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Abstract: The bacterial biofilm formation in the oral cavity and the microbial activity around the
implant tissue represent a potential factor on the interface between bone and implant fixture that
could induce an inflammatory phenomenon and generate an increased risk for mucositis and
peri-implantitis. The aim of the present clinical trial was to investigate the bacterial quality of a new
antibacterial coating of the internal chamber of the implant in vivo at six months. The PIXIT implant
(Edierre srl, Genova Italy) is prepared by coating the implant with an alcoholic solution containing
polysiloxane oligomers and chlorhexidine gluconate at 1%. A total of 15 healthy patients (60 implants)
with non-contributory past medical history (nine women and six men, all non-smokers, mean age of
53 years, ranging from 45–61 years) were scheduled to receive bilateral fixed prostheses or crown
restorations supported by an implant fixture. No adverse effects and no implant failure were reported
at four months. All experimental sites showed a good soft tissue healing at the experimental point
times and no local evidence of inflammation was observed. Real-Time Polymerase Chain Reaction
(PCR) analysis on coated and uncoated implants showed a decrease of the bacterial count in the
internal part of the implant chamber. The mean of total bacteria loading (TBL) detected in each
PCR reaction was lower in treated implants (81,038 units/reaction) compared to untreated implants
(90,057 units/reaction) (p < 0.01). The polymeric chlorhexydine coating of the internal chamber of
the implant showed the ability to control the bacterial loading at the level of the peri-implant tissue.
Moreover, the investigation demonstrated that the coating is able to influence also the quality of
the microbiota, in particular on the species involved in the pathogenesis of peri-implantitis that are
involved with a higher risk of long-term failure of the dental implant restoration.
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1. Introduction

Dental implants are widely used to rehabilitate the edentulous area [1–3]. Implant rehabilitation
is completely successful when there is no bone resorption around the implant fixture [4–6]. Lee et al.
indicated that prosthetic loading or bacterial infection could be related to the implant failure and they
reported that the prevalence of mucositis is 29.48% and that of peri-implantitis is 9.25% [7].
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Osseointegration can be affected by oral conditions, in particular, the micro-gap at the
implant–abutment connection (IAC) represents a site for dental plaque aggregation favoring bacterial
leakage, which can increase inflammatory cells at the level of the IAC, causing peri-implantitis [8,9].
Two-piece implants unavoidably present a micro-gap between the implant and the abutment. These
spaces, once early colonized, may constitute a bacterial reservoir that could subsequently contaminate
the implant’s surroundings and interfere with the peri-implant tissues’ health. The presence of a
micro-gap, and thus a reservoir of bacteria, when in close relation to the bone, may have a role in bone
loss [10].

The bacteria found at the IAC level can be both anaerobic and facultatively anaerobic, depending
on the features of the microhabitat. In addition, patients at risk of periodontal disease have a
higher risk of peri-implantitis [11]. Periodontopathogenic bacteria and in particular the species of
“red complex” (porphyromonas gingivalis, tanerella forsythia, treponema denticola), and other bacteria,
such as Corinebacterium rectus and Fusobacterium nucleatum, cause peri-implant tissue inflammation,
which may lead to the destruction of the peri-implant bone, resulting in implant loss [12]. The
treatment of peri-implantitis has unpredictable results, while the control of bacterial plaque is
crucial [12]. Peri-implantitis is usually associated with gram-negative bacteria similar to those that
cause periodontal disease [11,12]. Peri-implantitis, such as periodontal disease, is the result of bacterial
insult and the subsequent host response. Some studies have shown that bacterial species of periodontal
disease are very similar to those that cause peri-implantitis [11–13].

In this way, it has been reported that a clinical history of periodontitis is related with a higher risk
for peri-implant infections [11,12].

