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Abstract: Ischemia-reperfusion injury (IRI) plays a significant role in the pathogenesis of acute kidney
injury (AKI). The complicated interaction between injured tubular cells, activated endothelial cells,
and the immune system leads to oxidative stress and systemic inflammation, thereby exacerbating
the apoptosis of renal tubular cells and impeding the process of tissue repair. Stem cell therapy is an
innovative approach to ameliorate IRI due to its antioxidative, immunomodulatory, and anti-apoptotic
properties. Therefore, it is crucial to understand the biological effects and mechanisms of action of
stem cell therapy in the context of acute ischemic AKI to improve its therapeutic benefits. The recent
finding that treatment with conditioned medium (CM) derived from stem cells is likely an effective
alternative to conventional stem cell transplantation increases the potential for future therapeutic
uses of stem cell therapy. In this review, we discuss the recent findings regarding stem cell-mediated
cytoprotection, with a focus on the anti-inflammatory effects via suppression of oxidative stress and
uncompromised immune responses following AKI. Stem cell-derived CM represents a favorable
approach to stem cell-based therapy and may serve as a potential therapeutic strategy against acute
ischemic AKI.

Keywords: ischemia-reperfusion; acute kidney injury; stem cell; conditioned medium; inflammation

1. Introduction

Acute kidney injury (AKI) involves a complex interaction between the kidney parenchyma
and immune system that leads to inflammation at the site of the injured tissue and impaired renal
function [1]. Renal ischemia is a significant cause of AKI and is characterized by reduced tissue
perfusion, which leads to acute tubular injury. Re-establishing the blood supply after prolonged
ischemia activates vascular endothelial cells and enhances the generation of reactive oxygen species
(ROS). This triggers a myriad of inflammatory consequences and induces apoptosis of tubular epithelial
cells (TECs) [2]. This phenomenon is referred to as ischemia-reperfusion induced AKI (IR-AKI) and is
characterized by elevated oxidative stress and activation of the immune system in response to ischemic
tissue injury [3,4].

In the early stages of renal ischemia, the circulating neutrophils and monocytes rapidly infiltrate
the ischemic kidney and release lysosomal enzymes, leading to tubular epithelial cell injury [2].
Subsequent crosstalk between the injured TECs, activated endothelial cells, and tissue macrophages
induces oxidative stress and complement activation, aggravating cell damaging processes, such as
mitochondrial dysfunction and lipid peroxidation [5].
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Furthermore, the extensive release of pro-inflammatory cytokines, such as tumor necrosis factor
(TNF)-α, interleukin (IL)-6, and monocyte chemoattractant protein 1 (MCP-1), attract an immune
response involving monocytes, dendritic cells (DC), natural killer (NK) cells, and lymphocytes [6].
Subsequent ROS-mediated mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB
cascades amplify the inflammatory response. The signaling transduction pathways induce extensive
TEC apoptosis and upregulate several important inflammatory mediators, such as IL-6, TNF-α, IL-1β,
interferon (IFN)-γ, and IL-17 [2,4,7]. These immune reactions establish a continuous positive feedback
loop, or a vicious circle, resulting in constant stimulation. As a consequence, IR-AKI is not merely a
localized kidney insult, but also a trigger for a cascade of systemic inflammation (Figure 1).
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κB pathway and induces systemic inflammation. Abbreviations: DAMPs, damage-associated 
molecular patterns; TECs, tubular epithelial cells; ROS, reactive oxygen species; MAPK, mitogen-
activated protein kinase; NF-κB, nuclear factor-κB. 

In contrast to previous therapeutic approaches for AKI, which were mainly supportive, 
innovative treatments targeting AKI-induced inflammation, including stem cell therapy, have 
elicited a great deal of interest. In experimental models, administration of stem cells has proven 
effective in the treatment of AKI. One of the critical mechanisms of stem cell therapy is the anti-
inflammatory effect caused by interaction with immune cells in the inflamed microenvironment [8–
10]. Furthermore, stem cells may minimize the magnitude of tissue damage by secreting soluble 
cytoprotective factors in a paracrine manner [11,12]. 

