bandwidth 100-1000Hz, flash duration 20 µs,
inter stimulus interval 10 ms. (C): Graphic representation of the number of OPs evoked to different
light intensities ranging between 0.9 and −4.5 log cd.sec.m−2 (as indicated on top of each bar graph)
in control animals (black bars) and following different light exposure regimens (grey bars). Asterisks
represent statistically significant differences (* p < 0.05) compared to age-matched control groups.
Values are reported as mean ± 1SD.
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2.2. Effect of Bright Light Exposure on the Retinal Structure

As showed in Figure 4, no significant hemiretinal [total superior retina/inferior retina (SR/IR) ONL
ratio: 0.95 and 0.93 at P15 and P28, respectively, p > 0.05; Figure 5] or age-dependent differences [total
ONL thickness: 55.6 ± 6.40 µm and 50.90 ± 7.31 µm at P15 and P28, respectively (p = 0.13, unpaired
t-test); see table at bottom of Figure 5] in ONL thickness were noticed in normal rats nor after a one-day
exposure [total ONL thickness: 99% of control, p = 0.05, unpaired t-test (Figures 5 and 6)]. A small
photoreceptor hole-like area in the superior retina which extended between 680 µm and 1360 µm away
from the ONH was created only after 2 days of light exposure (Figure 6). After 3 days of exposure,
while the photoreceptor hole did not change, the ONL became significantly thinner within this region
[41.51 ± 5.77 µm at P14−16 compare to 26.70 ± 11.46 µm at P14−17 (p = 0.03, unpaired t-test); Figures 5
and 6]. By P20 (i.e., following P14-20 exposure), the size of this photoreceptor hole had expanded with
its boundaries now extending between 680 µm and 2040 µm from ONH (Figures 5 and 6). With longer
exposure durations, no further increase in size of the photoreceptor hole could be evidenced (Figures 5
and 6).
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Figure 4. Representative reconstructions of the ONL of the inferior (left) and superior (right) retina
(composed of 12–13 consecutive histological segments of 75 µm in width, each sectioned at every
340 µm from the ONH to the ora serrate for each hemiretina) obtained from control animals at P15 and
P28. Abbreviations: ONL: outer nuclear layer; ONH: optic nerve head.

The kinetics of this light-induced ONL thinning are better illustrated at Figure 7, where the amount
of photoreceptor loss is plotted against the age at which the light exposure ended in juvenile rats or
the duration of exposure (in days) in adult rats (data from previous studies of ours [4]). Our results
revealed that in juvenile LIR, the photoreceptor loss peaked after 3 days of exposure following which
the photoreceptor degenerated at a much slower rate (% of ONL reduction per day: 1.4% (P14–15), 5.2%
(P15–16), 17.1% (P16–17), 5.6% (P17–20 or 1.9% per day), 7.0% (P20–23 or 2.3% per day), 7.5% (P23–27
or 2.5% per day) and 0% (P27–28) (Figure 7). These results showed that the loss of photoreceptors
measured after the first 3 days of light exposure was nearly identical to that measured following the
next 11 days (23.7% vs 20.1%, respectively; p > 0.05, unpaired t-test). This contrasted significantly with
what was observed in adult rats, where the loss of photoreceptors appeared to be dose-dependent
(Figure 7).
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bright light exposure) across the infero-superior axis in light exposed rats following different light 
exposure regimens (red) and in age-matched control (black) rats (n = 3–4 animals per group). ONL 
values were taken at every 340 µm from the optic nerve head to the ora serrata in both inferior (left) 
and superior (right) hemiretinas. Abbreviations: optic nerve head (ONH); control (C). The total ONL 
loss is indicated in percentage of control for each group above each spidergraph. Group data 
comparing the ONL thinning (total ONL, superior ONL and inferior ONL loss) between control 
(black) and exposed animals (red) after different light exposure regimens. Values are reported in 
mean ± 1SD. 