Different analytical methods have been used for a microbiological characterization of microbial
species and bacterial quality in peri-implantitis [14]. Polymerase chain reaction (PCR) method is
reported as rapid and cost-sensitive for a microbial quantitative evaluation of the oral biofilm and it is
able to determine the total bacteria loading (TBL) and identify different bacterial species of the cluster
related to the peri-implantitis, such as Corinebacterium rectus and Fusobacterium nucleatum [14–18]. Many
different methods have been described to increase the peri-implant tissue healing and minimize the
inflammation reaction around the dental implant fixture.

The prosthetic connection between implant and abutment interface could represent a critical point
for a potential microbial colonization that is able to feed an infection and an inflammatory reaction at
the level of the peri-implant interface [9].

It has been reported that treatment with an antibacterial coating characterized by chlorhexidine
gluconate is able to reduce the bacterial loading in vitro [15].

The aim of the present clinical trial was to investigate the antibacterial activity of a new antibacterial
coating of the internal chamber of the implant in vivo at six months.

2. Materials and Methods

2.1. PIXIT Implants

The PIXIT implant (Edierre srl, Genova, Italy) is produced by coating the internal part of the
implants with an alcoholic solution containing polysiloxane oligomers and chlorhexidine gluconate
at 1%.

The product has the ability to bind the titanium surface via interaction of the OH– functionalities
present on the polisyloxane chains and the titanium surface (antimicrobial coating composition for
dental implant, PCT/IT2015/000142). The role of the alkyl chains present on the siloxane units is that
of trapping, through Van der Waals interactions, chlorhexidine molecules, allowing their subsequent
slow release when in contact with the aqueous medium.

The coating of the internal chamber of the implants was produced by filling with the PIXIT solution
which was left in contact with the surface for at least 10 min followed by draining and implant heating
at 60 ◦C for 45 min. The coating of abutment, healing cups, and screws was obtained by immersion
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in PIXIT solution for 10 min followed by centrifugation on a sintered glass filter and subsequent
heating at 60 ◦C for 45 min. This protocol was used for the first time in a clinical study. The coating
treatment of the implant junction has been tested in a previous in vitro study by Lauritano et al. that
reported no bacterial growth at the level of the internal chamber [15]. Moreover, the author reported a
continuous release from PIXIT of chlorhexidine in the medium, producing an active action over time of
the coating [15].

2.2. Antimicrobical Test

Healing cups (Edierre srl) were tested for bacterial leakage. Ten healing caps signed as tests
and numbered with 15, 16, 19, 20, 24, 25, 26, 30, 31, 32 and ten healing caps signed as controls and
numbered with 13, 14, 17, 18, 21, 22, 23, 27, 28, 29, were tested. The caps were inserted in Petri dishes
and contaminated with 100 µLT of a microbial pool consisting of Gram positive and negative bacteria
(Staphilococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Enterococcus hirae) and Candida albicans in
a concentration range of 1–5 × 105 cfu/mL. After a 10 min contact time, 18 mL of LB Agar were inserted,
and the plates were incubated at 37 ◦C for 24 h. Contamination was also performed in duplicate on
Petri dishes that did not contain healing caps.

2.3. Population Inclusion

The protocol for this study was designed in accordance with the Helsinki Declaration
(revised version of Tokyo at 2004) and Good Clinical Practice Guidelines. The Inter Institutional Ethics
Committee of Faculdade Ingá, UNINGÁ, PR, BRAZIL, No. 153455/2018; CAEE 04609518.6.0000.5220,
approved it.

A total of 15 healthy patients (60 implants) with non-contributory past medical history (9 women
and 6 men, all non-smokers, mean age of 53 years, ranging from 45–61 years) were included in this
study. All patients’ candidates were scheduled to receive bilateral fixed prosthesis or crown restorations
supported by implant fixture. The subjects were randomly allotted for each group test and control.
All patients signed a written informed consent form.

The subjects were treated at the Department of Oral Implantology, Center for Advanced Studies,
Dental Research Division, UNINGÁ Cachoeiro de Itapemirim, Brazil. All patients underwent a
preliminary examination and they underwent Orthopanoramic radiographs and 3D Cone Beam for the
surgical treatment planning.