Figure 1. Pathogenesis of ischemia-reperfusion induced acute kidney injury.
Ischemia-reperfusion-induced acute kidney injury involves endothelial cell activation (1).
The increased leukocyte adhesion molecules on the activated endothelial cells induce leukocyte
transmigration and platelet aggregation, which both cause microvascular inflammation. In tubular
epithelial cell injury (2), the injured tubular cells release danger signals, which activate immune cells
involved in local and systemic inflammation. The substantial amount of reactive oxygen species
generated by this process activates the MAPK-NF-κB pathway and induces systemic inflammation.
Abbreviations: DAMPs, damage-associated molecular patterns; TECs, tubular epithelial cells; ROS,
reactive oxygen species; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor-κB.

In contrast to previous therapeutic approaches for AKI, which were mainly supportive, innovative
treatments targeting AKI-induced inflammation, including stem cell therapy, have elicited a great deal
of interest. In experimental models, administration of stem cells has proven effective in the treatment
of AKI. One of the critical mechanisms of stem cell therapy is the anti-inflammatory effect caused by
interaction with immune cells in the inflamed microenvironment [8–10]. Furthermore, stem cells may
minimize the magnitude of tissue damage by secreting soluble cytoprotective factors in a paracrine
manner [11,12].
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Given that oxidative stress and inflammation have been implicated in the pathogenesis of
IR-AKI, it is imperative to discuss these anti-inflammatory and immunoregulatory properties of stem
cells. In this review, we focus on the therapeutic potential of stem cells in IR-AKI and illustrate the
underlying antioxidant and anti-inflammatory mechanisms of this therapy. Because stem cells release
soluble factors and microvesicles in a paracrine manner [13], we also discuss the effectiveness of stem
cell-derived conditioned medium (CM) as an alternative to stem cell transplantation in the treatment
of IR-AKI.

2. Immune Responses and Inflammation in IR-AKI

In IR-AKI, damaged cells are thought to be the critical trigger of inflammation. During the
reperfusion phase, TECs are vulnerable to oxidative stress, and apoptotic and necrotic TECs release
damage-associated molecular patterns (DAMPs) into the extracellular space. Endogenous DAMP
molecules include DNA, RNA, and several intracellular proteins such as S100, heat-shock proteins, and
high-mobility group box 1 (HMGB1) [14]. The so-called “danger signals” stimulate pattern recognition
receptors (PRRs) expressed on renal parenchyma and immune cells, like epithelial and endothelial
cells, DCs, lymphocytes, and macrophages. This recognition process initiates the host’s defense
mechanisms and further produces various cytokines that attract neutrophils and macrophages [15].
Signaling pathways activated by DAMP ligation of PRRs also result in activation of NF-κB, which
further promotes the expression of pro-inflammatory cytokines and perpetuates the inflammatory
response in IR-AKI.

The balance between pro-inflammatory (e.g., TNF-α, IFN-γ, IL-6, IL-1β, IL-17, C3, C5a, and C5b)
and anti-inflammatory (e.g., IL-4, TGF-β, IL-10, and heme oxygenase-1 (HO-1)) mediators secreted
by the participating cell populations determines the status of injury and repair [16]. HO-1 is an
endogenous stress-inducible enzyme, which modulates leukocyte adhesion and migration, immune
cell maturation, and production of inflammatory cytokines following ischemia. Up-regulation of
HO-1 represents an anti-inflammatory and anti-oxidative defense capacity against IRI [17]. Under
ideal conditions, a regulated balance between inflammatory and anti-inflammatory mediators ensures
healthy tissue regeneration and reversal of homeostatic conditions. However, AKI often results in
impeded tissue repair attributed to sustained inflammation and secretion of profibrotic cytokines (e.g.,
IL-13 and TGF-β1), which triggers myofibroblast activation and progressive kidney fibrosis [18].