Figure 5. Spidergraph representation of the measurements of ONL thinning (immediately following
bright light exposure) across the infero-superior axis in light exposed rats following different light
exposure regimens (red) and in age-matched control (black) rats (n = 3–4 animals per group). ONL
values were taken at every 340 µm from the optic nerve head to the ora serrata in both inferior (left) and
superior (right) hemiretinas. Abbreviations: optic nerve head (ONH); control (C). The total ONL loss is
indicated in percentage of control for each group above each spidergraph. Group data comparing the
ONL thinning (total ONL, superior ONL and inferior ONL loss) between control (black) and exposed
animals (red) after different light exposure regimens. Values are reported in mean ± 1SD.
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2.3. Immunohistochemistry: Juvenile vs. Adults

To better understand the difference in bright light susceptibility of the juvenile and adult retinas,
selected cellular and immune responses were assessed and compared between the two groups.
A detailed list of the molecular markers used herein is presented in Table 1.

Table 1. Immunohistochemistry reagents.

Molecular Markers Source RRID Dilution Antibody

Primary IBA1 Wako Chemicals 019-19741 AB_839504 1:500 Rabbit Polyclonal
GFAP Millipore sigma G3893 AB_477010 1:100 Mouse Monoclonal
FGF2 Millipore sigma 05-118 AB_309633 1:100 Mouse Monoclonal
CNTF Millipore sigma MAB338 AB_2083064 1:100 Mouse Monoclonal

Secondary Alexa Fluor® 488 Abcam ab150077 AB_2630356 1:1000 Goat anti rabbit IgG
Alexa Fluor® 594 Abcam ab150116 AB_2650601 1:1000 Goat anti mouse IgG

Mount
medium

ProLong® Gold Antifade
Mountant with DAPI

Thermo fisher scientific
P36935 N/A N/A N/A

The expression of Iba1 (a macrophage/microglial-specific protein marker) revealed that following
light exposure, microglia [usually localized in the OPL and inner retina (INL and IPL)] gradually
migrated from the inner retina to reach the outer nuclear layer (ONL) and sub-retinal space in both
groups (Figure 8). However, a different pattern of invasion was observed in juvenile retinae compared
to adult retinae. In juvenile rats, the first signs of microglial cell migration only appeared after 3 days
of light exposure, while in adult rats, 1 day of light exposure was sufficient to trigger this microglial
relocation. Moreover, a greater number of microglial cells (i.e., more dense staining) was observed in
adult compared to juvenile rats, irrespective of the time point tested, suggesting a stronger microglial
activation in the former group (Figure 8). Of note, as shown in Figure 9, more microglial cells were
found migrating in the superior retina compared to the inferior retina and these were also found to be
more active near the optic nerve head and within the previously reported “photoreceptor hole” area
compared to the periphery.
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Figure 8. Representative IBA1 staining of microglial cells at each time point of light exposure in the
retina of juvenile and adult LIR rats. Green: IBA1 stating. Blue: DAPI. A: control juvenile rat at P28;
B: juvenile rat at P15 after 1 day of light exposure; C: juvenile rat at P17 after 3 day of light exposure;
D: juvenile rat at P20 after 6 day of light exposure; E: juvenile rat at P28 after 14 day of light exposure;
F: control adult rat at P65; G: adult rat at P61 after 1 day of light exposure; H: adult rat at P63 after
3 day of light exposure; I: adult rat at P66 after 6 day of light exposure; J: adult rat at P74 after 14 day of
light exposure. Calibration bar: 50 µm. Immunohistological observations were based on 3-4 animals
per group.
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Figure 9. Representative regionalized IBA1 staining of microglial cells (Green) following light exposure
in retina of juvenile LIR rats at P20 and P28. Retinal samples were collected at the region close to
the optic nerve (A,D,G,J), at the photoreceptor damage are (B,E,H,K) and at the periphery (C,F,I,L)
in the superior (A,B,C,G,H,I) and inferior (D,E,F,J,K,L) retinas at P20 (A to F) and P28 (G to L). Red
frame: area of subretinal region and ONL showing migration of microglial cells. Calibration bar: 50 µm.
Immunohistological observations were based on 3-4 animals per group.

