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Abstract: Storage protein distribution in wheat-grain endosperm is heterogeneous, but the underlying
molecular mechanism remains unclear. Two parts of the endosperm region, the innermost endosperm
(IE) region and the remaining endosperm (RE) region, grown under low nitrogen (LN) and high
nitrogen (HN) treatments were used to perform metabolomic and transcriptomic analysis. We
identified 533 and 503 differentially expressed genes (DEGs) with at least a two-fold expression
change (p < 0.05) between IE and RE, among which 81 and 78 transcripts under LN and HN,
respectively, related to carbon and nitrogen metabolism, and encoded transcription factors or
proteins involved in post-translational modification (PTM). The significantly differentially abundant
metabolites between IE and RE were mainly amino acids, N-compounds, carbohydrates, and nucleic
acids. More upregulated transcripts and metabolites were identified in RE than IE under HN
conditions, indicating that HN activates metabolism in the endosperm periphery. In addition to
carbon and nitrogen metabolism, transcription factors and protein PTMs, such as phosphorylation
and acetylation, might determine the protein heterogeneous distribution between IE and RE and its
response to nitrogen fertilizer supply.

Keywords: storage proteins; innermost endosperm region; remaining endosperm region; metabolome;
transcriptome; wheat

1. Introduction

Proteins are one of the main components of wheat grain starchy endosperm and have been
used as an index to predict and evaluate flour quality for end products [1]. The qualitative and
quantitative distribution of grain storage protein (GSP) in the endosperm occurs as a gradient and
is heterogeneous [2,3]. It is generally believed that the protein content is lower in the inner parts of
the endosperm and increases in an outwards radial direction [4]; whereas protein quality increases
form the outer to the inner endosperm [2]. Savill et al. [5] found that protein is concentrated in the
endosperm nearest to the aleurone layer and decreases in an inwards direction to the center of the
two lobes. According to Chen et al. [6], dorsal endosperm tissues had higher protein content in
comparison with abdominal endosperm tissues. Heterogeneous distribution in wheat endosperm
exists in two components of glutenins; high-molecular-weight glutenin subunits (HMW-GS) and
low-molecular-weight glutenin subunits (LMW-GS). HMW-GS are expressed more highly in the inner
endosperm and LMW-GS are more abundant in the subaleurone layer [5]. Zhou et al. [7] produced
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nine tissue layers by the pearling milling method and found that the contents of HMW-GS and
glutenin macropolymers got the highest value at the second or the third layer. The inhomogeneity in
protein quantity and quality in wheat endosperm produce flour with different protein contents and
compositions, which influence food quality [7,8].

Protein distribution heterogeneity in the concentration and quality within the wheat endosperm
are generally accepted to exist [2,5], although the underlying mechanism for its generation remains
to be clearly described. Ugalde and Jenner [9] reported that the amino acid substrate supply and
transport pattern across the endosperm does not limit the protein deposition. Protein distribution
heterogeneity might be attributable to the strong sink activity of the subaleurone cells, which drive
amino acid transport from the endosperm cavity cells to the subaleurone layer [10] or to the size of
protein bodies, which decreases from the outer to the inner endosperm layers [5]. Previous studies
also showed that nitrogen uptake by plants at different developmental stages also affected protein
components in different layers of grain endosperm [11]. Tosi et al. [2] speculated that the protein
inhomogeneity distribution might be due to the different transcription rates of gluten protein genes that
are potentially regulated by differentially expressed specific transcription factors or regulatory signals.

Nitrogen fertilization is one of the important agronomic measures for wheat production and an
appropriate fertilization rate can increase wheat grain yield and improve grain quality [12–14]. Recent
results have shown that the level of nitrogen fertilizer application also determines the steepness of the
heterogeneity in protein content and quality in the endosperm [3,5]. Increasing the nitrogen supply
increased the HMW-GS content, but this increase was greater in the outer endosperm than near the
central endosperm, whereas the sulfur-rich prolamins showed an opposite change in response to
nitrogen fertilizer [3]. The nitrogen fertilizer application also affected the synthesis and accumulation
of ω-gliadin within the endosperm; in response to increased nitrogen fertilizer application, more
ω-gliadin concentrated in the outer endosperm layers [15]. Furthermore, modern commercial wheat
flour mills produce white flour via a milling and sieving process and a proportion of endosperm
protein that adheres to the aleurone and bran layer is lost with bran removal. Thus, the increased
steepness of the protein heterogeneity in the endosperm following nitrogen application results in more
protein being lost during the production of white flour [5]. The underlying mechanism of the effect of
nitrogen fertilization on grain protein content has been investigated. The increased concentration of
ω-gliadins in the subaleurone layer induced by the increasing nitrogen supply might result from the
high expression of genes upregulated by nitrogen application [15]. Zhang et al. [14] suggested that high
nitrogen (HN) treatment could increase grain yield and protein content by improving the expression
levels of genes related to nitrogen metabolism. Yu et al. [16] reported that high HN treatment increases
protein aggregation by improving—peptidyl-prolyl cis–trans isomerase (PPIase) SUMOylation with
the assistance of small ubiquitin-related modifier1 (SUMO1). Previous studies also showed that grain
protein synthesis has been regulated by transcription factors [17,18]. Due to the pressure of the future
population explosion and environmental pollution caused by increasing excessive nitrogen fertilizer
application, limiting the application of nitrogen fertilizer to increase yield and improve grain quality
is particularly important. To elucidate the underlying molecular mechanism of the heterogeneity
of protein content between different parts of endosperm and its response to nitrogen treatment, we
divided grain endosperm into two parts, the innermost endosperm region and the remaining region,
and characterized the transcriptional and metabolic differences between these two parts in plants
grown in low or high nitrogen conditions. This study provides insights into the heterogeneity of the
inner and outer endosperm proteins and their response to the application of nitrogen fertilizer.