Immunomodulatory Effects of Stem Cells

Considered an innovative anti-inflammatory treatment, the immunomodulatory effects of
mesenchymal stem cells (MSCs) have been extensively investigated among other types of stem
cells [19–21]. Firstly, MSCs are hypoimmunogenic as a result of reduced major histocompatibility
complex (MHC) class I expression and a complete lack of expression of MHC class II and costimulatory
molecules CD80 and CD86 [22]. This indicates that they can likely evade innate immunity processes,
such as NK cell-mediated cytotoxicity, and lack the antigen presentation pathway essential for
activation of the adaptive immune system [23]. To elicit an immunological balance, MSCs act as an
immunomodulator by reducing the functional capacities and proliferation of all types of immune cells.
MSCs have been proven to suppress lymphocyte activation and regulate their survival in a quiescent
state [24]. Inhibition of T cell proliferation occurs through expression of inducible nitric oxide synthase
(iNOS) and indoleamine 2,3-dioxygenase (IDO) in rodent and human MSCs, respectively [25]. More
specifically, MSCs suppress CD4+ T helper (Th) cells from differentiating into their Th1 and Th17 subsets,
which are the causal agents in the pathogenesis of autoimmunity [26]. On the other hand, MSCs enhance
the proliferation of regulatory T cells (Tregs) and strengthen their immune modulating capacities [27,28].
MSCs also inhibit the differentiation, maturation, and activation of DCs by downregulating the surface
expression of CD80, CD86, and MHC class II molecules, retaining the DCs in a tolerogenic phenotype.
In this state, they express various factors, such as IDO and prostaglandin E2 (PGE2), which lower DC
immunogenicity, reduce T cell proliferation, and induce Treg differentiation [29,30]. Simultaneously,
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MSCs induce macrophages to secrete immunosuppressive cytokines, like IL-4, IL-10 and transforming
growth factor-β (TGF-β). It has also been shown that MSCs suppress NK cell proliferation and protect
against perforin/granzyme-mediated cytotoxicity [31]. Furthermore, MSCs have inhibitory effects on
B-cell proliferation, differentiation, and antibody production [32]. Given that HO-1 has significant
anti-inflammatory therapeutic potential, recent research has pointed out HO-1-modified MSCs have an
enhanced ability to attenuate inflammatory responses in ischemic heart disease [33], acute ischemic liver
failure [34], lipopolysaccharide (LPS)-induced microvascular injury [35], and cisplatin-induced AKI [36].
Taken together, the administration of MSCs prevents immune cell activation and modulates kidney
inflammation progression by managing cytokine secretion to promote anti-inflammatory processes.

It is noteworthy that the environment surrounding the MSCs is of critical importance to regulate
the immunomodulatory effects. Liu et al. reported that MSCs derived from inflamed periodontal
ligaments exhibit an impaired immunosuppressive capacity, with less inhibition of T cell proliferation,
less induction of regulatory T cell, and less IL-10 production. The inflamed microenvironment also
diminishes the immunomodulatory benefits of MSCs by reducing Th17 differentiation and IL-17
production [37]. Furthermore, Waterman et al. disclosed that MSCs could undergo functional
polarization by differential Toll-like receptor (TLR) downstream signaling. Activation through TLR4
induced the pro-inflammatory MSC1, mostly producing pro-inflammatory mediators (IL-6, IL-8, and
IFN-γ), can induce T cell activation. On the other hand, the TLR3-primed MSC2 mainly express
anti-inflammatory factors such as IDO, PGE2, and HO-1, leading to T cell inhibition [38,39]. Moreover,
to explain the diverse response of MSCs to TLR activation, Levin et al. suggested the level of co-cultured
LPS-binding protein as a predictive factor in determining the secretomes of MSCs in response to TLR
activation [40].