Müller cell immunoreactivity assessed with GFAP staining, a marker for reactive Müller cells and
astrocytes, revealed that the activation of Müller cells began after 3 days of light exposure in both
juvenile and adult rats and then gradually increased with the duration of light exposure (Figure 10).
However, similar to the Iba1 staining, the expression of GFAP was significantly greater in adult rats
compared to juvenile rats, irrespective of the time point tested (Figure 10).

The neuroprotective effect of two different neurotrophic factors (FGF2 and CNTF) was also
examined, results of which are presented in control (Figure 11) and in light exposed rats (Figures 12
and 13, respectively). In juvenile control rats, FGF2 expression was evidenced only at P28 (Figure 11H)
and was confined to the INL. In juvenile LIR rats, FGF2 staining was first visible after 14 days of light
exposure (i.e., at P28) and was slightly more expressed in the INL (Figure 12E) than in age-matched
control groups (Figure 11H). The expression of FGF2 slightly increased with age and also remained
within the inner retina in older control animals (as assessed at P65; Figure 12F). In adult exposed
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rats, FGF2 expression in the ONL was first noticed after 3 days of light exposure (Figure 12H),
an upregulation that was preserved even after 14 days of light exposure (Figure 12J). CNTF expression,
although weak, was first seen at P15 in control juvenile rats and was also localized to the INL only
(Figure 11A). Similar to what was observed with the FGF2 neurotrophic factor, CNTF expression also
remained weakly upregulated in the INL until adulthood (i.e., P65; Figure 13F). The intensity of the
CNTF staining in juvenile rats increased after 6 days of light exposure (Figure 13D), and even more
after 14 days (Figure 13E), and became widespread throughout the inner and outer retinas. In adult
rats, 3 days of light exposure (Figure 13H) was sufficient to induce a comparable CNTF reaction as that
observed after a 14 days long exposure period in juvenile rats (Figure 13E).Int. J. Mol. Sci. 2019, 20, x 11 of 18 
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Figure 10. Representative GFAP staining of active Muller cell at each time point of light exposure in
retina of juvenile and adult LIR rats. Green: GFAP stating. Blue: DAPI. A: control juvenile rat at P15;
B: juvenile rat at P15 after 1 day of light exposure; C: juvenile rat at P17 after 3 day of light exposure;
D: juvenile rat at P20 after 6 day of light exposure; E: juvenile rat at P28 after 14 day of light exposure;
F: control adult rat at P65; G: adult rat at P61 after 1 day of light exposure; H: adult rat at P63 after
3 day of light exposure; I: adult rat at P66 after 6 day of light exposure; J: adult rat at P74 after 14 day of
light exposure. Calibration bar: 50 µm. Immunohistological observations were based on 3-4 animals
per group.
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Figure 11. Representative CNTF and FGF2 staining at selected time point in juvenile control retinas.
CNTF (A,B,C,D) and FGF2 (E,F,G,H) staining (in red) are restricted to the INL. A and E: P15; B
and F: P17; C and G: P20. D and H: P28. Blue: DAPI. The red spots or lines found in the OPL are
non-specific staining bringing by secondary antibody which binds to blood vessels. Calibration bar:
50 µm. Immunohistological observations were based on 3-4 animals per group.
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Figure 12. Representative FGF2 and GFAP double staining at each time point of light exposure in
retina of juvenile and adult LIR rats. Red: FGF2 staining. Green: GFAP stating. Blue: DAPI. A: control
juvenile rat at P15; B: juvenile rat at P15 after 1 day of light exposure; C: juvenile rat at P17 after 3 day of
light exposure; D: juvenile rat at P20 after 6 day of light exposure; E: juvenile rat at P28 after 14 day of
light exposure; F: control adult rat at P65; G: adult rat at P61 after 1 day of light exposure; H: adult rat at
P63 after 3 day of light exposure; I: adult rat at P66 after 6 day of light exposure; J: adult rat at P74 after
14 day of light exposure. The red spots or lines found in the OPL are non-specific staining bringing
by secondary antibody which binds to blood vessels. Calibration bar: 50 µm. Immunohistological
observations were based on 3-4 animals per group.Int. J. Mol. Sci. 2019, 20, x 13 of 18 
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latter synaptic reorganization cannot continue to compensate for the progressive loss of 
photoreceptors that continues long after the cessation of light-exposure [4,6,17,18]. 

