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Abstract: DNA-binding proteins play an important role in cell metabolism. In biological laboratories,
the detection methods of DNA-binding proteins includes yeast one-hybrid methods, bacterial singles
and X-ray crystallography methods and others, but these methods involve a lot of labor, material and
time. In recent years, many computation-based approachs have been proposed to detect DNA-binding
proteins. In this paper, a machine learning-based method, which is called the Fuzzy Kernel Ridge
Regression model based on Multi-View Sequence Features (FKRR-MVSF), is proposed to identifying
DNA-binding proteins. First of all, multi-view sequence features are extracted from protein sequences.
Next, a Multiple Kernel Learning (MKL) algorithm is employed to combine multiple features.
Finally, a Fuzzy Kernel Ridge Regression (FKRR) model is built to detect DNA-binding proteins.
Compared with other methods, our model achieves good results. Our method obtains an accuracy of
83.26% and 81.72% on two benchmark datasets (PDB1075 and compared with PDB186), respectively.

Keywords: DNA-binding proteins prediction; fuzzy kernel ridge regression; multiple kernel learning;
feature extraction; protein sequence

1. Introduction

The interaction between DNA and protein exists in various tissues of the living body.
For example, DNA–protein interactions during many activities such as DNA replication, DNA repair,
DNA packaging, DNA modification, and viral infection. The study of DNA binding residues in
DNA–protein interactions facilitates a comprehensive understanding of the mechanisms of chromatin
recombination and gene-regulated expression. The methods of detecting DNA-binding proteins are
mainly deployed by biochemistry and physical chemistry methods. However, wet experiment-based
methods are both time and money consuming.

The protein information of 3D structures or their complexes is important for drug design.
X-ray crystallography is expensive and time-consuming [1–3]. Lots of sequence-based information,
such as PTM (posttranslational modification) sites in proteins [4–9], DNA-methylation sites [10],
protein–drug interaction in cellular networking [11], protein–protein interactions [12] and
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recombination spots [13], have been predicted by sequential tools such as Pseudo Amino Acid
Composition (PseAAC) [14] and Pseudo K-tuple Nucleotide Composition (PseKNC) approach [15].
Bioinformatics has played important roles in the development of novel drugs.

Computational methods based on Machine Learning (ML) have been developed to
predict DNA-binding proteins. Currently, ML technology is playing key roles in lots of
biological field, including prediction of DNA methylcytosine sites [16,17], O-GlcNAcylation
sites [18], potential disease-associated microRNAs [19,20], protein remote homology [21], protein
subcellular localization [22], electron transport proteins [23] and analyzing microbiology [24] et al.
The computational methods can be classified into two types of methods: sequence-based models and a
structure-based models.

The sequence-based methods extract features from protein sequences and employ ML to build
predictive models. PseAAC and Support Vector Machine (SVM) [25] were used to construct a model
for identifying DNA-Binding Proteins [26]. Kumar et al. [27] used Position Specific Scoring Matrix
(PSSM) of protein sequences to develop an SVM classifier called DNAbinder. The PSSM describes
proetin sequences. PSI-BLAST [28] can calculate PSSM for target protein. Liu et al. [29] proposed
iDNAPro-PseAAC model, which employed PseAAC and PSSM features. Wei et al. [30] used local
PSSM features to represent local information of proteins. Sequence-based approachs can implement
large-scale predictions.

Structure-based models employ structure features to predict DNA-binding proteins.
Compared with sequence-based methods, structure-based models achieve better performance.
The main reason is that 3D structure of proteins determine the shape and surface area of the protein.
Nimrod et al. [31] used the average surface electrostatic potentials of the protein to build a Random
Forest (RF) model to predict DNA-binding proteins. Due to the known structures being less than
sequences, the structure-based models can not predict all proteins.