Similar to MSCs, Schnabel et al. found that induced pluripotent stem cells (iPSCs) possess
immunomodulatory capacities evidenced by reducing responder T-cell proliferation in modified mixed
leukocyte reactions in vitro [41]. Their findings echo our previous study [42], in which iPSCs without
c-Myc were introduced into IR-AKI rat kidneys. This approach was not only safe, but also resulted in a
substantial decrease in the levels of ROS and inflammatory cytokines. Furthermore, iPSCs have been
shown to have strong immunomodulation effects through suppression of lymphocyte proliferation, NK
cell-directed cytotoxicity, and DC differentiation and function [43–45]. This information is critical in
considering the use of iPSCs in place of MSCs for both regenerative medicine and transplant medicine.

3. Oxidative Stress in IR-AKI

After the occurrence of acute ischemia, restoration of renal perfusion rapidly activates vascular
endothelial cells, which trigger the production of pro-inflammatory cytokines and ROS, including
superoxide (•O2−), hydrogen peroxide (HOOH), and hydroxyl radical (•OH) [46]. Following IR-AKI,
defective antioxidant processes cause depletion of endogenous antioxidants and reduced activity of
redox-regulated enzymes, exacerbating the accumulation of intracellular ROS. This increased ROS
production associated with reduced antioxidant capacity leads to a state of oxidative stress, which
ultimately results in mitochondrial damage, depletion of ATP, increased lipid peroxidation, and
activation of cell death pathways. Another harmful effect of ROS is oxidative modification of cell
membrane proteins; this impairs ion and nutrient transport, energy metabolism, and organelle function
essential for cellular homeostasis [47]. Furthermore, ROS-mediated activation of NF-κB continues
to exacerbate systemic inflammation, triggering TEC apoptosis and kidney fibrosis, which have a
detrimental impact on renal function [48].

Antioxidant Effects of Stem Cells

As a promising regenerative approach, stem cell therapy has been demonstrated to ameliorate
various inflammatory diseases via its antioxidative activity [49–52]. MSCs can be isolated from bone
marrow, umbilical cord blood, adipose tissue, placenta, periosteum, trabecular bone, synovium, skeletal
muscle, and deciduous teeth [53], and their administration has been widely reported to upregulate the



Int. J. Mol. Sci. 2019, 20, 3529 5 of 14

expression of the antioxidative enzyme HO-1 [35,54–57]. Increased HO-1 enzymatic activity is not only
essential for MSC maturation, but is also cytoprotective against oxidative stress [58,59]. The antioxidant
effects of HO-1 arise from its ability to increase reduced glutathione levels and degrade heme, as well
as its ability to increase biliverdin and bilirubin, which have potent antioxidant properties [60,61]. In
IR-AKI models, the increased production of HO-1 after MSC administration correlated with decreased
levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) and ROS [62]. The pro-angiogenic effects of MSCs
lacking HO-1 expression are impaired; this triggers post-ischemic neovascularization and tissue repair,
demonstrated by decreased secretion of several crucial pro-angiogenic growth factors, such as stromal
cell-derived factor-1, vascular endothelial growth factor-A (VEGF-A), and hepatocyte growth factor
(HGF) [36]. Similarly, CM derived from HO-1 knockout MSCs lacked therapeutic effects and failed
to restore the functional and morphological changes in AKI [63]. A recent study also showed that
modification with HO-1 significantly attenuated cell-cycle arrest, activated the PI3K/Akt and MEK/ERK
pathways, and enhanced the survival of MSCs, all of which improved the therapeutic effects of MSCs
against IR- AKI [64].

In addition to its impact on HO-1, IR-AKI also reduces the activity of antioxidant enzymes that
scavenge ROS, including superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST),
and glutathione peroxidase (GPX), in post-ischemic kidney tissue [65]. MSC therapy increases the
antioxidant capacity of post-ischemic kidney tissue by enhancing the activity of these ROS-scavenging
enzymes, thereby reducing the levels of tissue malondialdehyde (MDA) [66–68]. Zhang et al. applied
MSC-derived extracellular vesicles (MSC-EV) into an IR-AKI model and found that MSC-EV treatment
reduced oxidative stress, and subsequently attenuated IR-AKI. This antioxidant effect is likely a result
of activation of the NF-E2-related factor 2 (Nrf2)/antioxidant responsive element (ARE) pathway [69],
but may also be due to decreased expression of NADPH oxidase 2 (NOX2) and ROS in injured kidney
tissues [57,70].