2. Results

2.1. Grain Characteristics

Wheat plants grown under HN conditions had a higher grain yield than grains with the low
nitrogen (LN) treatment (Table 1). The remaining endosperm (RE) region possessed a higher protein
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and component content than the innermost endosperm (IE) region in both HN and LN treatments.
The protein content of RE and IE was higher in the HN treatment than in the LN treatment, but
the protein content in RE increased to a greater extent than that in the IE (21 mg g−1 vs. 17 mg g−1).
By contrast, the content of gluten (gliadin and glutenin) was higher in the IE region than in RE
(6.3 mg g−1 vs. 3.3 mg g−1). The data confirm that RE regions had a higher protein content than IE.
Increasing the nitrogen fertilizer supply can therefore enhance grain protein content, especially in the
outer endosperm.

Table 1. Protein content of the innermost endosperm (IE) region and the remaining endosperm (RE)
region from plants grown in high nitrogen (HN) and low nitrogen (LN) treatments.

Item. Total Protein
Content (mg g−1)

Albumin Content
(mg g−1)

Globulin Content
(mg g−1)

Gliadin Content
(mg g−1)

Glutenin Content
(mg g−1)

Grain Yield
(kg ha−1)

HN
IE 118.5 ± 2.1 b 32.0 ± 3.0 b 11.5 ± 1.6 b,c 23.1 ± 0.1 c 46.1 ± 0.4 a,b

7241.5 ± 84.6 a
RE 137.5 ± 0.7 a 36.9 ± 1.6 a 19.4 ± 1.1 a 25.6 ± 0.1 b 49.0 ± 3.3 a

LN
IE 101.5 ± 2.4 c 29.6 ± 0.5 b 8.4 ± 2.1 c 19.9 ± 0.6 d 43.0 ± 1.0 b

5864.6 ± 131 b
RE 116.5 ± 1.2 b 30.8 ± 2.4 b 12.3 ± 0.8 b 26.5 ± 1.3 a 44.8 ± 1.4 a,b

a Values expressed as mean ± standard deviation. b Within a column, mean values followed by different lowercase
letters are significantly different at the p < 0.05 (least significant difference). c HN and LN represent the high nitrogen
and low nitrogen fertilizer application level, respectively. d IE and RE represent for the innermost endosperm region
and the remaining endosperm region, respectively.

2.2. Transcriptome Analysis of the Innermost Endosperm Region and the Remianing Endosperm Region from
Plants Grown at Two Nitrogen Fertilizer Levels

The IE and RE regions in the developing wheat grain under the HN and LN fertilizer treatments
were separated, and 12 complementary DNA (cDNA) libraries were constructed. After sequencing,
the uniquely mapped reads ranged from 37,768,733 to 41,460,651, representing 67.4–70.0% of the total
reads (Table S1). The number of non-spliced reads ranged from 30,794,313 to 32,898,691, representing
53.4–55.6% of the total reads. The number of uniquely mapped reads and non-spliced reads in the IE
region (LN-IE and HN-IE) was lower than in the RE region (LN-RE and HN-RE).

In total, 533 and 503 genes were significantly differentially expressed between LN-IE and LN-RE
and between HN-IE and HN-RE, respectively (Figure 1). An additional 905 genes were significantly
differentially expressed in IE between HN and LN treatments, whereas 1195 genes were detected in RE,
which indicates that increasing the nitrogen fertilizer application rate more specifically affected gene
expression in RE than in the IE. The enriched Gene Ontology (GO) terms showed that the differentially
expressed genes (DEGs) identified in this study involved in biological process were categorized into
14 groups, including hydrolase activity, a oxidation-reduction process, a catabolic process, biological
regulation, and a response to chemicals (Supplementary Figure S1). The molecular functions mainly
involved oxido-reductase activity (12.11–17.39%), hydrolase activity (18.95–25.30%), and transferase
activity (16.60–18.84%). The cell component mainly included a cell part (29.38–32.17%), an integral
component of membrane (17.66–25.40%), and intracellular (22.75–27.06%) categories.
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Figure 1. Ven diagram of differentially expressed genes in different parts of wheat grain endosperm
under high and low nitrogen treatments. HN-IE and HN-RE are samples from innermost endosperm
region and the remaining endosperm region under high nitrogen treatment, respectively. LN-IE and
LN-RE are samples from innermost endosperm region and the remaining endosperm region under
low nitrogen treatment, respectively. The number outside (inside) brackets stand for up-regulation
(down-regulation) differentially expressed genes.

