Figure S1

	t	elom	nerase-po	ositive	e cell line	es		ALT c	6			
	HeLa		Т98	T98G		HCT116		U2OS		S-2	U2OS	blank
Mspl Hpall	+ -	- +	+	- +	+	- +	+ -	- +	+	- +	-	- -
		1			-			110-		1.1		

Ladder

Figure S1. The level of methylation of the subtelomeric 29-bp repeats is lower in ALT cell lines than in telomerase-positive cell lines. Methylation of the 29-bp repeats in telomerase-positive and ALT cell lines was analyzed using the method described in Figure 1B: 500 ng of genomic DNA was digested with Hpall (methyl sensitive) or Mspl (methyl insensitive), 1/20 of the elongation reaction was amplified by PCR (31 PCR cycles), and PCR products were run on a 1.5% BET-agarose gel. Undigested genomic DNA from U2OS cells and a sample without DNA (blank) were used as negative controls. Ladder is the 50-bp DNA ladder (New England BioLabs).

Figure S2

Figure S2. The demethylation of the 29-bp repeats induced by the CRISPR-dCas9-TET1 system is significantly weaker than the demethylation induced by 5-aza-dC treatment. Methylation of the 29-bp repeats in HeLa cells 96 hours after mock transfection or transfection with the CRISPR-dCas9-TET1 system and in HeLa cells treated with 5-aza-dC for 72 hours was analyzed using the method described in Figure 1B: 1 μ g of genomic DNA was digested with HpaII, 1/20 of the elongation reaction was amplified by PCR (30 PCR cycles), and PCR products were run on a 1.5% BET-agarose gel. Each lane corresponds to an independent transfection experiment. Genomic DNA from untreated HeLa cells digested with MspI was used as positive control, and a sample without DNA (blank) was used as negative control. Ladder is the 50-bp DNA ladder (New England BioLabs).

NRF1 consensus	Y	G	С	G	С	Α	Y	G	С	G	С	R
	80	80	85	90	100	95	75	95	100	100	100	85
TFB2M	Т	Т	С	G	С	A	Т	G	С	G	С	A
29-bp repeat (1)	Т	G	С	G	С	С	Т	G	С	G	С	С
29-bp repeat (2)	Т	G	С	G	С	С	G	G	С	G	С	G

Figure S3. The NRF1 binding sites located in the 29-bp repeats differ by two nucleotides from the NRF1 consensus binding site. Sequences of the NRF1 consensus binding site, of the sites located at the *TFB2M* promoter, and of the two sites located in the 29-bp repeats are indicated. Numbers below the consensus represent the percent presence of the indicated nucleotide at that position in 20 functional NRF1 binding sites. Y indicates pyrimidine nucleotide, R indicates purine nucleotide. Nucleotides that differ from the consensus are in red.

Figure S4. Compound C induces an increase of TERRA levels in HCT116 cells. RT-qPCR analysis of TERRA levels (Xq, Yq, 15q, 9p) in HCT116 cells treated with DMSO or compound C (5 μ M) for 18 hours. TERRA was quantified by RT-qPCR using TR and TF primers; levels were normalized to *GAPDH* mRNA, and all values were compared to DMSO-treated sample. The bars represent the average values from three biological and two technical replicates for each sample. Error bars represent the standard deviations. P values were calculated by paired two-tailed Student's t-test (n=3). **P<0.01.