The inclusion criteria were: Edentulous or partly edentulous patients with a unilateral or bilateral
loss of teeth, with severe alveolar atrophy and a residual alveolar ridge height of between 2 and
4 mm. The exclusion criteria were: Severe illness, head and neck radiation therapy, chemotherapy,
uncontrolled diabetes, uncontrolled periodontal disease, and smoking. Exclusion criteria also included
facial or neck inflammatory skin diseases, carotid sinus hyperesthesia, hyperthyroidism, and patients
who unilaterally declined undergoing post-operative treatment.

2.4. Surgical Procedure

The subjects received prophylactic antibiotic therapy: Two grams of amoxicillin (or clindamycin
600 mg if allergic to penicillin) 1 h before surgery, and they were instructed to rinse with chlorhexidine
0.2% (Curasept, Saronno Italy) for 1 min. All patients were treated under local anesthesia. The standard
implant site preparation procedure, as recommended by the implant manufacturer, was used. Implants
were placed 2 mm under the crestal bone level. Ibuprofen 400 mg was prescribed two to four times daily
during meals, for as long as required. Patients were instructed to use chlorhexidine 0.2% mouthwash
for 1 min twice daily for 2 weeks, and to avoid brushing and trauma on surgical sites. Postoperative
antibiotics were prescribed only to patients who received bone augmentation procedures: Amoxicillin
1 g twice daily for 6 days. Patients allergic to penicillin were prescribed clindamycin 300 mg twice
daily for 6 days. Within 1 week all patients were recalled and checked. Implants were exposed and
healing screws placed in the implant after 4 months. Within a further 10 days all patients were recalled,
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healing screws removed, and a sample of the implant internal chamber microbiota was obtained from
a single site by a paper probe. DNA was extracted and purified using standard protocols that include
two consecutive incubation with lysozyme and proteinase K, followed by spin-column purification.
Healing screws were repositioned at 20 Ncm, and recommended manufacturer values were used.

2.5. Real-Time Polymerase Chain Reaction

Primers and probes oligonucleotides were designed based on 16S rRNA gene sequences of the
Human Oral Microbiome Database (HOMD 16S rRNA RefSeq Version 10.1) counting 845 entries
(Biomers.net GmbH, Ulm, Germany). All the sequences were aligned in order to find either a consensus
sequence or less conservate spots. Three real-time PCR runs were performed for each sample.

The first reaction quantified the total amount of bacteria using two degenerate primers and a single
probe matching a highly conservated sequence of the 16S ribosomal RNA gene. The second reaction
detected and quantified the three red complex bacteria, i.e., Porphyromonas gingivalis, Tannerella forsythia,
Treponema denticola, in a multiplex PCR. The third reaction detected and quantified two members of the
orange complex Fusobacterium nucleatum and Campylobacter rectus and a member of purple complex
Aggregatibacter actinomycetemcomitans. These reactions included a total of six primers and three probes
that were highly specific for each species. Table 1 shows probe and primer sequences used for the
amplification. Oligonucleotide concentrations and PCR conditions were optimized to ensure sensitivity,
specificity, and no inhibitions in case of unbalanced target amounts. Absolute quantification assays
were performed using the Applied Biosystems 7500 Sequence Detection System. The amplification
profile was initiated by a 10 min incubation period at 95 ◦C to activate polymerase, followed by a
two-step amplification of 15 s at 95 ◦C and 60 s at 57 ◦C for 40 cycles. All these experiments were
performed including non-template controls to exclude reagents contamination.

Table 1. Probe and primer sequences use for periodontal bacteria amplification.