A carbon/nitrogen metabolism is crucially important for wheat-grain protein synthesis. To
investigate the role of carbon/nitrogen metabolism in the difference in the storage protein content
between IE and RE, we identified the DEGs associated with carbon/nitrogen metabolism in
Supplementary Table S2. In total, 32 DEGs involved in nitrogen metabolism were detected
between LN-IE and LN-RE (Supplementary Table S2-I). Compared with the remaining endosperm
part under LN treatment (LN-RE), 15 genes were upregulated in the LN-IE part, including those
encoding two nitrate reductases (TraesCS6A01G017500 and TraesCS6D01G020700), two glutathione
transferases (TraesCS1A01G153100 and TraesCS3A01G302100), and five serine-type endospeptidases
(TraesCS4B01G077600, TraesCS4D01G076000, TraesCS5A01G526000, TraesCS1D01G395200, and
TraesCS3B01G515100). The expression levels of the nitrate reductase-encoding genes in LN-IE
were 2.14- and 3.61-fold greater than that in the LN-RE region. Additionally, the upregulated genes
in the LN-RE region encoded four carboxypeptidases (TraesCS1A01G086100, TraesCS1D01G087600,
TraesCS1B01G104500, and TraesCS5D01G196500) and five amino acid transmembrane transporters
(TraesCS2B01G551300, TraesCS2A01G348600, TraesCS7A01G194500, TraesCS7B01G100100, and
TraesCS7D01G196100). The expression levels of these genes in the LN-RE region were approximately
1.78–2.92-fold greater than that in the LN-IE regions, indicating that amino acid production and transport
are more active in the peripheral endosperm region. Correspondingly, 29 DEGs involved in nitrogen
metabolism were detected between HN-IE and HN-RE (Supplementary Table S2-II), including 18
upregulated transcripts in the innermost endosperm part in comparison with the endosperm peripheral
region. The upregulated genes in the HN-IE sample encoded two serine-type endospeptidases
(TraesCS1A01G188900 and TraesCS4D01G076000), one gliadin (TraesCSU01G153800), and three serine
protease inhibitors (TraesCS5D01G425800, TraesCS5B01G478300, and TraesCS5A01G359700). However,
the upregulated genes in the HN-RE region contained genes encoding two aspartic-type and one
cysteine-type peptidase (TraesCS2D01G109600, TraesCS3D01G467300, and TraesCS7D01G060100),
two globulins (TraesCS7D01G351300 and TraesCS4D01G171800) and one ammonium transmembrane
transporter (TraesCS1D01G296600), which was expressed 4.52-fold higher than that in HN-IE.
Considering DEGs involved in carbon metabolism, the LN-IE vs. LN-RE comparison revealed
18 DEGs, including 10 that were upregulated in LN-IE and in HN-IE vs. HN-RE and 28 DEGs, included
20 that were upregulated in HN-IE. Among the upregulated transcripts, those in the RE region were
involved in glycoside hydrolysis, and those in the IE region were glycoside transferases. A comparison
between the genes expressed in the HN and LN treatments revealed that 17 and 51 DEGs involved
in nitrogen metabolism were detected in IE and RE, respectively (Supplementary Table S2-III, S2-IV).
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These results suggest that increasing the nitrogen fertilizer supplying level might activate nitrogen
metabolism, especially in the outer endosperm. The HN treatment induced 13 genes in IE, including six
endopeptidase inhibitors, two protease inhibitors, and two protein transporters. In the RE region, 39
genes were upregulated by HN treatment, including three transmembrane transporters. Furthermore,
most of the upregulated genes induced by HN were involved in promoting (including 10 encoding
proteins with peptidase activity) or inhibiting (including 13 encoding peptidase inhibitors) protein
degradation. These results indicate that HN treatment induces complex and active regulatory nitrogen
metabolism processes.

Post-translational modifications play a key role in functional proteins and are usually used to
regulate cellular activity. Here, 14 DEGs associated with protein phosphorylation, methylation, and
ubiquitination were detected in the LN-IE vs. LN-RE comparison, including 10 upregulated in RE
(Figure 2A1). Correspondingly, six upregulated genes involved in post-translation modification were
detected in the HN-RE sample (Figure 2A2). Correspondingly, 7 and 18 genes were annotated in LN-IE
vs. HN-IE (Figure 2A3) and in LN-RE vs. HN-RE (Figure 2A4), respectively. Most of the DEGs in
the IE region were involved in histone acetylation and those in the RE region were related to protein
phosphorylation, suggesting that different regulatory mechanisms in the inner and outer endosperm
regions might exist in response to increasing nitrogen supply.
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Figure 2. Heat map of differentially expressed transcription factor genes, and transcripts involved.in
protein phosphorylation, methylation and ubiquitination. HN-IE and HN-RE are samples from
innermost endosperm region and the remaining endosperm region under high nitrogen treatment,
respectively. LN-IE and LN-RE are samples from innermost endosperm region and the remaining
endosperm region under low nitrogen treatment, respectively. (A1–A4) indicate the genes involved
in protein post-translation modification. (B1–B4) indicate the transcription factor genes. Red color
represent high expression level and green represent low expression level.

In the LN-IE vs. LN-RE comparison, 17 DEGs mapped to the transcription factor category
(Figure 2B1). Five were upregulated in LN-IE, including two that encoded basic leucine zipper (bZIP)
transcription factors, whereas 12 DEGs were upregulated in LN-RE, including genes encoding four
WRKY- and two MYB-type transcription factors. However, nine DEGs were identified in the HN-IE
vs. HN-RE comparison, seven of which were upregulated in HN-IE (Figure 2B2). Genes encoding
two transcription factors (TraesCS2B01G217500, GRAS; TraesCS7B01G391800, bZIP) were significantly
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upregulated in the IE region in both HN and LN treatments. Among the 24 differentially expressed
genes that encoded transcription factors in LN-IE vs. HN-IE, 20 were upregulated by HN treatment
(Figure 2B3). Correspondingly, 32 DEGs encoding transcription factors were detected in the LN-RE vs.
HN-RE comparison, among which 23 genes were upregulated by HN treatment (Figure 2B4), and most
of these upregulated genes encoded transcription factors from the bZIP, ethylene-responsive factor
(ERF), and MYB families. These results suggest that high nitrogen availability activates transcription.
Furthermore, among the differentially expressed transcription factors induced by increased nitrogen
supply, 11 were expressed in both the IE and RE regions.

2.3. qRT-PCR and BSMV-VIGS Validation of Identified Genes

Transcript expression levels were confirmed by qRT-PCR. The expression patterns of eight
randomly selected genes were similar to those obtained from deep-sequencing (Figure 3), confirming the
reliability of the observed transcript levels. The barley stripe mosaic virus (BSMV)-based virus-induced
gene silencing (VIGS) has been used as an effective method for evaluating gene functions in wheat.
Genes encoding two transcription factors (TraesCS7B01G391800, TabZIP1; TraesCS2B01G217500,
TaGRAS) were used to validate its function by the BSMV-VIGS method. Here, the BSMV:bZIP and
BSMV:GRAS vectors were constructed and used to inoculate wheat spikes at the booting stage, with
BSMV:00 as the empty vector control. The expression levels of TabZIP1 and TaGRAS in induced grain
were significantly lower than in the control spike, which indicates that their expression was successfully
suppressed (Figure 4). Furthermore, the storage protein content in grain from the induced spike was
higher than that in the control grains, suggesting that TabZIP1 and TaGRAS might negatively regulate
storage protein deposition.