In addition to MSCs, induced pluripotent stem cells (iPSC) are also equipped with antioxidative
properties. In rats with IR- AKI, our previous study showed that the administration of iPSCs into
kidneys via an intrarenal arterial route not only ameliorated the severity of tubular damage and kidney
failure by reducing the expression of oxidative markers, pro-inflammatory cytokines, and apoptotic
factors, but also improved the survival of IR-AKI rats [42]. We further showed that treatment of
iPSC-CM in rats with IR-AKI significantly diminished oxidative stress and protected tubular cells
against apoptosis [71], supporting the innovation occurring in this field of research.

4. Apoptosis of TEC in IR-AKI

Apoptosis is known to be a relevant mechanism of tubular cell death in IR-AKI. Kidney biopsies
from IR-AKI animal models and humans have consistently shown apoptotic changes in TECs. There
are several mechanisms of the pathogenesis of apoptosis of TECs. During ischemia, the pro-apoptotic
protein Bax is upregulated in TECs, which results in a reduction of the anti-apoptotic protein Bcl-2, thus,
promoting the initiation of apoptosis [72]. Another important stress kinase activated in the setting of
ischemia is glycogen synthase kinase 3-β (GSK3β), which has been linked to mitochondrial dysfunction
after exposure to oxidative stress [73]. During ischemia and ATP depletion, GSK3β upregulates Bax to
activate caspase cascades, thus, promoting TEC apoptosis. Active GSK3β also positively regulates
NF-κB leading to the inhibition of TNF-mediated apoptosis [74].

Other mechanisms of the activation of apoptotic pathways during IR-AKI have been proposed.
The extrinsic apoptotic pathway is triggered by the binding of TNF-α and Fas ligands to death receptors,
including Fas, tumor necrosis factor receptor 1 (TNFR1), and TNF-related apoptosis-inducing ligand
receptors (TRAIL-Rs), expressed on TECs. Binding to these ligands results in receptor aggregation and
recruitment of adaptor proteins, which, in turn, initiates a proteolytic cascade by activating initiator
caspase-8 and caspase-10 [75]. The intrinsic apoptotic pathway is characterized by permeabilization of
the mitochondrial outer membrane, resulting in the release of cytochrome c into the cytoplasm [76].
Cytochrome c then forms a multiprotein complex known as the “apoptosome” and initiates activation
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of the caspase cascade through caspase-9 [77]. Due to the significant consequences of TEC apoptosis
and the complexity of its pathogenesis, reduction of tubular apoptosis is an essential requirement for
the successful treatment of IR-AKI by stem cell therapy.

Anti-Apoptotic Effects of Stem Cells

To date, the anti-apoptotic property of stem cells seems to be the most widely recognized
beneficial effect of MSCs [49,78–80]. In experimental models of AKI, administration of MSCs
displayed a renoprotective effect by preventing tissue apoptosis, which accelerated the repair of
injured tissue. MSC-treated AKI mice showed increased expression of the anti-apoptotic gene
BCL2 and downregulation of the pro-apoptotic gene BAX [81]. Regarding the mechanisms of these
treatment processes, MSCs modulate tubular apoptosis and regeneration through production of soluble
paracrine factors and trophic growth factors, including VEGF, HGF, insulin-like growth factor 1 (IGF-1),
stanniocalcin-1, TGF-β, and fibroblast growth factor 2 [82,83]. Cumulating evidence indicates that
MSCs release extracellular vesicles (EVs) that deliver genes, microRNAs, exosomes, and proteins
to recipient cells, thus, acting as mediators of MSC paracrine action and conferring resistance to
apoptosis [84,85]. These EVs are also thought to communicate intercellularly and influence the
function of progenitor cells to stimulate angiogenesis and other reparative processes and, consequently,
accelerate tissue repair [11,86].