Periodontal
Bacteria Primer Sequence 5′ -> 3′ Probe Sequence

Aa f-ACCTTACCTACTCTTGACATCCGAA
r-ATGCAGCACCTGTCTCAAAGC AAGAACTCAGAGATGGGTTTGTGCCTAGG

Pg f-CGCGTGAAGGAAGACAGTCC
r-CGATGCTTATTCTTACGGTACATTCA TACGGGAATAACGGGCGATACGAGTATTG

Tf f-CAGCGATGGTAGCAATACCTGTC
r- TTCGCCGGGTTATCCCTC TGAGTAACGCGTATGTAACCTGCCCGC

Td f-AGCTACGGCTCCGCTTCAG
r-GATACCCATCGTTGCCTTGGT AGCTAATGGGACGCGGGCCCAT

Fn f-AGGGTGATCGGCCACAAG
r-CACAGAATTGCTGGATCAGACTCT ACACGGCCCTTACTCCTACGGGAGG

Cr f-TGACGCTAATGCGTGAAAGC
r-CTCGACTAGCGAAGCAACAACTAG TACCCTGGTAGTCCACGCCCTAAACGA

TBL f-TGGAGCATGTGGTTTAATTCGA
r-TGCGGGACTTAACCCAACA CACGAGCTGACGACARCCATGCA

Aa: Aggregatibacter actinomycetemcomitans; Pg: Porphyromonas gingivalis; Tf: Tannerella forsythia; Td: Treponema
denticola; Fn: Fusobacterium nucleatum; Cr: Campylobacter rectus; TBL: Total bacterial load.

Plasmids containing synthetic DNA target sequences (Eurofin MWG Operon, Ebersberg Germany)
were used as standard for the quantitative analysis.

Standard curves for each target were constructed in a triplex reaction, by using a mix of the same
amount of plasmids, in serial dilutions ranging from 101 to 107 copies. There was a linear relationship
between the threshold cycle values plotted against the log of the copy number over the entire range of
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dilutions (data not shown). The copy numbers for individual plasmid preparations were estimated
using the Thermo NanoDrop spectrophotometer.

The absolute quantification of total bacterial genome copies in samples allowed for the calculation
of a relative amount of red complex species. To prevent samples and PCR contamination, plasmid
purification and handling was performed in a separate laboratory with dedicated pipettes.

2.6. Statistical Analysis

The non–parametric Wilcoxon signed rank test was used because data were not
normally distributed.

3. Result

3.1. Clinical Results

A total of 60 implants were positioned, 30 test (implants treated with PIXIT) and 30 control
(untreated implants). No adverse effect and no implant failure were reported at four months. All
experimental sites showed a good soft tissue healing and no local evidence of inflammation was
reported. PCR analysis was performed only in 52 implants (26 treated and 26 untreated implants).
PCR analysis on coated and uncoated implants showed a decrease of the bacterial count in the internal
part of the implant chamber. The total bacterial load was evaluated by absolute quantification of a
conserved ribosomal 16S gene sequences, using a degenerated primers-probe set. The mean of total
bacteria loading (TBL) detected with PCR reaction was lower in treated implants (81038 units/reaction)
compared to untreated implants (90057 units/reaction) (Tables 2 and 3). A Wilcoxon signed rank test
showed that the effect of treatment was significant (Z = −3.19, p = 0.001) (Tables 4 and 5). Similar results
were obtained when amounts of a single bacterial specie was investigated: Corinebacterium rectus
(Z = −2.75, p = 0.006) and Fusobacterium nucleatum (Z = −3.74, p = 0.001). Postoperative antibiotics
were prescribed only to patients who received bone augmentation procedures and only during the
implant placement. No antibiotics were prescribed during the healing screws placement.

Table 2. Bacterial count observed for treated with the alcoholic solution containing polysiloxane
oligomers and chlorhexidine gluconate at 1% (PIXIT) and untreated implants.

N Min Max Mean SD

Fn-U 26 0 1639 410 393
Cr-U 26 0 2387 914 758
Cr-T 26 0 192 59 66
Fn-T 26 0 228 81 79

TBL-T 26 37,192 149,707 81,038 45,146
TBL-U 26 40,013 191,064 90,057 53,788

Fn: Fusobacterium nucleatum; Cr: Campylobacter rectus; TBL: Total bacterial load; T: Treated implants;
U: Untreated implants.