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 6 of 18 

 

factors were detected in the LN-RE vs. HN-RE comparison, among which 23 genes were 202 
upregulated by HN treatment (Figure 2B4), and most of these upregulated genes encoded 203 
transcription factors from the bZIP, ethylene-responsive factor (ERF), and MYB families. These 204 
results suggest that high nitrogen availability activates transcription. Furthermore, among the 205 
differentially expressed transcription factors induced by increased nitrogen supply, 11 were 206 
expressed in both the IE and RE regions. 207 

2.3. qRT-PCR and BSMV-VIGS Validation of Identified Genes 208 

Transcript expression levels were confirmed by qRT-PCR. The expression patterns of eight 209 
randomly selected genes were similar to those obtained from deep-sequencing (Figure 3), 210 
confirming the reliability of the observed transcript levels. The barley stripe mosaic virus 211 
(BSMV)-based virus-induced gene silencing (VIGS) has been used as an effective method for 212 
evaluating gene functions in wheat. Genes encoding two transcription factors 213 
(TraesCS7B01G391800, TabZIP1; TraesCS2B01G217500, TaGRAS) were used to validate its function 214 
by the BSMV-VIGS method. Here, the BSMV:bZIP and BSMV:GRAS vectors were constructed and 215 
used to inoculate wheat spikes at the booting stage, with BSMV:00 as the empty vector control. The 216 
expression levels of TabZIP1 and TaGRAS in induced grain were significantly lower than in the 217 
control spike, which indicates that their expression was successfully suppressed (Figure 4). 218 
Furthermore, the storage protein content in grain from the induced spike was higher than that in the 219 
control grains, suggesting that TabZIP1 and TaGRAS might negatively regulate storage protein 220 
deposition. 221 

 222 

Figure 3. Verification of expression levels for eight differentially genes in the inner and outer 223 
endosperm grown under high or low nitrogen conditions. HN-IE and HN-RE are samples from 224 
innermost endosperm region and the remaining endosperm region under high nitrogen treatment, 225 
respectively. LN-IE and LN-RE are samples from innermost endosperm region and the remaining 226 
endosperm region under low nitrogen treatment, respectively. 227 

Figure 3. Verification of expression levels for eight differentially genes in the inner and outer
endosperm grown under high or low nitrogen conditions. HN-IE and HN-RE are samples from
innermost endosperm region and the remaining endosperm region under high nitrogen treatment,
respectively. LN-IE and LN-RE are samples from innermost endosperm region and the remaining
endosperm region under low nitrogen treatment, respectively.
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virus-induced gene silencing system; BSMV:00 indicate empty vector; BSMV:bZIP and BSMV:GRAS
indicate that silencing bZIP and GRAS gene, respectively; Different lowercase letters above the column
on the same day indicate a significant difference (p < 0.05).

2.4. Metabolic Profiling of the Innermost Endosperm Region and the Remaining Endosperm Region under LN
and HN Conditions

Metabolic profiling of the IE and RE regions from LN and HN treatments was conducted using
gas chromatography-mass spectrometer (GC-MS). Metabolites that showed significant differences in
abundance between these two parts of endosperm are showed in Figure 5. The major metabolites
were amino acids, N-compounds, organic acids, carbohydrates, and lipids. Most metabolites were
present at higher concentrations in the RE region, indicating a more active metabolism in the peripheral
endosperm region. The level of most of the differentially expressed metabolites involved in amino acid
and N-compounds increased by the LN treatment, whereas carbohydrate metabolites showed a higher
level in the HN treatment.

The distribution of all significantly differentially expressed metabolites was analyzed by principal
component analysis (PCA) (Figure S2). The metabolites identified in the same treatment clustered
together. The difference in metabolite levels between the IE and RE regions was clearly distinguished
by the first principal component (PC1), and the second principal component (PC2) clearly separated
HN and LN samples. We further analyzed the PCA loading scores, which showed that the most
important metabolites relating to the difference between IE and RE were three amino acids, three
N-compounds, one carbohydrate, and one nucleic acid (Supplementary Table S3). Additionally, the
important metabolites that contributed to the difference between the HN and LN treatment were two
amino acids (L-methionine, L-pyroglutamic acid), one organic acid (DL-2-aminoadipic acid), two
N-compounds (thioetheramide-PC, 1-Palmitoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine), two
carbohydrates (raffinose, cellobiose), and one lipid (glycerophosphocholine).
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Figure 5. Heat map of differentially expressed metabolites in two parts of endosperm region under high
and low nitrogen treatment. HN-IE and HN-RE are samples from innermost endosperm region and
the remaining endosperm region under high nitrogen treatment, respectively. LN-IE and LN-RE are
samples from innermost endosperm region and the remaining endosperm region under low nitrogen
treatment, respectively. Heat map represent the ration of relative abundance of LN-IE vs LN-RE, HN-IE
vs HN-RE, LN-IE vs HN-IE, and LN-RE vs HN-RE.