Of interest, it is following the P14–P20 exposure that the b-wave reached maximal amplitude 
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21]. Horsburgh and Sefton (1987) [22] showed that in the developing rat retina, the synaptogenesis of 
amacrine and bipolar cells begins at around P11 to P13 and increases until adulthood. As both cell 
types are said to participate in the genesis of the b-wave and the OPs, our findings would also suggest 
that bright light exposure does not affect the maturation of the inner retina, as a growth of the b-wave 
and prominence of OPs were evidenced despite a gradual decrease of the a-wave, at least with the 
shorter exposures. Of note, the OP waveforms of LIR rats evoked to the highest intensity (0.9 log 
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Figure 13. Representative CNTF and GFAP double staining at each time point of light exposure in
retina of juvenile and adult LIR rats. Red: CNTF staining. Green: GFAP stating. Blue: DAPI. A: control
juvenile rat at P15; B: juvenile rat at P15 after 1 day of light exposure; C: juvenile rat at P17 after 3 day of
light exposure; D: juvenile rat at P20 after 6 day of light exposure; E: juvenile rat at P28 after 14 day of
light exposure; F: control adult rat at P65; G: adult rat at P61 after 1 day of light exposure; H: adult rat at
P63 after 3 day of light exposure; I: adult rat at P66 after 6 day of light exposure; J: adult rat at P74 after
14 day of light exposure. The red spots or lines found in the OPL are non-specific staining generated
by secondary antibody which binds to blood vessels. Calibration bar: 50 µm. Immunohistological
observations were based on 3-4 animals per group.

3. Discussion

3.1. Electrophysiological Findings

Electrophysiological findings obtained immediately following the cessation of light exposure
(the acute phase) in juvenile LIR suggest a dose-independent effect, as damage was most pronounced
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within the first three days of exposure, after which a plateau-like effect was observed (Figures 2 and 6).
Furthermore, scotopic ERGs were more attenuated than photopic ones, findings in accord with previous
studies that showed that LIR is a rhodopsin-mediated retinopathy [3,4,6,14]. Interestingly, while a
decrease in amplitude was observed for the a-wave, a small but transient increase of the b-wave was
noted between P15 and P20 (for exposures between P14–15 and P14–20). Since the retina is exposed to
light during a time period where it is known to mature [15,16], a synaptic reorganization (between the
photoreceptor and the cells of the inner retina) could have taken place in order to compensate for this
initial loss of the photoreceptor signal. Of note, Polosa et al. 2016 [6] showed a relative preservation of
the visual evoked potential (VEP) despite a significant attenuation of fERGs, findings in support of the
latter claim. Unfortunately, previous results of ours also suggest that the latter synaptic reorganization
cannot continue to compensate for the progressive loss of photoreceptors that continues long after the
cessation of light-exposure [4,6,17,18].