Table 3. Statistical analysis in order to verify the distribution of samples. a Lilliefors Correction.

Kolmogorov-Smirnova a Shapiro-Wilk

Stat df p Value Stat df p Value

Fn-T 0.188 26 0.019 0.857 26 0.002
Cr-T 0.314 26 0.000 0.810 26 0.000
Cr-U 0.270 26 0.000 0.843 26 0.001
Fn-U 0.191 26 0.016 0.874 26 0.004

TBL-T 0.330 26 0.000 0.732 26 0.000
TBL-U 0.304 26 0.000 0.772 26 0.000
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Table 4. Non Parametric Test. Wilcoxon test. Distribution of ranks. a. FN-U < FN-T; b. FN-U > FN-T;
c. FN-U = FN-T; d. CR-U < CR-T; e. CR-U > CR-T; f. CR-U = CR-T; g. TBL-U < TBL-T; h. TBL-U >

TBL-T; i. TBL-T = TBL-T.

N Mean Rank Sum

Neg Rank 4 a 3.75 15.00
Pos Rank 19 b 13.74 261.00

FN-U – FN-T Equal values 3 c

Tot 26

Neg Rank 2 d 5.75 11.50
Pos Rank 13 e 8.35 108.50

CR-U – CR-T Equal values 11 f

Tot 26

Neg Rank 7 g 7.14 50.00
Pos Rank 19 h 15.84 301.00

TBL-U – TBL-T Equal values 0 i

Tot 26

Table 5. Output of Wilcoxon test. a. Wilcoxon test. b. Based on negative ranks.

FN-U – FN-T CR-U – CR-T TBL-U – TBL-T

Z −3.741 b
−2.755 b

−3.187 b

Sig. Asint. a 2 code 0.000 0.006 0.001

3.2. Antimicrobical Test Results

The coating treatment of the implant junction has been tested in a previous in vitro study by
Lauritano et al. that reported no bacterial growth at the level of the internal chamber [15]. Moreover
the author reported a continuous release from PIXIT of chlorhexidine in the medium, producing an
active action over time of the coating [15] (Figure 1).
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Figure 1. Internal chamber of the fixtures of untreated (left) and treated (right) with the alcoholic
solution containing polysiloxane oligomers and chlorhexidine gluconate at 1% (PIXIT) showing that
the coating does not change the internal thickness.

Figure 2 shows no bacterial growth after treatment with PIXIT in the test dish. Since the correlation
between numbered samples marked as test and controls is not known, an average value of the microbial
charge developed in the control plates was evaluated and with respect to this value the reduction
of the microbial load which developed in the Petri containing the tests was calculated. In all cases,
a considerable reduction of the microbial development in tests compared to samples was observed,
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in particular the inhibition of the microbial growth was 99% in test sample 15, 95% in test 32, 90% in
test 25, 80% in the tests 16, 26, 24 and 31, 60% in test 30, 40% in test 19 and 30% in test 20.
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presence of a contamination of the order of 1–5 × 104 cfu of gram positive, gram negative, and Candida.

4. Discussion

Dental implants are an excellent treatment option for restoring areas that are missing one or
more teeth. The majority of dental implants have two components: The implant placed in the bone
during the surgical procedure, and the abutment, screwed into the implant to support the prosthetic
rehabilitation. These two-piece implant systems present slots and cavities between the implant and the
abutment that can act as a trap for bacteria causing the accumulation of pathogens and the onset of
peri-implantitis. During the prosthetic rehabilitation, bacterial dissemination is unavoidable, and when
the IAC is located at the level of the bone crest, the formation of biofilms in this area causes bone
resorption, observed in the early stages of prosthetic load. Bacterial loading is an important factor in
peri-implantitis, occurring during soft tissue manipulation of prosthetic rehabilitation. It is clear that
peri-implantitis occurs due to the presence of pathogenic microorganisms colonizing the surrounding
implant area and the suppression or eradication of these microbes prevents peri-implantitis. The main
cause of peri-implantitis consists in the passage of pathogenic bacteria in the abutment-implant gap.
The inner spaces are easily colonized, and bacteria may leak out from these spaces through the IAC
into the peri-implant area. Peri-implantitis is usually associated with gram-negative bacteria similar
to those that cause periodontal disease. Covering IAC surfaces with coatings, by adding biomimetic
bioactive substances to improve its biological characteristics, has also been recently investigated [15].
Modifications of IAC using various modalities aim to improve prevention of bacterial infection
and promote faster healing times. These aspects are of paramount importance in modern dentistry,
since immediate or early loading has become a predictable treatment protocol.