The relationships between these metabolites were analyzed by pairwise correlations. The network
of significantly correlated (r2

≥ 0.50) metabolites was drawn using Cytoscape v.3.6.0 (www.cytoscape.
org/). In total, 36 metabolites and 263 correlations were detected in the LN-IE vs. LN-RE group
and 42 metabolites and 285 correlations in the HN-IE vs. HN-RE group (Figure 6). Additionally,
19 and 24 correlations were identified among the tested amino acids in the LN and HN samples,
respectively. These data demonstrate that a high nitrogen supply activates metabolism in the endosperm.
Positive correlations were observed between tyramine, L-tyrosine, and phenylalanine, and most of the
correlations between these amino acids and carbohydrates, N-compounds, and organic acids were
also positive. However L-aspartate was highly negatively correlated with other metabolites (organic
acids, carbohydrates, and lipids). A positive relationship was observed between O-acetyl-L-serine and
other amino acids, N-compounds, and carbohydrates, but no direct correlation was observed with
lipids under LN treatment. Among the significantly different metabolites, 138 and 139 correlations
were identified in the LN-IE vs. HN-IE group and the LN-RE vs. HN-RE comparisons, respectively
(Figure 6).

www.cytoscape.org/
www.cytoscape.org/
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Figure 6. Network of metabolite-metabolite correlation based on significant correlations. Nodes stand
for metabolites and edges stand for metabolite relationship. Red edges mean negative correlation, and
grey edges mean positive correlation. The nodes in different color mean different metabolite type.
HN-IE and HN-RE are samples from innermost endosperm region and the remaining endosperm
region under high nitrogen treatment, respectively. LN-IE and LN-RE are samples from innermost
endosperm region and the remaining endosperm region under low nitrogen treatment, respectively.

2.5. Combined Transcriptome and Metabonomics Analysis

A comparative analysis of kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment
was performed between the transcriptome and metabolome. Three pathways were enriched between
LN-IE and LN-RE, including starch and sucrose metabolism, nitrogen metabolism, and glyoxylate and
dicarboxylate metabolism (Figure S3A). Correspondingly, two KEGG pathways were also enriched
between the HN-IE and HN-RE group, including starch and sucrose metabolism and galactose
metabolism (Figure S3B). These results suggest that carbon and nitrogen metabolism are important in
determining a non-homogeneous protein distribution between the inner and outer endosperm region.

The correlation coefficients between DEGs and significant differentially expressed metabolites
were calculated by the methods of Spearman. The correlation network was plotted using a correlation
coefficient |r| ≥ 0.5 and p < 0.01, using Cytoscape (Supplementary Figures S4 and S5). Thiamine,
tyramine, dopamine, tyrosine, and phenylalanine were regulated (positively and negatively) by a group
of similar genes. O-acetyl-L-serine and trigonelline correlated positively with five genes. A sketch map
was drawn to direct the metabolic pathways involved in the difference between IE and RE (Figure 7).
Genes encoding nitrate reductase (TraesCS6D01G020700 and TraesCS6A01G017500) and transcription
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factors (TraesCS5A01G101200, TraesCS7A01G214700, and TraesCS7D01G475100) correlated positively
with tyrosine, tyramine, and phenylalanine. The significantly differentially expressed metabolites, such
as serine, O-acetyl-L-serine, and glutathione disulfide, suggest that cysteine and methionine metabolism
is involved in establishing the protein distribution heterogeneity in wheat-grain endosperm. The
positive correlation between serine-type endopeptidase (TraesCS4B01G077600), a bZIP transcription
factor (TraesCS7D01G475100) and serine, protein kinase (TraesCS3D01G542300), transcription factors
(GRAS and ERF), and glutathione disulfide indicate that, in addition to nitrogen metabolism, protein
post-translational modifications and transcription factors might also regulate protein deposition in
wheat-grain endosperm.
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Figure 7. Schematic map of metabolic pathway involved in different regions of wheat grain endosperm
grown under high nitrogen and low nitrogen conditions. The 2 × 2 heat map represent normalized
(log10) relative metabolites abundance at different regions of endosperm under high and low nitrogen
treatment with red color for a higher abundance and green color for a lower abundance. HN-IE and
HN-RE are samples from innermost endosperm region and the remaining endosperm region under
high nitrogen treatment, respectively. LN-IE and LN-RE are samples from innermost endosperm region
and the remaining endosperm region under low nitrogen treatment, respectively. Metabolite in black
color represent identified metabolite in this study.

3. Discussion

Because of the structure of the endosperm, it is not easy to completely separate the interior layer
endosperm tissue from the endosperm peripheral region. Micro-dissection [9,19], microscopy [5,6],
pearling milling [7], and immunofluorescence [2] have been used to study qualitative and quantitative
protein gradient distributions in wheat-grain endosperm. Here, we manually divided the middle
grain segment into two parts, the innermost endosperm part and the remaining endosperm part,
and analyzed the difference in protein content between these endosperm parts under HN and LN
treatment. The results showed that the protein distribution heterogeneity between the RE and IE
regions was greater in the HN treatment than under low nitrogen availability, which is consistent
with the data of Savill et al. [5]. Previous studies reported that protein quality is also distributed in
non-homogeneity [20] and that flour fractions from the central endosperm generally have better dough
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functional properties than those from the outer endosperm [7,21]. In this study, the protein content
in the RE region increased (21 mg−1) more than that in the innermost endosperm region (17 mg g−1)
following the application of nitrogen fertilizer, whereas the gluten content increased more in the IE
region than in the RE region, which indicates a differential response of protein quantity and quality to
nitrogen fertilizer treatment in different parts of wheat grain endosperm. He et al. [3] also reported a
similar disproportionate increase in protein components in different endosperm regions following
an increased nitrogen supply. Li et al. [11] found that the contribution of nitrogen assimilated at
different developmental stages to grain protein fractions varied among different layers of endosperm;
for glutenin, the contribution of N assimilated after anthesis showed a decrease tendency from the
outer layer to the inner layer. Further information concerning the quality of flour derived from different
parts of wheat endosperm grown under different nitrogen fertilizer treatments is required.