Of interest, it is following the P14–P20 exposure that the b-wave reached maximal amplitude
(Figures 1 and 2) and where the OPs were most prominent (Figure 3). The OPs are believed to
reflect the synaptic activity of inhibitory feedback processes generated mainly by the amacrine cells,
although contributions of bipolar cells and other inner retinal cells are not completely excluded [19–21].
Horsburgh and Sefton (1987) [22] showed that in the developing rat retina, the synaptogenesis of
amacrine and bipolar cells begins at around P11 to P13 and increases until adulthood. As both cell types
are said to participate in the genesis of the b-wave and the OPs, our findings would also suggest that
bright light exposure does not affect the maturation of the inner retina, as a growth of the b-wave and
prominence of OPs were evidenced despite a gradual decrease of the a-wave, at least with the shorter
exposures. Of note, the OP waveforms of LIR rats evoked to the highest intensity (0.9 log cd.sec.m−2)
are identical to those of unexposed animals evoked to lower intensities (−3.3 to −3.9 log cd.sec.m−2)
(Figures 1 and 3B), confirming the lost in phototransduction capability of the LIR rat photoreceptors
resulting from the shortening of the outer segments caused by the bright light exposure [6] and ensuing
inner retinal activation.

3.2. Histological Findings

Histological findings correlated with ERG findings in showing a greater loss of photoreceptors
with the first 3 days of exposure (Figures 2 and 5). Furthermore, in the acute phase, a minimum of
2 days of exposure was required to produce retinal damage with the typical hemiretinal disparity (i.e.,
formation of the photoreceptor hole in the superior retina) (Figures 5 and 6) that characterizes the
rodent model of LIR [4–6,23,24]. In addition, while the size of the photoreceptor hole grew between
P16 and P20, it only progressed towards the ora serrata side [i.e., from 680 (temporal to the ONH) to
1360 µm (at P15); from 680 to 1700 µm (at P28)]. The higher resistance of the photoreceptors next to the
ONH is interesting and remains to be elucidated. To our surprise, with longer exposures, no further
increase in size of the photoreceptor hole was observed such that the dimension of the photoreceptor
hole obtained following a 6 day exposure was equivalent to that measured following a 14 day exposure.

Why is it that, in juvenile rats, exposures longer than 3 days do not result in a greater loss of
photoreceptor cells? It could be that the retina of juvenile rats continues to mature despite the bright
light exposure and, consequently, the photoreceptor cells that were normally programmed to die
(i.e., apoptosis) replaced those that died as a result of bright light exposure. Consequently, preservation
of these cells could have resulted in limiting retinal damage, a retinal plasticity that is no longer possible
in older animals. As shown at Figure 7, we estimated (from previous work [4]) that this “maturational”
apoptosis would account for a loss of approximately 9% in retinal thickness.

3.3. Immunohistochemisty Findings

The data obtained at IHC suggests fundamental differences between the adult and juvenile retina
that could explain their different reaction to bright light exposure. In juvenile rats, three days of light
exposure were necessary to trigger a measurable inflammatory response compared to only one day in
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adult rats. In addition, at each time point, juvenile rats showed a less intense microglial migration than
adult rats (Figure 8), suggesting that juvenile rats had a delayed and weaker inflammatory response
compared to adult rats after being exposed to light. Given that in LIR, microglial activation in the
retina is triggered by the degenerating photoreceptors [25], it is reasonable to assume that juvenile
rats had less photoreceptor damage than adult rats. This conclusion is further supported by the fact
that microglia was more activated in the superior retina after light exposure, that is the retinal region
previously shown to yield the most important light-induced degeneration (Figure 9) as previously
reported by us and others [3–6]. Furthermore, it was shown that in LIR, the microglia can either act as
a destructive pro-inflammatory polarization or a protective anti-inflammatory polarization [26]. Given
that in juvenile rats there is no further damage following the onset of the inflammatory response, this
would suggest a protective anti-inflammatory response. In contrast, results obtained in adults either
suggest a destructive pro-inflammatory reaction or that the light damage was simply too severe for
the immune reaction to deal with it efficiently. The latter would therefore point to the significant role
played by the immune system in causing the severe retinal degeneration that continues to progress
long after the cessation of light exposure, a claim also advanced to explain the pathophysiology of
other retinal degenerative disorders such as Age-related Macular Degeneration, Diabetic Retinopathy
and Retinitis Pigmentosa [27,28].