In recent publications [32–35] and two review papers [36,37], researchers developed useful
predictors for bioinformatics. Many methods obeyed a rule, called Chou’s five-step rule. This rule
contains five steps: (1) a benchmark dataset is constructed to train and test the predictive models;
(2) the selected samples should truly reflect their correlation of the target; (3) the prediction problem
can be solved by a powerful algorithm; (4) the cross-validation tests are performed to evaluate the
performance of the methods; (5) building a web-server for the predictive model. The above rule is
clear in logic, and completely transparent in operation. This rule can easily repeat the reported results
by other researchers and is very convenient for the experimental scientists. Our method is also based
on Chou’s five-step rule.

To avoid losing the sequence–pattern information of proteins, the PseAAC [14,36,38] was proposed
by Chou. Chou’s general PseAAC [36] has been widely used to extract features from sequence and
PSSM of protein. In addition, a useful web-server called “Pse-in-One2.0” [39,40] has been established.
The server can extract feature vectors for DNA/RNA and protein/peptide sequences. We also emply
Pse-in-One2.0 to extract features from protein sequences.

In this study, we propose a novel model via a Fuzzy Kernel Ridge Regression model based on
Multi-View Sequence Features (FKRR-MVSF) to predict DNA-binding proteins. The multiple sequence
features are extracted and constructed to multiple kernels, respectively. Next, a Multiple Kernel
Learning (MKL) algorithm linearly weights these kernels. Fuzzy membership scores of each training
sample are calculated by an integrated kernel. Finally, Fuzzy Kernel Ridge Regression (FKRR) is
trained to predict DNA-binding proteins.

2. Results

To evaluate our proposed method (FKRR-MVSF), two benchmark datasets of DNA-binding
proteins are employed in our study. First of all, we analyze the performance of different features. Then,
our model is compared with other methods via a Jackknife test. Finally, an independent test set is used
to test the robustness of FKRR-MVSF.
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2.1. Data Sets

In our study, two benchmark datasets (PDB1075 and PDB186 datasets) are used to test our
predictive model of DNA-binding proteins. PDB1075 and PDB186 were collected from the Protein Data
Bank (PDB) [41]. Liu et al. [26] randomly extracted non-DNA-binding and DNA-binding proteins from
the PDB database. The similarity of any two sequences does not exceed 25%. A total of 525 DNA-bind
proteins and 550 non-DNA-binding proteins form the PDB1075 dataset. PDB186 dataset [42] contains
93 DNA-bind and 93 non-DNA-bind proteins. Table 1 lists the information of the two benchmark
data sets.

Table 1. The detail information of two benchmark data sets.

Data Sets PDB1075 PDB186

Positive 525 93
Negative 550 93
Total 1075 186

2.2. Measurements

Accuracy (ACC), Sensitivity (SN), Specificity (SP) and Matthew’s Correlation Coefficient (MCC)
are used to evaluate the performance of predictive model. These coefficients are calculated as follows:

ACC = 1−
N+
− + N−+

N+ + N−
(1a)

SN = 1−
N+
−

N+
(1b)

Spec = 1−
N−+
N−

(1c)

MCC =
1− (

N+
−

N+ +
N−+
N− )√

(1 + N−+−N+
−

N+ )(1 + N+
−−N−+
N− )

(1d)

where N+ and N− are the total number of positive and negative samples, respectively. N−+ and N+
−

are the number of false positive and false negative, respectively. And Area Under ROC curve (AUC) is
also an effective evaluation method for binary classification.

2.3. Performance Analysis of Different Features on the PDB1075 Data Set

The single type feature can not fully describe the properties of a protein, so we build the predictive
model with multi-view sequence features to represent the protein. We test (Jackknife test evaluation)
these features (kernels) on the PDB1075 dataset, as shown in Table 2. The PSSM-based features
(PSSM-AB and PsePSSM feature) achieve better performance than non-PSSM (MCD and NMBAC
feature) single features. The performance (MCC) of MCD, NMBAC, PSSM-AB and PsePSSM feature
are 0.4139, 0.4564, 0.5113 and 0.5886, respectively. In addition, mean weighted kernels (KRR) combines
the above 4 kernels (features) via average weight and obtains better performance (MCC: 0.6398) than
single feature. Compared with mean weightes (KRR), MKL (KRR) achieves a higher value of MCC
(0.6439). FKRR weighs training sets by fuzzy membership, which can filter outliers. So, mean weights
(FKRR) (MCC: 0.6554) and MKL (FKRR) (MCC: 0.6664) are both better than KRR because of using
multiple kernel information and fuzzy membership. Moreover, MKL (FKRR) achieves a better MCC
of 0.6664.