iPSCs present a promising new therapeutic approach for AKI [87], and several studies have
illustrated their anti-apoptotic effects against IR-AKI. Subcapsular transplantation of human-iPSCs
in rodent kidneys attenuated TEC apoptosis and ameliorated histological alterations resulting in
renal function improvements following IR-AKI [88]. Li et al. also demonstrated the therapeutic
effect of iPSC-derived renal progenitor cells (RPC) in IR-AKI; they observed the reduction of tubular
apoptosis and renal function recovery in a rat model of IR-AKI. Simultaneously, increased expression
of anti-inflammatory mediators and growth factors involved in kidney repair were observed after
transplantation of iPSC-derived RPCs and MSCs in injured kidneys [88–90]. Shen et al. also showed
that iPSC-derived endothelial progenitor cells ameliorated apoptosis of TECs and cardiomyocytes
while treating IR-AKI in mice [91]. Regarding the mechanisms of the anti-apoptotic properties of
stem cells, our previous study suggested that iPSC-derived CM provided a protective effect against
IR-AKI by reducing ROS generation, suppressing p38-MAPK activation, and inhibiting TNF-induced
cell death and its downstream effect of NF-κB-induced systemic inflammation [71]. Therefore, we
have demonstrated that iPSCs exerted renoprotective effects via the secretion of paracrine factors and
suggest that iPSC-CM is a potential resource for stem cell-based therapy against IR-AKI.

The therapeutic potential of spermatogonial stem cells (SSC) in AKI has been explored in the
preclinical setting. Unlike the production of soluble cytokines and growth factors by MSCs and iPSCs,
the mechanism governing SSCs to accelerate tissue regeneration is through direct differentiation
into renal parenchymal cells. To prove this phenomenon, Wu et al. injected mouse SSCs into adult
female mice kidneys. Three months after SSC administration, the histological analysis revealed the
transplanted SSCs migrated to the basement membrane and trans-differentiated into mature renal TECs.
The most convincing evidence for self-renewal and multipotency of SSCs came from the presence of the
Y chromosome in the nucleolus of TECs and glomerular podocytes isolated from the SSC-transplanted
kidneys in female mice [92].

Under specific conditions, SSCs can spontaneously transform into germline cell-derived
pluripotent stem cells (GPSCs), which can be readily frozen and thawed without loss of cell viability.
Using a novel renal epithelial differentiation protocol, Chiara et al. generated GPSC-derived tubular-like
cells (GTCs) resembling renal TEC phenotypes and biological functions. After administration of GTCs
intravenously in IR-AKI mice, these cells were able to home in on sites of inflammation and showed
long-term engraftment in the injured kidney. Histological analysis disclosed less extent of cortical
damage, inflammatory infiltrate, and interstitial fibrosis in the GTC-treated kidney. The GTCs also
elicit cytoprotective functions in reducing renal oxidative stress, tubular apoptosis, and upregulation
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tubular expression of HO-1. Accordingly, GPSCs could be considered as a potential stem cell therapy
against IR-AKI and subsequent chronic kidney damage [93].