The presence of a micro gap at the IAC is well known and varies from 1 to 49 µm according to
different implant systems and colonization of IAC may cause peri-implant bone resorption [16,17].
The IAC is usually situated under the soft tissue of the gingiva, sometimes very near to the bone.
For this reason, the control of bacterial leakage through the IAC can be a major aspect in preventing
the infection of the peri-implant tissues. In patients with previous periodontal diseases, the reduction
of the passage of pathogenic bacteria should be considered as important, especially because studies
have shown that bacterial species of periodontal disease are very similar to the bacteria that cause
peri-implantitis [18]. The clinician should keep in mind that the presence of a pathogenic microflora in
an initial phase can be associated with a higher risk of peri-implantitis, as per periodontal diseases.
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The prevention of the microbial infection at the level of the implant junction appears the key
point for the healing of the peri-implant tissue and a long term maintaining of the dental implant
restoration [19–22].

The coating treatment of the implant junction has been tested in a previous in vitro study by
Lauritano et al. that reported no bacterial growth at the level of the internal chamber [15]. Moreover
the author reported a continuous release from PIXIT of chlorhexidine in the medium, producing an
active action over time of the coating [15]. The protocol adopted in the present study exclude the effect
of antibiotic on bacteria proliferations in both groups. The antibiotics used during the implant surgery
did not cause a bias in the results because no preoperative o postoperative antibiotics were prescribed
during the healing screws placement. In fact, the use of a mucoperiosteal flap in implant surgery does
not represent a significant risk for developing bacteremia [23]. Antibiotic prophylaxis in surgery is
only indicated when surgery is performed in infected sites, when large foreign materials are implanted,
in patients who are at risk of infectious endocarditis, and immuno-compromised patients [24,25].

In conclusion, the polymeric coating trapping chlorhexidine in the internal chamber of the implant
showed the ability to control the bacterial loading at the level of the peri-implant tissue. Moreover,
the investigation demonstrated that the coating is able to influence also the quality of the microbiota,
in particular on the species involved in the pathogenesis of peri-implantitis that are involved with a
higher risk of long-term failure of the dental implant restoration.

Author Contributions: Conceptualization, F.C. and D.L.; methodology, C.A.B.; validation, D.P., investigation,
P.S.d.O.; data curation, V.C.; supervision, A.S.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Glauser, R.; Zembic, A.; Hammerle, C.H.F. A systematic review of marginal soft tissue at implants subjected
to immediate loading or immediate restoration. Clin. Oral Implants Res. 2006, 17, 82–92. [CrossRef] [PubMed]

2. Nielsen, H.B.; Schou, S.; Isidor, F.; Christensen, A.E.; Starch-Jensen, T. Short implants (≤8 mm) compared to
standard length implants (>8 mm) in conjunction with maxillary sinus floor augmentation: a systematic
review and meta-analysis. Int. J. Oral Maxillofac. Surg. 2019, 48, 239–249. [CrossRef] [PubMed]

3. Albrektsson, T.; Berglundh, T.; Lindhe, J. Osseointegration: Historic background and current concepts.
Clin. Periodontol. Implant Dent. 2003, 4, 809–820.