In addition, we test the SVM model with different features on the PDB1075 dataset. In Table 2,
the performance (MCC) of SVM (with MKL, MCC: 0.6568) is better than KRR (with MKL, MCC: 0.6439).
However, the MCC (0.6568) of SVM (with MKL) is slightly lower than FKRR (with MKL, MCC: 0.6664).
The reason may be the fuzzy membership for building predictor. The ROC curve also reflects the
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excellent performance of MKL (FKRR) in Figure 1. Our method (FKRR-MVSF) employs MKL and
FKRR to build a final predictor for DNA-binding proteins.

Table 2. The performance of different features on the PDB1075 dataset (Jackknife test).

Feature Type Model ACC SN Spec MCC AUC

MCD KRR 0.7070 0.7086 0.7088 0.4139 0.7751
NMBAC KRR 0.7284 0.7181 0.7382 0.4564 0.7857
PSSM-AB KRR 0.7553 0.7695 0.7418 0.5113 0.8352
PsePSSM KRR 0.7944 0.7905 0.7982 0.5886 0.8637
MW a KRR 0.8195 0.8362 0.8036 0.6398 0.8998
MKL KRR 0.8214 0.8438 0.8000 0.6439 0.9032

MCD SVM 0.7088 0.7345 0.6819 0.4171 0.7611
NMBAC SVM 0.7116 0.6909 0.7333 0.4244 0.7706
PSSM-AB SVM 0.7693 0.6981 0.8438 0.5467 0.8391
PsePSSM SVM 0.7851 0.7472 0.8247 0.5731 0.8566
MW a SVM 0.8201 0.8232 0.8170 0.6421 0.9011
MKL SVM 0.8299 0.8541 0.8057 0.6568 0.9101

MW a FKRR 0.8270 0.8533 0.8018 0.6554 0.9094
MKL FKRR 0.8326 0.8571 0.8091 0.6664 0.9115

a MW denotes combining kernels by the mean weights.
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Figure 1. The ROC curve of different kernels (features) on the PDB1075 dataset (Jackknife test).

Figure 2 shows the weight of each feature. The highest weight of feature is PsePSSM, which has a
similar trend of their single feature performance. To reduce bias of features, the MKL algorithm can
estimate the optimal weights of features.
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Figure 2. The weights of different kernels (features).

We test our method and other existing methods on the PDB1075 dataset. Table 3 lists the results
of comparison between our method and other methods. PseDNA-Pro [26], IDNA-Prot|dis [29],
IDNA-Prot [43], DNAbinder [27], DNA-Prot [44], iDNAPro-PseAAC [45], Local-DPP [30],
Adilina’s work [46] and Kmer1+ACC [47] are benchmark methods. And IDNA-Prot|dis (MCC: 0.54),
PseDNA-Pro (MCC: 0.53) iDNAPro-PseAAC (MCC: 0.53) and Local-DPP (MCC: 0.59) obtain better
performance. Our proposed model (FKRR-MVSF) obtains best MCC (0.67) on the PDB1075 data set.

Table 3. Comparison between our method and other existing methods on the PDB1075 dataset
(Jackknife test).