5. Stem Cells in the Context of Clinical Use

Clinical applications of stem cell therapy are widely under investigation, as they possess
anti-inflammatory, anti-fibrotic, and anti-apoptotic properties. However, clinical trials evaluating the
therapeutic potentials of stem cells in AKI are still in the evolving stage, and their promise in preclinical
models is yet to be translated. Dating back to 2008, the first phase 1 clinical trial (NTC00733876)
evaluated the safety and efficacy of MSCs in AKI initiated with open-heart surgery. This study enrolled
16 open-heart surgical patients, and bone marrow-derived MSCs were administered into the suprarenal
aorta through a femoral catheter after completion of surgery. The inclusion criteria were patients
at high risk for postoperative AKI, such as old age, underlying diabetes mellitus, congestive heart
failure, chronic obstructive lung disease, and pre-existing CKD stage 1-4. The exclusion criteria were
active infection, evolving myocardial infarction, cardiogenic shock, history of malignancy, or advanced
CKD stage 5/5D. The primary outcome was the absence of MSC-specific adverse events. During
the six-month follow-up period, there were no specific or serious adverse effects observed, and this
study concluded that infusions of MSCs might provide a novel and safe approach for inducing renal
protection [94]. Based on this positive result, a subsequent multicenter randomized controlled trial in
2017 (NCT01602328) was conducted to determine the efficacy of allogeneic human MSCs in accelerating
kidney recovery from established AKI. This phase 2 study enrolled patients who developed AKI within
48 h after cardiac surgery, and they randomized a total 156 participants to receive allogeneic MSCs
(AC607, in a single dose of 2 × 106 cells/kg) or placebo administration through an intra-aortic route.
The primary outcome was the time to recovery of kidney function. At the end of follow-up, although
treatment with MSCs was found to be safe and tolerated well, this study concluded that administration
of MSCs did not decrease the time to renal function recovery or provision for dialysis. Besides, the
30-day all-cause mortality was comparable between MSCs group and placebo group, and the rates of
other major adverse kidney events were similar [95]. From these two early-phase clinical trials, the
role of administering allogeneic MSCs for postcardiac surgery AKI is initially recognized. Although
MSCs may be of no value as a therapy to recover renal function in established AKI, the preliminary
analysis showed that MSC administration is safe at all tested doses. Unfortunately, there are no other
ongoing registered clinical trials for the treatment of postcardiac surgery AKI, thus leaving unexplored
the possibility of a potential beneficial effect of MSC therapy at doses higher than those reported so far.

Other clinical trials regarding AKI situation include administration of MSC to kidney transplant
recipients. In a single-site, prospective, open-label, randomized study in China (NCT00658073), a total
of 159 adult subjects underwent kidney transplants with allografts from living donors were divided into
three groups: The standard dose (n = 53) and lower dose (80% of standard, n = 52) calcineurin inhibitors
(CNI), in combination with a double intravenous infusion of autologous bone marrow-derived MSCs
(1–2 × 106/kg) at kidney reperfusion and 2 weeks later. Patients (n = 51) in the control group were
given the anti-IL-2 receptor antibody basiliximab induction therapy, plus standard dose CNI. The
main outcome included the one-year incidence of acute rejection, adverse events, patient and graft
survival. Compared to the basiliximab group, this study demonstrated that the use of autologous MSC
resulted in a lower incidence of acute rejection, lower risk of opportunistic infection, and better graft
function at one year [96]. Another trial also suggested MSCs enable 50% reduction of CNI maintenance
immunosuppression in living donor kidney transplant recipients [97]. Therefore, MSC-based therapy
has proven to reduce induction and maintenance of immunosuppressive drugs without compromising
patient safety and graft outcome. This may be due to the immunomodulatory activity of MSCs, but
these studies, unfortunately, did not address the underlying mechanism.

A clinical trial using stem cells in treating AKI receiving continuous renal replacement therapy
(CRRT) is ongoing (NCT03015623) [98]. AKI participants were treated with extracorporeal therapy
with hemofiltration device containing millions of allogeneic MSCs (SBI-101) up to 24 h, designed
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to regulate inflammation and promote repair of injured tissue. Instead of intravenous infusion of
allogeneic MSCs that are diluted rapidly throughout the body, SBI-101 allows delivery of a stable dose
of cells by exposing the blood ultrafiltrate to MSCs that are immobilized on the extraluminal side of
membranes within the hollow fiber dialyzer. This provides AKI patients with both standard-of-care
hemofiltration as well as MSC-mediated blood conditioning in a single session. The conditioned
ultrafiltrate is then delivered back to the subject, which allows for continuous exposure of the MSCs to
patient blood during the CRRT treatment. In this trial, the recruitment is currently active, and subjects
will be randomized into three different doses: Low dose SBI-101 containing 250 million MSCs, high
dose SBI-101 containing 750 million MSCs, or sham control to characterize the pharmacokinetics and
pharmacodynamics of SBI-101. In this first-in-human clinical trial, the primary outcome is its safety
and tolerability. Measures of SBI-101 efficacy could be reduced patient time on dialysis or reduced
patient time in the ICU.