Müller cells were found to be activated in LIR simultaneously with an increased expression
of CNTF and FGF2 in the outer retina, thus confirming previous findings of ours which showed
that Müller cells actively upregulated the expression of neurotrophic factors in this layer [7]. These
neurotrophic factors were expressed later (after 6 days for CNTF and after 14 days of exposure for
FGF2) in juvenile rats compared to adult rats (after 3 days of exposure for CNTF and FGF2), their
expressions increasing with longer exposures. The weaker and delayed upregulation of neurotrophic
factors in very young retinas correlates well with the late activation of microglial cells, which was first
observed after 3 days of exposure. This delayed immune response could also explain why most of the
damage (as assessed with fERG and retinal histology) occurred within the first 3 days of light exposure
in young animals (Figure 7). In contrast, the later upregulation of neurotrophic factors in juvenile
retinas correspond with a reduced structural and functional damage, findings highlighting once again
the neuroprotective effect of these factors against light-induced oxidative stress. Of note, our results
also show that in LIR, the immune response is triggered prior to the expression of neurotrophic factors,
findings that are in accord with other studies [9]. In adult rats, although the expression of neurotrophic
factors was observed earlier and followed a dose-dependent manner (i.e., stronger staining with longer
exposures), the combination of light exposure with the immediate and potent response of the microglia
(already seen after 1 day of light exposure) most probably enhanced the effect of the ensuing oxidative
stress to the point that it became too difficult for the inherent retinal defense mechanisms (i.e., immune
system/neurotrophic factors) to efficiently eliminate it over time.

4. Materials and Methods

All experiments were performed in compliance with the Association for Research in Vision
and Ophthalmology (ARVO) Statement for the use of animals in ophthalmic and vision research as
well as with the guidelines of the Canadian Council on Animal Care (CCAC: http://www.ccac.ca)
and were approved by the McGill University-Montreal Children’s Hospital animal care committee
(AUP2001-4164), an Institutional Review Board accredited by the CCAC.

4.1. Light Exposure Procedure

Light exposure protocol was performed as previously reported [6,17,18]. At postnatal (P) day 14
(which corresponds to eye opening in rats), four litters (n = 48) of Sprague Dawley (SD) albino rats
(Charles River Laboratories, St-Constant, QC, Canada) were exposed to a bright cyclic light (10,000 lux,
12 h dark/12 h light) for 1 (P14–P15), 2 (P14–P16), 3 (P14–P17), 6 (P14–P20), 9 (P14–P23), 13 (P14–P27)
and 14 (P14–P28) consecutive days (d). Mothers were excluded from this study. Similarly, adult rats
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(n = 24) were also exposed to the same light regimen for 1 (P60–61), 3 (P60–63), 6 (P60–66) and 14
(P60–P74) consecutive days. Aged-matched pup (n = 48) and adult (n = 24) rats served as control. Prior
to testing, all control animals were raised in the normal light environment (80lux, 12h dark/12h light) of
the animal facility. All post-light exposure tests were performed immediately following the cessation
of the bright light exposure regimen (n = 3–4 per group). Please note that since the effect of different
light exposure durations was previously well described for adult rats at the retinal function (fERG)
and structural (retinal histology) level [4,6,7], only newly acquired data for adult rats is reported in this
study (i.e., immunohistological experiments only).