It was speculated that the endosperm protein heterogeneity is attributable to specific transcription
factors or other signals that regulate the transcription levels of genes related to gluten biosynthesis [6,20].
It has been suggested that translation and/or post-translational regulation regulates grain storage-protein
synthesis [22,23]. Here, approximately 500 DEGs were detected between the IE and RE regions, which
suggests that transcriptional regulation is important in the formation of protein heterogeneous
distribution. Although endosperm protein content distribution was not attributed to the pattern of
starch deposition [19], the content of starch also decreased from the inner to the outer endosperm [7].
Carbon metabolism is the most important metabolic process for plant growth, development, and
yield quality. In this study, more genes involved in carbon metabolism, mainly those encoding
glycoside hydrolases, were upregulated in the IE region than in the RE region, especially in high
nitrogen conditions. In addition, the content of several sugars, such as mannose-6-phosphate, sucrose,
and maltotriose, increased, following the high nitrogen treatment, consistent with the findings of
Zhen et al. [24]. These differentially expressed metabolites might contribute to grain yield and quality,
because carbohydrates not only represent a major energy store, but provide essential structural carbon
skeletons [25]. Previous studies on the functional validation of key genes (AGPase and HvSUT1)
involved in carbon metabolism showed that manipulating carbon metabolism also affected the synthesis
of GSP [26,27].

Nitrogen metabolism is critically important for wheat GSP accumulation and it has been suggested
that the activity of several enzymes, including nitrate reductase, glutamine synthetase, and glutamate
synthase, is correlated with protein content [14]. We found that genes encoding two nitrate reductases
were significantly more highly expressed levels in the IE region compared with the RE region.
Li et al. [28] found a medium negative correlation between nitrate reductase activity (NRA) and
grain protein content. Here, the opposite relationship between nitrate reductase gene expression
(TraesCS6A01G017500 and TraesCS6D01G020700) and protein content between IE and RE agrees
with Li et al. [28], indicating that nitrogen assimilation is important for the protein distribution
difference. Protein degradation and biosynthesis occur throughout the complete plant life-cycle and
play an important role in plant growth and development [29]. Protein degradation promotes the
turnover and reuse of amino acids; however, some protein degradation products might also perform
a signaling role [29–31]. Protein degradation requires the participation of a variety of proteolytic
enzymes, including endopeptidases, aminopeptidases, and carboxypeptidases [32]. In this study,
more transcripts encoding serine-type endopeptidases were upregulated in the IE region and the
genes encoding carboxypeptidases, aspartic- or cysteine-type endopeptidases were upregulated in
the RE region, indicating that different protein degradation processes might characterize the IE and
RE regions. The metabolomic analysis here also demonstrated a higher content of amino acids and
N-compounds in the RE region rather than the IE region in both HN and LN treatments. Furthermore,
most identified DEGs relating to transmembrane amino acid transporters were upregulated in the
RE region. These results suggest that increased amino acid turnover and transport might promote
protein deposition in the outer endosperm. Ugalde and Jenner [9] suggested that amino acid transport
across the endosperm does not limit protein deposition in the endosperm, but they also speculated
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that differential glutamine supply might explain the difference in protein deposition between the outer
and inner endosperm. Here, the higher glutamine content in the remaining endosperm region might
confirm that the amino acid supply relates to the high protein deposition in the outer endosperm
region. A close relationship between amino acid transporters and GSP content has been reported in
wheat and barley [23,33]. Clearly, the increased amino acid content in the innermost endosperm region
might function in other regulatory mechanisms related to storage protein deposition, because it has
been shown that amino acid precursors, such as O-aceylserine, regulate the GSP content [29,34].

Transcription factors regulate gene transcription. Previous results suggested that several
transcription factors, such as MYBS3 and FUSCA3, might be involved in regulating GSP [35,36]. Here,
several transcription factors, including bZIP, MYB, WRKY, APETALA 2 (AP2), and NAM/ATAF/CUC
(NAC) family members, were differentially expressed between IE and RE, with most of the bZIP and
GRAS transcription factors being upregulated in the IE region, and WRKY and MYB proteins being
upregulated in the RE region. In rice, RISBZ1/OsbZIP58 regulated GSP synthesis [37,38], whereas
Yang et al. [39] found that reducing the expression of TaZIP60 increased the wheat yield and N-use
efficiency. After sequence alignment, we found here that TraesCS6D01G312800 shared 99.5% identity
with TaZIP60, with one amino acid difference and one absence. In this study, the HN-RE sample
showed a high expression level of TaZIP (TraesCS6D01G312800), but had high protein content. This
difference might be partially due to the different plant organs studied (root vs. grain) or due to
the amino acid sequence differences. It has been found that many transcription factors belong to
multigene families with diverse functions in plant growth and development [40–42]. Therefore, the
differentially expressed transcription factor identified between the IE and RE regions here might have
different functions in grain protein deposition. Two transcription factors, (bZIP, TraesCS7B01G391800,
and GRAS, TraesCS7D01G217500) were identified both in HN-IE vs. HN-RE and LN-IE vs. LN-RE
comparisons, and the gene functional validation by the BMSV-VIGS experiment also confirmed that
they are related to GSP content accumulation. Furthermore, close correlations were also observed
between the gene encoding the bZIP transcription factor (TraesCS7B01G391800) and the metabolites
dopamine, glutamine, and phenylalanine. What needs to be mentioned is that dopamine is mainly
found in animals. However, it is also detected in many plants, and its biosynthetic pathway is similar
to that in animals [43,44]. Ciepiela and Sempruch [45] found that the resistance of winter wheat to
grain aphids was highly correlated with the concentration of levodopa, the natural precursor of the
dopamine. Here, the differentially expressed dopamine between IR and RE may be attributed to
different metabolic processes in the IE and RE regions. The study on potato starchy tubers showed
that the content of dopamine in potato tubers stored at room temperature presented no decrease
with storage time [43], implying that the relationship of dopamine with carbohydrate synthesis and
metabolism in plants is not consistent with that in mammals. Of course, we noticed that the relative
abundance of tentatively identified dopamine in this study is very low. The underlying regulation
mechanism of the transcription factor and the role of differentially expressed metabolites under nitrogen
treatment require further study.