There are still some barriers in the utilization of stem cells in clinical settings for AKI. Although
MSC therapy has multiple benefits with no detrimental side effects, so far it still lacks both long-term
follow-up data and the consensus in therapeutic protocols. Furthermore, the collection of MSCs
from bone marrow is relatively invasive and the source is not available in a large volume. Similarly,
SSC-based therapies in AKI have some limitations. Although SSCs are recognized to differentiate into
renal lineages, their promise in preclinical AKI models is not yet translated in humans. Furthermore,
even though SSCs can be administered in both genders, they can only be harvested from the testis
and require a somewhat invasive procedure on male donors. In regard to iPSCs, c-Myc, one of the
reprogramming factors to induce pluripotency, is a well-known oncogene leading to tumorigenesis.
Therefore, the adverse effect of teratoma or tumor formation derived from iPSC treatment warrants
significant concern. Our previous study demonstrated that rats treated with iPSCs without c-Myc
effectively blocked the teratoma formation [42]. Alternatively, therapy utilizing iPSC-CM showed
the promising anti-inflammatory benefits for IR-AKI and eliminated the concern of tumorigenesis as
well [71]. Until now, there are few clinical trials of iPSC or stem cell-derived CM containing soluble
factors and EVs in the treatment of AKI, and the future outcomes are highly expected [99].

6. Conclusions

In summary, animal experiments have provided compelling evidence to support a renoprotective
role for stem cells in rescuing IR-AKI. Multiple mechanisms have been proposed to explain the
beneficial effects of stem cells and their derived CM, including antioxidant, immunomodulatory,
and anti-apoptotic effects (Figure 2). Another essential component of the beneficial effects of stem
cells is their production of soluble paracrine factors and trophic growth factors. Moreover, recent
investigations have found that stem cell-derived EVs may carry pro-regenerative micro-RNA molecules
that stabilize vascular and tubular function, which has therapeutic potential for rescuing IR-AKI.
Although the majority of studies in the field of IR-AKI show remarkable benefits of stem cell therapy,
they are mostly confined to experimental animal models. More translational studies are needed to
provide a more comprehensive understanding of stem cell-based therapies and to ensure their safety
for future clinical applications.
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Figure 2. Illustration of proposed mechanisms of stem cell therapy in rescuing ischemia-reperfusion 
induced acute kidney injury. The therapeutic effects of mesenchymal stem cells, induced pluripotent 
stem cells, and their conditioned medium containing soluble factors and extracellular vesicles include: 
(1) Anti-oxidation, which may act through activation of the Nrf2/ARE pathway and, subsequently, 
upregulation of antioxidative enzymes against oxidative stress; (2) anti-inflammation, via 
immunosuppressive effects on immune cells and inhibition of NF-κB transcriptional activity; and (3) 
anti-apoptosis, possibly through decreased tumor necrosis factor-induced intrinsic apoptosis 
signaling. Abbreviations: Nrf2, NF-E2-related factor 2; ARE, antioxidant responsive element; TNF-α, 
tumor necrosis factor-α; TNFR, tumor necrosis factor receptor; TRAIL, TNF-related apoptosis-
inducing ligand; TEC, tubular epithelial cell; NF-κB, nuclear factor-κB; MCP-1, monocyte 
chemoattractant protein 1; IFN-γ, Interferon-γ. 
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