Methods ACC (%) MCC SN (%) Spec (%)

IDNA-Prot 75.40 0.50 83.81 64.73
DNAbinder 73.95 0.48 68.57 79.09
DNA-Prot 72.55 0.44 82.67 59.76
iDNAPro-PseAAC 76.56 0.53 75.62 77.45
IDNA-Prot|dis 77.30 0.54 79.40 75.27
Kmer1+ACC 75.23 0.50 76.76 73.76
Local-DPP 79.10 0.59 84.80 73.60
PseDNA-Pro 76.55 0.53 79.61 73.63
Adilina’s work 70.21 0.41 61.00 79.70
Our method (FKRR-MVSF) 83.26 0.67 85.71 80.91

2.4. Performance on an Independent DataSet of PDB186

In order to evaluate the generalization performance of predictive models, FKRR-MVSF and other
methods are also tested on the independent dateset (training set is PDB1075). The results are shown in
Table 4.

Our method (FKRR-MVSF) achieves 81.7% of ACC, 0.676 of MCC and 98.9% of SN. In MCC,
FKRR-MVSF is better than Local-DPP (MCC: 0.625), DBPPred (MCC: 0.538), MSFBinder [48] (MCC:
0.640), Adilina’s work (MCC: 0.670) and iDNAPro-PseAAC (MCC: 0.442).
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Table 4. Compared with existing methods on the PDB186 dataset (Independent test).

Methods ACC (%) MCC SN (%) Spec (%)

IDNA-Prot 67.2 0.344 67.7 66.7
DNA-Prot 61.8 0.240 69.9 53.8
IDNA-Prot|dis 72.0 0.445 79.5 64.5
DNAbinder 60.8 0.216 57.0 64.5
DBPPred 76.9 0.538 79.6 74.2
Kmer1+ACC 71.0 0.431 82.8 59.1
iDNAPro-PseAAC 71.5 0.442 82.8 60.2
Local-DPP 79.0 0.625 92.5 65.6
Adilina’s work 82.3 0.670 95.0 69.9
MSFBinder (SVM) 81.7 0.640 89.3 74.2
Our method (FKRR-MVSF) 81.7 0.676 98.9 64.5

3. Discussion

To improve the performance of predicting DNA-binding proteins, we employ an MKL algorithm
and fuzzy-based model to integrated different features and further handle the outliers, respectively.
There are many ways in machine learning to avoid overfitting and generating skewed models caused
by outliers, e.g., adjustment of the cost value in SVM. For different training samples, the parameter
of cost should be different. Different samples have different contributions to the model. In Table 2,
the performance (MCC: 0.6664) of fuzzy-based models (FKRR with MKL) is better than non-fuzzy
models (KRR with MKL, MCC: 0.6439).

Compared to other single kernels, the PsePSSM-based kernel achieves the highest weight and
highest value of MCC (0.5886). MKL could integrate multiple information of sequence. Our method
(KRR with MKL) also achieves better performance of MCC (0.6439) than a single kernel model on the
PDB1075 dataset. In addition, the performance of KRR with MKL (MCC: 0.6439) is better than KRR
with mean weights (MCC: 0.6398) under PDB1075 dataset.

On the independent test dataset, our method (FKRR with MKL) also achieves better MCC (0.676).
MSFBinder (SVM) [48] is a two-layer model with SVM. MSFBinder (SVM) also employed several
features to build a predictive model. The generalization performance of FKRR (withe MKL) is better
than MSFBinder (MCC: 0.640) on an independent test set (PDB186). The above two models are similar.
The main reason of different results is that the parameter C of FKRR is different for each train sample.
Fuzzy membership may reduce the effect of some noise samples in the model.