4. Adell, R.; Lekholm, U.; Rockler, B.; Brånemark, P.I. A 15-year study of osseointegrated implants in the
treatment of the edentulous jaw. Int. J. Oral Surg. 1981, 10, 387–416. [CrossRef]

5. Zanolla, J.; Amado, F.M.; da Silva, W.S.; Ayub, B.; de Almeida, A.L.P.F.; Soares, S. Success rate in
implant-supported overdenture and implant-supported fixed denture in cleft lip and palate patients.
Ann. Maxillofac. Surg. 2016, 6, 223–227. [PubMed]

6. Rotundo, R.; Pagliaro, U.; Bendinelli, E.; Esposito, M.; Buti, J. Long-term outcomes of soft tissue augmentation
around dental implants on soft and hard tissue stability: a systematic review. Clin. Oral Implants Res. 2015,
26, 123–138. [CrossRef] [PubMed]

7. Lee, C.T.; Huang, Y.W.; Zhu, L.; Weltman, R. Prevalences of peri-implantitis and peri-implant mucositis:
systematic review and meta-analysis. J. Dent. 2017, 62, 1–12. [CrossRef]

8. Piattelli, A.; Vrespa, G.; Petrone, G.; Iezzi, G.; Annibali, S.; Scarano, A. Role of the microgap between implant
and abutment: A retrospective histologic evaluation in monkeys. J. Periodontol. 2003, 74, 346–352. [CrossRef]

9. Scarano, A.; Valbonetti, L.; Degidi, M.; Pecci, R.; Piattelli, A.; de Oliveira, P.S.; Perrotti, V. Implant-abutment
contact surfaces and microgap measurements of different implant connections under 3-dimensional X-ray
microtomography. Implant Dent. 2016, 25, 656–662. [CrossRef]

10. Scarano, A.; Lorusso, C.; Di Giulio, C.; Mazzatenta, A. Evaluation of the sealing capability of the implant
healing screw by using real time volatile organic compounds analysis: internal hexagon versus cone morse.
J. Periodontol. 2016, 87, 1492–1498. [CrossRef]

http://dx.doi.org/10.1111/j.1600-0501.2006.01355.x
http://www.ncbi.nlm.nih.gov/pubmed/16968384
http://dx.doi.org/10.1016/j.ijom.2018.05.010
http://www.ncbi.nlm.nih.gov/pubmed/29980321
http://dx.doi.org/10.1016/S0300-9785(81)80077-4
http://www.ncbi.nlm.nih.gov/pubmed/28299262
http://dx.doi.org/10.1111/clr.12629
http://www.ncbi.nlm.nih.gov/pubmed/26385627
http://dx.doi.org/10.1016/j.jdent.2017.04.011
http://dx.doi.org/10.1902/jop.2003.74.3.346
http://dx.doi.org/10.1097/ID.0000000000000465
http://dx.doi.org/10.1902/jop.2016.160076


Int. J. Mol. Sci. 2019, 20, 3897 9 of 9

11. Konstantinidis, I.K.; Kotsakis, G.A.; Gerdes, S.; Walter, M.H. Cross-sectional study on the prevalence and risk
indicators of peri-implant diseases. Eur. J. Oral Implantol. 2015, 8, 75–88.

12. Schwarz, F.; Derks, J.; Monje, A.; Wang, H.L. Peri-implantitis. J. Clin. Periodontol. 2018, 45, S246–S266.
[CrossRef]

13. Canullo, L.; Schlee, M.; Wagner, W.; Covani, U. International brainstorming meeting on etiologic and risk
factors of peri-implantitis, Montegrotto (Padua, Italy), August 2014. Int. J. Oral Maxillofac. Implants 2015, 30,
1093–1104. [CrossRef]

14. Cosyn, J.; Van Aelst, L.; Collaert, B.; Persson, G.R.; De Bruyn, H. The peri-implant sulcus compared with
internal implant and suprastructure components: A microbiological analysis. Clin. Implant Dent. Relat. Res.
2011, 13, 286–295. [CrossRef]