Nitrogen fertilization plays an important role in wheat yield and grain quality. Compared with the
LN treatment, increasing the nitrogen application level activates metabolic processes [24] and enhances
the accumulation of gluten macropolymer by facilitating the SUMOylation of PPIase [16]. Here, HN
treatment upregulated many genes, especially in the RE region. However, the upregulation of genes
related to proteolysis mainly included those encoding serine-type endopeptidases, cysteine peptidases,
and corresponding endopeptidase inhibitors, which indicates that complex hydrolysis processes
regulate protein synthesis. Zhen et al. [24] proposed that accelerating the transformation between
amino acids induced by HN treatment might promote GSP synthesis. It was reported that asparagine,
glutamine, and glutamate are crucial for N translocation and storage [46] and that the abundance of
these N-compounds might increase grain protein content [24]. Here, we also found that asparagine
and glutamine accumulation was induced by HN treatment, which is consistent with the increased
protein content observed in the HN treatment. The HN treatment caused more DEGs in the RE region
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than in the IE region, including transcripts involved in nitrogen metabolism, protein modification, and
those encoding transcription factors. Moreover, the contents of amino acids and N-compounds were
upregulated in the outer endosperm region in response to HN treatment. However, all the carbon
metabolites detected in this study were highly abundant under HN treatment, irrespective of the
endosperm region type. These results possibly indicate that high nitrogen availability contributes
more to grain yield than increasing the GSP content, especially in the innermost endosperm region. We
propose that HN activates metabolism in the outer endosperm region. In addition, the expression of 10
transcription factor genes was upregulated upon HN treatment in both endosperm regions. These
transcription factors might be important for the response to nitrogen fertilizer application; further
study of the regulatory target proteins and their functions will identify key genes related to nitrogen
use efficiency.

4. Materials and Methods

4.1. Experimental Design and Plant Material

A winter wheat (Triticum aestivum L.) cultivar ‘Zhoumai36′ (this cultivar was bred by Henan,
China, and the seed was provided by the breeder) was planted during the 2017–2018 growing season
at the Xuchang experimental station of the National Engineering Research Center for Wheat, Henan
province, China (34◦08′N, 114◦02′E). The soil is loamy Fluvoaquic, containing organic material (15.6 g
kg−1, 0–30 cm), available phosphorus (37.5 mg kg−1), available potassium (119.0 mg kg−1), hydrolysable
nitrogen (115 mg kg−1), and total nitrogen (1.1 g kg−1). Two nitrogen fertilization treatments with
three replicates each were applied as follows: LN (0 kg ha−1) or HN (210 kg ha−1). Each plot received
0.299 kg K2O and 0.299 kg P2O5 before sowing. Half (50%) of the total nitrogen fertilizer (urea) was
supplied before sowing, and another 50% was top-dressed at the jointing stage. Seeds were sown on
16 October 2017 at a density of 247 seed m−2. The plot dimensions were 4 × 5 m and field trials were
managed according to local agronomic practices.

4.2. Sampling

At the wheat flowering stage, spikes of a similar size that were undergoing anthesis on the same
day were tagged. Grains at the first and second floret position at the center of each spike of wheat
caryopses were collected 25 days after anthesis (DAA). Each grain was cut transversely into three
sections (Figure 8A). After removing the pericarp, the central section was then divided into two parts
under a stereomicroscope (Figure 8B,C). According to Savill et al. [5], the endosperm can be divided
into five different tissues from the outer to inner parts. Here, the central two lobe zones of the grain
were collected to represent the innermost endosperm (IE) region, and the remainder of the endosperm
was collected as the remaining endosperm (RE) region. In this study, RE is a mix of tissues, including
the living aleurone and the starchy endosperm. At maturity, plants in a 6-m2 area in each plot were
harvested and grain yield was determined by weighing the harvested seeds.

4.3. Transcript Profiling

Total RNA of wheat endosperm was extracted from three biological replicates using a SpectrumTM
Plant Total RNA Kit (Sigma, St Louis„ MO, USA), following the manufacturer’s instructions. RNA
quantity and quality were evaluated using a Nanodrop spectrophotometer and Agilent 2100 RNA
Nano 6000 Assay Kit (Agilent Technologies, Palo Alto, CA, USA). In total, 12 independent endosperm
cDNA libraries were constructed according to Illumina’s TruSequ RNA sample preparation. The
quality of cDNA libraries was assessed by testing the insert size using Agilent 2100, and a library
effective concentration >2 nM was used for sequencing by an Illumina HiSeq 2500 System (Illumina,
Foster, CA, USA). The raw sequencing reads were referred to the Illumina pipeline filter (Solexa 0.3),
and then an in-house program (Fastp, https://github.com/OpenGene/fastp) was used to process the
dataset for removing adapter dimers, poly-N, and low-quality reads. The clean reads were mapped

https://github.com/OpenGene/fastp
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onto the wheat “Chinese Spring” reference genome (IWGSC1_popseq.31) using HISAT2 [47]. The raw
sequence data has been deposited in a Gene Expression Omnibus (GEO) repository with accession
numbers GSE133846 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133846).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 14 of 18 
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Figure 8. Division of different regions of wheat grain endosperm. (A) The red line indicate the transection
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Gene expression levels were identified and normalized using fragments per kilobase of transcript
sequence per millions base pairs sequenced (FPKM) [48]. The differentially expressed genes between
different treatments were calculated using DEGseq2 [49], and a p-value ≤0.05, and |log2fold change|≥1
were defined as thresholds. To predict the functions of the identified genes, BLASTx searches were
performed against Gene Ontology (http://www.geneontology.org/), Kyoto encyclopedia of genes and
genomes (KEGG, http://www.genome.jp/kegg/), STRING (http://string-db.org/), UniProt/Swiss-Prot
(https://www.uniprot.org), and rMATS (http://rnaseq-mats.sourceforge.net/index.html) databases.