4. Materials and Methods

The prediction of DNA-binding proteins can be regarded as a task of binary classification.
The protein can be represented by some feature vectors. The DNA-binding proteins and
non-DNA-binding proteins are labeled as +1 (positive samples) and −1 (negative samples),
respectively. We construct a Fuzzy Kernel Ridge Regression model based on Multi-View Sequence
Features (FKRR-MVSF) to determine whether a protein binds to DNA. We employ Normalized
Moreau–Broto Auto Correlation (NMBAC) [49,50], PSSM based Average Blocks (PSSM-AB) [51],
Multiple-scale Continuous and Discontinuous descriptor (MCD) [52] and PsePSSM algorithms to
extract four types of PSSM-based features. Radial Basis Function (RBF) is used to build four types of
kernels from the above four kinds of features. In our study, the MKL algorithm is employed to calculate
the weights of kernels and to combine four kernels. Then, a membership score is estimated for each
training sample. Finally, a fuzzy kernel ridge regression model for identifying DNA-binding proteins
is constructed via membership scores and a combined kernel. The framework of proposed method
is showed in Figure 3. In the literature [13,33], the researchers have made good use of flowcharts to
describe the main framework of their methods. In our work, we employ Figure 4 to describe the flow
of our model. Firstly, we extract four types of feature from a sequence. Then, Radical Basis Function
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(RBF) is used to build four kernels. These kernels are conbined by MKL. Finally, combined kernel and
training labels are employed to construct the FKRR model and predict new samples.

MCD

Trainingpdata

Featureppextraction

NMBAC PSSM-AB PsePSSM

Jackknifeptest

MCD

Testingpdata

Featureppextraction

NMBAC PSSM-AB PsePSSM

Results

Independentpptest

Results

FKRR-MVSF

Figure 3. The process of DNA-binding protein prediction.

4.1. Feature Extraction

Extracting features from proteins is a challenge for identifying DNA-binding proteins. A suitable
feature extraction algorithm can adequately represent the properties of the protein. We use four types
of feature to describe a protein.

4.1.1. MCD Feature

You et al. clustered the 20 amino acids into seven groups according to dipoles and volumes
of side chains. These groups are {A, G, V}, {C}, {F, I, L, P}, {D, E}, {H, N, Q, W}, {K, R} and
{M, S, T, Y}. A protein sequence “AVDCALSK” can be described as “11321476” via Multi-scale
Continuous and Discontinuous descriptor (MCD) [52]. Then, above sequence was split into 10
local regions, which described multiple overlapping continuous and discontinuous interaction
patterns. Composition (C), Transition (T) and Distribution (D) were calculated in each local region.
The detailed descriptions of MCD algorithm can refer to You’s work [52]. The MCD feature was
882-dimentional vector.

4.1.2. NMBAC Feature

Normalized Moreau–Broto Auto Correlation (NMBAC) [49,50] was proposed for extracting
the sequence feature of membrane proteins. A protein sequence (string) can be represented as
discrete numerical sequence via six physicochemical properties of Amino Acids (AA): including
Hydrophobicity (H), Net Charge Index of Side Chains (NCISC), Solvent-Accessible Surface Area
(SASA), Volumes of Side Chains of amino acids (VSC), Polarity (P1) and Polarizability (P2), respectively.
The six physicochemical properties of amino acids are list in Table 5. To extract the feature of a protein
X with L-length, the NMBAC feature is calculated by following equation:

NMBAC(lag, j) =
1

(n− lag)

n−lag

∑
i=1

(Xi,j × Xi+lag,j) (2)

where i denote the position in the sequence, and i = 1, 2, ..., n− lag. j is the type of physicochemical
properties, j = 1, 2, ..., 6. lag ∈ [1, lg] is the gap between amino acids. lg is a parameter of
maximum distance.
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Table 5. The values of the 6 properties for twenty amino acids.