15. Lauritano, D.; Bignozzi, C.A.; Pazzi, D.; Cura, F.; Carinci, F. Efficacy of a new coating of implant-abutment
connections in reducing bacterial loading: an in vitro study. Oral Implant. 2017, 10, 1–10. [CrossRef]

16. Insua, A.; Monje, A.; Wang, H.L.; Miron, R.J. Basis of bone metabolism around dental implants during
osseointegration and peri-implant bone loss. J. Biomed. Mater. Res. Part A 2017, 105, 2075–2089. [CrossRef]

17. Zechner, W.; Kneissel, M.; Kim, S.; Ulm, C.; Watzek, G.; Plenk, H. Histomorphometrical and clinical
comparison of submerged and nonsubmerged implants subjected to experimental peri-implantitis in dogs.
Clin. Oral Implants Res. 2004, 15, 23–33. [CrossRef]

18. Qian, J.; Wennerberg, A.; Albrektsson, T. Reasons for marginal bone loss around oral implants. Clin. Implant
Dent. Relat. Res. 2012, 14, 792–807. [CrossRef]

19. Tallarico, M.; Canullo, L.; Caneva, M.; Özcan, M. Microbial colonization at the implant-abutment interface
and its possible influence on periimplantitis: A systematic review and meta-analysis. J. Prosthodont. Res.
2017, 61, 233–241. [CrossRef]

20. Göthberg, C.; Gröndahl, K.; Omar, O.; Thomsen, P.; Slotte, C. Bone and soft tissue outcomes, risk factors, and
complications of implant-supported prostheses: 5-Years RCT with different abutment types and loading
protocols. Clin. Implant Dent. Relat. Res. 2018, 20, 313–321. [CrossRef]

21. Sasada, Y.; Cochran, D.L. Implant-abutment connections: A review of biologic consequences and
peri-implantitis implications. Int. J. Oral Maxillofac. Implants 2017, 32, 1296–1307. [CrossRef]

22. Mencio, F.; De Angelis, F.; Papi, P.; Rosella, D.; Pompa, G.; Di Carlo, S. A randomized clinical trial about
presence of pathogenic microflora and risk of peri-implantitis: comparison of two different types of
implant-abutment connections. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 1443–1451.

23. Piñeiro, A.; Tomás, I.; Blanco, J.; Alvarez, M.; Seoane, J.; Diz, P. Bacteraemia following dental implants’
placement. Clin. Oral Implants Res. 2010, 21, 913–918. [CrossRef]

24. Surapaneni, H.; Yalamanchili, P.S.; Basha, M.H.; Potluri, S.; Elisetti, N.; Kiran Kumar, M.V. Antibiotics in
dental implants: A review of literature. J. Pharm. Bioallied Sci. 2016, 8, S28–S31.

25. Gupta, D.M.; Boland, R.J.; Aron, D.C. The physicians experience of changing clinical practice: A struggle to
unlearn. Implement. Sci. 2017, 12, 18. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/jcpe.12954
http://dx.doi.org/10.11607/jomi.4386
http://dx.doi.org/10.1111/j.1708-8208.2009.00220.x
http://dx.doi.org/10.11138/orl/2017.10.1.001
http://dx.doi.org/10.1002/jbm.a.36060
http://dx.doi.org/10.1111/j.1600-0501.2004.00984.x
http://dx.doi.org/10.1111/cid.12014
http://dx.doi.org/10.1016/j.jpor.2017.03.001
http://dx.doi.org/10.1111/cid.12587
http://dx.doi.org/10.11607/jomi.5732
http://dx.doi.org/10.1111/j.1600-0501.2010.01928.x
http://dx.doi.org/10.1186/s13012-017-0555-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	PIXIT Implants 
	Antimicrobical Test 
	Population Inclusion 
	Surgical Procedure 
	Real-Time Polymerase Chain Reaction 
	Statistical Analysis 

	Result 
	Clinical Results 
	Antimicrobical Test Results 

	Discussion 
	References