4.4. Gene Expression Quantification Using qPCR

Reverse-transcription was carried out using the RNA First-strand cDNA Synthesis SuperMix
(TransScript), according to the manufacturer′s instructions. A SYBR PrimeScript miRNA RT-PCR Kit
was used to perform qPCR reactions on a CFX96TM Real-Time System (C1000TM Thermal cycler,
BIO-RAD, Foster, CA, USA). The relative expression levels were calculated using the 2−∆∆Ct method [50].
The transcript-specific primer sequences used in this study are provided in Supplementary Table S4.

4.5. Grain Metabolite Extraction

Six biological replicate grain samples from each treatment were ground to homogeneity in liquid
nitrogen. After vacuum freeze-drying, 60 mg powder was homogenized in 1.6 mL extraction buffer
(methanol: Acetonitrile: Water, 2:2:1, v/v). The samples were mixed thoroughly and subjected to
ultrasonic treatment for 15 min and stored for 1 h at −20 °C. The mixtures were then centrifuged for 15
min at 13,000 rpm, and the supernatant was collected and dried under vacuum.

4.6. Metabolomic Analysis

Samples were separated using ultra high performance liquid chromatography (UHPLC) (Agilent
1290 Infinity LC, Agilent Technologies), and tandem mass spectrometry analyses were performed
with a Triple TOF5600 (AB SCIEX). To reduce system errors, samples were analyzed in a random
order. The (electro spray ionization (ESI) source conditions were: Ion Source Gas1(Gas), 40; Ion Source

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133846
http://www.geneontology.org/
http://www.genome.jp/kegg/
http://string-db.org/
https://www.uniprot.org
http://rnaseq-mats.sourceforge.net/index.html


Int. J. Mol. Sci. 2019, 20, 4212 15 of 18

Gas2(Gas2), 60; curtain gas (CUR), 30; source temperature, 600 ◦C; IonSapary Voltage Floating (ISVF)
± 5500 V (positive and negative modes); a time of flight mass spectrometry (TOF MS) scan m/z range,
60–1,000 Da; a product ion scan m/z range, 25–1,000 Da; TOF MS scan accumulation time 0.20 s/spectra,
product ion scan accumulation time 0.05 s/spectra.

The raw data were preprocessed in mzXML format using XCMS (https://xcmsonline.scripps.edu./)
for retention time correction, chromatogram alignment, and peak area extraction. The processed
data were subjected to multi-dimensional statistical analysis, including unsupervised principal
component analysis (PCA), supervised partial least squares-discriminant analysis (PLS-DA), and
orthogonal partial least squares discriminant analysis (OPLS-DA), after processing by Pareto-scaling
using SIMCA-P 14.1 (Umetric, Umea, Sweden). Metabolites were tentatively identified by matching
the data to the NIST database (http://www.nist.gov/srd/nist1a.html) and Wiley 9 database (http:
//www.sisweb.com/software/ms/wiley/hyml). Differentially expressed metabolites between different
treatments were evaluated using variable importance for the projection (VIP) from the OPLS-DA model.
VIP scores were used to estimate the importance of each variable in the projection, and VIP >1 was
often used as a variable selection criterion. A p-value ≤0.05 and VIP >1 defined significantly differential
metabolites and a 0.05≥ p-value ≤0.1 and VIP >1 defined differentially abundant metabolites.

4.7. Functional Gene Analysis Using the Barley Stripe Mosaic Virus (BSMV)-Based Virus-Induced Gene
Silencing (VIGS) System

The BSMV-VIGS system is an effective and convenient technology to perform functional gene
analysis. Two genes (TraesCS7B01G391800 and TraesCS2B01G217500, named TabZIP and TaGRAS,
respectively) were functionally analyzed using the BSMV-VIGS approach. BSMV:00 with no insert
was used as an empty vector control. The sequences of TabZIP and TaGRAS from wheat cultivar
“Zhoumai36” were obtained by polymerase chain reaction (PCR) amplification, according to the
sequences of TraesCS7B01G391800 and TraesCS2B01G217500. The BSMV construct carrying a 226-bp
fragment of TabZIP from the gene-coding region (136 bp to 361 bp downstream of the start codon)
was generated and used to silence the bZIP gene, named BSMV:bZIP. The fragment containing the
97-bp fragment of TaGRAS from the gene coding region (818 bp to 914 bp downstream from the start
codon) was generated as BSMV:GRAS. At the heading stage, thirty spikes were infected with each
recombinant vector following the method of Ma et al. [51].

4.8. Determination of Grain Total Protein Content and the Individual Fraction Contents

Wheat-grain protein fractions, including albumins, globulins, gliadins, and glutenins, were
extracted according to the method of Liu et al. [52]. Protein concentrations were determined using a
Kjeldahl apparatus (Kjeltec 2300, FOSS, Hoganas, Sweden), according to the manufacturer’s instructions.

5. Conclusions

In summary, this study demonstrates that the protein content in the RE region had a greater
response to the supplied nitrogen than the IE region. Several candidate genes involved in carbon and
nitrogen metabolism, and those encoding transcription factors and proteins involved in post-translation
modification potentially related to the difference between the IR and RE regions, and their responses to
nitrogen supplying were identified. These DEGs might play important functions by increasing the
supply and transport of amino acids. Our results provide novel insights into the molecular mechanism
underlying the differences in GSP content between the IE and RE regions and its response to nitrogen
fertilizer supply.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/17/
4212/s1.
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