Amino Acid H VSC P1 P2 SASA NCISC

A 0.62 27.5 8.1 0.046 1.181 0.007187
C 0.29 44.6 5.5 0.128 1.461 −0.03661
D −0.9 40 13 0.105 1.587 −0.02382
E −0.74 62 12.3 0.151 1.862 0.006802
F 1.19 115.5 5.2 0.29 2.228 0.037552
G 0.48 0 9 0 0.881 0.179052
H −0.4 79 10.4 0.23 2.025 −0.01069
I 1.38 93.5 5.2 0.186 1.81 0.021631
K −1.5 100 11.3 0.219 2.258 0.017708
L 1.06 93.5 4.9 0.186 1.931 0.051672
M 0.64 94.1 5.7 0.221 2.034 0.002683
N −0.78 58.7 11.6 0.134 1.655 0.005392
P 0.12 41.9 8 0.131 1.468 0.239531
Q −0.85 80.7 10.5 0.18 1.932 0.049211
R −2.53 105 10.5 0.291 2.56 0.043587
S −0.18 29.3 9.2 0.062 1.298 0.004627
T −0.05 51.3 8.6 0.108 1.525 0.003352
V 1.08 71.5 5.9 0.14 1.645 0.057004
W 0.81 145.5 5.4 0.409 2.663 0.037977
Y 0.26 117.3 6.2 0.298 2.368 0.023599

4.1.3. PSSM-AB Feature

Position Specific Scoring Matrix (PSSM) contains evolutionary information of protein sequence.
The PSSM of protein sequence is generated by PSI-BLAST [28]. PSSM is a L× 20 matrix (L rows and
20 columns):

PSSM =


P1,1 P1,2 · · · P1,20

P2,1 P2,2 · · · P2,20
...

. . .
...

...
PL,1 PL,2 · · · PL,20


L×20

(3)

PSSM-AB extracts local average values of PSSM:

PSSM− AB(k) =
20
L

L/20

∑
z=1

PSSM(z + (i− 1)× L/20, j) (4)

where k is a linear index used to scan the cells of PSSM. i, j = 1, 2, ..., 20, k = j + 20 × (i − 1).
The PSSM-AB algorithm can extract the information of relationship between target residue and
neighboring residues.

4.1.4. PsePSSM Feature

PsePSSM [53] is an effective feature based on PSSM. PSSM ∈ L× 20 is standardized as following:

PSSM
′
(i, j) = PSSM(i,j)−mean(PSSM(i,∗))

STD(PSSM(i,∗))
i = 1, 2, ..., L; j = 1, 2, ..., 20

(5)

where STD(PSSM(i, ∗)) denotes the standard deviation of the elements. mean(PSSM(i, ∗)) represents
the mean of the elements that are located in the i-th row. ∗ denotes the all elements of the i-th row.
Then, we obtain the PsePSSM feature as the following:
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Pse(k) =



1
L

L
∑

i=1
PSSM

′
(i, j) k = 1, ..., 20

1
L−lag

L−lag
∑

i=1
[PSSM

′
(i, j)− PSSM

′
(i + lag, j)]

2

j = 1, ..., 20; lag = 1, ..., 15;

k = 20 + j + 20× (lag− 1)

(6)

where k is index of feature vector and lag denotes the distance between one residue and its neighbors.

Protein sequences

MCD NMBAC PSSM-AB PsePSSM

Calculating kernels (including training and testing kernels)

KMCD KNMBAC KPSSM-AB KPsePSSM

Ktrain

*

Combining kernels with MKL

Feature  extraction

FKRR Model

Training data Testing data

Training model

Calculating membership 

scores for training samples

Membership 

scores

Testing model

Ktest

*

Figure 4. The process of FKRR-MVSF.
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4.2. Multiple Kernel Learning

RBF is employed to construct 4 types of kernels via above features (including MCD, NMBAC,
PSSM-AB and PsePSSM):

Kij = K(xi, xj) = exp(−γ‖xi − xj‖2), i, j = 1, 2, ..., N (7)

where γ is the Gaussian kernel bandwidth. N is the number of samples. xi and xj are the
feature vector of sample i and j. The 4 types of feature can be represented as a kernel set as:
{KMCD, KNMBAC, KPSSM−AB, KPsePSSM}.