4.2. ERG Recordings

Scotopic and photopic flash ERGs were recorded following an overnight dark adaptation period
of 4 h and analyzed as previously described [6,17,18]. Briefly, ERGs were recorded with a DTL fiber
electrode (27/7 X-Static silver coated conductive nylon yarn, Sauquoit Industries, Scranton, PA, USA)
that was placed centrally on the cornea and held in place with a moisturizing solution (Tear-Gel,
Novartis Ophthalmic, Novartis Pharmaceuticals Inc, Dorval, Quebec, Canada). The reference (GrassE5
disc electrode) and ground (Grass E2 subdermal electrode) electrodes were positioned in the mouth
and tail, respectively. Recordings of full-field ERGs (bandwidth: 1–1000Hz; 10000×; 6db attenuation;
GrassP-511 amplifiers) and OPs (bandwidth: 100-1000Hz; 50000×; 6db attenuation; GrassP-511
amplifiers) were performed simultaneously with the Biopac data acquisition system (Biopac MP100WS,
Biopac System Inc., Goleta, CA, USA). Scotopic ERGs were obtained in response to progressively
brighter flashes of white light ranging in intensity from −6.3 log cd.sec.m−2 to 0.9 log cd.sec.m−2 in
0.3 log-unit increments [Grass PS-22 photostimulator, inter stimulus interval: 10 s, flash duration
20 µs, average of 3–5 flashes depending on intensity]. Photopic ERGs were evoked to flashes of 0.9 log
cd.sec.m−2 (photopic background: 30 cd/m2, inter stimulus interval: 1sec, flash duration 20 µs, average
of 20 flashes). In order to avoid the previously reported light adaptation effect, the photopic recordings
were obtained 20 min following the opening of the background light.

Given the young age of animals and the feeding requirements, animals were dark adapted for
4 h only, a duration that was previously shown to yield, in SD rats, a nearly normal scotopic retinal
sensitivity as per ERG [29]. The amplitudes of the a- and b- waves of the scotopic mixed rod-cone
response (ERG response evoked to the brightest flash delivered in scotopic conditions) and the photopic
b-waves are reported in this study.

4.3. Retinal Histology

The retinal histology was performed according to our previous reports [4,6,17,18]. Retinal images
were taken with the AxioVision 4.8.2.0 software (Carl Zeiss Microscopy GmbH, Jena, Germany). Twelve
consecutive histological segments of 75 µm in width, each sectioned at every 340 µm from the ONH
to the ora serrata were taken from the superior and inferior retinas to evaluate the extent of retinal
damage. The thickness of the outer retinal layer (ONL) of each segment is presented in spidergraph
forms. The dimension of the photoreceptor hole was determined as the area comprised between the
region of maximal damage (i.e., thinnest ONL) to the retinal position (towards the ONH or ora serrata)
where the ONL had returned to a constant [variation of ±1 row] and uniform thickness, as previously
demonstrated [6,17].

4.4. Immunohistochemistry

Eyes were collected as previously described [30] at selected time points after light exposure
cessation (P15, P17, P20 and P28 for juvenile; P61, P63, P66 and P74 for adults). Primary and secondary
antibody concentrations are showed in Table 1. Retinal images were taken with a fluorescence
microscope (Leica DMI6000) or a confocal microscope (Zeiss LSM 780). Controls included negative
control (unexposed juvenile and adult age-matched rats) and blank controls (staining with primary
antibodies omitted) to control for the non-specific staining. The reagents used are also listed in Table 1.
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4.5. Statistical Analysis

Statistical significance was determined using a Student’s t-test (Prism 6.0 software; Graph Pad,
San Diego, CA, USA). All values are reported as mean ± 1 standard deviation (SD).
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Abbreviations

LIR Light-induced retinopathy
ERG Electroretinogram
OPs Oscillatory Potentials
IHC Immunohistochemistry
GFAP linear dichroism
CNTF Cilliary neurotrophic factor
FGF2 Fibroblast growth factor 2
IBA1 Ionized calcium binding adaptor molecule 1
DAPI 4′,6′-diamidino-2-phenylindole
ONL Outer nuclear layer
OPL Outer plexiform layer
INL Inner nuclear layer
ONH Optic nerve head
SR Superior retina
IR Inferior retina
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