The MKL algorithm combines multi-view features from different sources. Some kernels may have
bias in the learning process. MKL can reduce bias of kernels by low weights. The optimal kernel K∗train
is obtained as follows:

K∗train =
H

∑
h=1

ωhKh, K∗, Kh ∈ RN×N (8)

where H denotes the number of basic kernels.
MKL algorithm [54] can estimate the optimal weights of kernels by minimize the distance between

ideal kernel Kideal and optimal kernel K∗train. The Kideal = ytrainyT
train ∈ RN×N denote the information

of label space. ytrain ∈ RN×1 is the labels of training set. We hope that optimal kernel K∗train is close to
the Kideal kernel:

min
ωωω,K∗
‖K∗train −Kideal‖2

F + λ‖ωωω‖2
F (9a)

subject to K∗train =
H

∑
h=1

ωhKh, (9b)

ωh ≥ 0, h = 1, 2, ..., H, (9c)
H

∑
h=1

ωh = 1 (9d)

where ‖X‖2
F = Trace(XXT), λ is a regularization parameters, ωωω = [ω1, ω2, ..., ωh]

T is the weights
of kernels.

4.3. Fuzzy Kernel Ridge Regression

Kernel ridge regression is a method from statistics that implements a form of Regularized Least
Squares (RLS). Given a training sample xi, yi, i = 1, 2, ..., N. N, xi and yi is the number of samples,
feature vector and label. The RLS aims to find the minimum of the following function:

J =
C
2
‖Ktrainααα− ytrain‖2 +

1
2
‖ f ‖2

K (10)

where Ktrain ∈ RN×N is the training kernel, C is the non-negative regular term. The solution of KRR is:

ααα = (Ktrain +
1
C

I)−1ytrain (11)

In this paper, we present a Fuzzy Kernel Ridge Regression (FKRR) for classification. We need to
minimize the sum of errors (‖Ktrainααα− ytrain‖2). The contribution of sample xi to the decision boundary
should be proportional to its fuzzy membership value. The objective function is following function:

J =
C
2
‖D(Ktrainααα− ytrain)‖2 +

1
2
‖ f ‖2

K (12)
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where D ∈ RN×N is a diagonal matrix whose element Dii (0 ≤ Dii ≤ 1) represents a fuzzy membership
value for sample xi.

We set ∂J/∂ααα = 0 and the solution of ααα can be obtained as follows:

∂(
C
2
‖D(Ktrainααα− ytrain)‖2 +

1
2
‖ f ‖2

K)/∂ααα = 0 (13a)

∂(
C
2
‖D(Ktrainααα− ytrain)‖2 +

1
2

αααTKtrainααα)/∂ααα = 0 (13b)

CKT
trainDT(DKtrainααα−Dytrain) + Ktrainααα = 0 (13c)

CD2(Ktrainααα− ytrain) + ααα = 0 (13d)

ααα = (Ktrain +
1
C

D−2I)−1ytrain (13e)

where I ∈ RN×N . So, the decision function is following:

ytest = sign[Ktestααα] (14a)

= sign[Ktest(Ktrain +
1
C

D−2I)−1ytrain] (14b)

where ytest ∈ RM×1 is predictive labels. Ktest ∈ RM×N denotes the kernel of testing samples, M is the
number of testing samples.

To compute fuzzy membership values of train samples, we employ the optimal kernels K∗train
(training kernel) as following function:

scoret =
1

N2 ( ∑
yt=yi

K∗train(xt, xi)− ∑
yt 6=yi

K∗train(xt, xi)) (15)

where scoret denotes the score of training point t. If a sample t has a larger score. This sample may has
a greater contribution to model. We normalize scores into fuzzy membership values (0–1), as follows:

Dtt =
1

1 + exp(−scoret)
, t = 1, 2, ..., N (16)

5. Conclusions

FKRR-MVSF achieves better results on independent datasets (MCC: 0.676). Eliminating noise
points can improve the predictive performance of the model. In the future, we aim to use other
fuzzy membership functions to build fuzzy models for filtering the noise points. As pointed out in
PseAAC-based methods [13,33,39,40,55–60], we will establish a web-server for our model. The related
code and datasets can be download from: https://figshare.com/s/e80f1a96b7b7bbf8062b.
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