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Abstract: Preeclampsia, a systemic vascular disorder characterized by new-onset hypertension and
proteinuria after 20 weeks of gestation, is the leading cause of maternal and perinatal morbidity
and mortality. Maternal endothelial dysfunction caused by placental factors has long been accepted
with respect to the pathophysiology of preeclampsia. Over the past decade, increased production
of placental antiangiogenic factors has been identified as a placental factor leading to maternal
endothelial dysfunction and systemic vascular dysfunction. This review summarizes the recent
advances in understanding the molecular mechanisms of endothelial dysfunction caused by placental
antiangiogenic factors, and the novel clinical strategies based on these discoveries.
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1. Introduction

Preeclampsia, a systemic vascular disorder of pregnancy characterized by hypertension in
association with proteinuria, affects 5% to 10% of all pregnancies. This condition can affect virtually
every organ system, causing preeclampsia-related adverse complications such as seizures (eclampsia),
HELLP (hemolysis, elevated liver enzymes, and low platelets) syndrome, abruptio placentae, and
fetal growth restriction. Currently, the only effective treatment is termination of pregnancy, which
may also add substantial risks to the neonate if the fetus is delivered prematurely. Although the
clinical symptoms of preeclampsia completely resolve after delivery, recent evidence has demonstrated
significant association between history of preeclampsia and future risks of cardiovascular diseases [1,2].

Generalized maternal endothelial dysfunction due to placental factors has been considered to play
an important role in the pathogenesis of preeclampsia. Many serum markers indicating endothelial
activation increase [3], and flow-mediated dilation (FMD), the gold standard for evaluating endothelial
function [4], is impaired in patients with preeclampsia [5]. Over the past decade, excess placental
antiangiogenic factor, soluble fms-like tyrosine kinase 1(sFlt1), has been shown to antagonize vascular
endothelial growth factor (VEGF) and placental growth factor (PlGF), and to induce generalized
endothelial dysfunction in these women [6–9]. This discovery generated great enthusiasm for sFlt1
as the most promising placental factor and led to the development of novel clinical strategies for
managing preeclampsia. In this review, we aimed to summarize the recent advances in understanding
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the pathophysiology of preeclampsia, and novel clinical strategies from the viewpoints of maternal
endothelial dysfunction caused by placental antiangiogenic factors.

2. Diagnosis and Risk Factors of Preeclampsia

Preeclampsia is defined as an increase in systolic blood pressure ≥140/90 mmHg in previously
normotensive women as well as proteinuria ≥300 mg in a 24-h collection, or 0.3 g/g by urine
protein/creatinine ratio, or +1 by urine dipstick if it is the sole available test, occurring after 20 weeks
of gestation. These diagnostic criteria do not require proteinuria for diagnosis in the presence of other
organ damage such as thrombocytopenia, renal failure, liver involvement, cerebral symptoms, and
pulmonary edema [10].

Several risk factors for preeclampsia clearly indicate the presence of genetic predisposition.
The incidence of preeclampsia is greatly affected by race and ethnicity. African-American women
have a higher risk of developing preeclampsia than white women [11]. Population based cohort
studies revealed that the daughters and sons of women who had preeclampsia during pregnancy
had a higher risk of developing preeclampsia themselves and fathering a preeclamptic pregnancy,
respectively [12,13]. Recently, a large clinical genome-wide association study revealed significant
association between single-nucleotide polymorphism near the FLT1 locus (rs4769613) on chromosome
13 in the fetal genome and the development of preeclampsia [14,15]. Trisomy 13 (chromosome 13
contains the FLT1 locus) is associated with increased maternal levels of sFlt1 and a high risk of
preeclampsia [16].

Multifetal [17] and molar pregnancies [18] are associated with an increased risk of preeclampsia,
presumably due to increased levels of sFlt1. We have reported an interesting case of mirror syndrome
(maternal preeclampsia-like symptoms and fetal hydrops) caused by severe fetal anemia due to
parvovirus B19 infection. Both maternal and fetal symptoms resolved immediately after intrauterine
transfusion, along with the normalization of the increased levels of sFlt1 [19]. These findings
may strengthen the importance of the central contribution of maternal antiangiogenic state in the
pathogenesis of preeclampsia.

Reduced paternal antigen exposure such as nulliparity, shorter periods of sexual cohabitation, and
changing paternity demonstrate increased risks for developing preeclampsia, indicating immunological
contribution to the pathogenesis [20,21]. Some maternal conditions, such as advanced maternal age,
obesity, diabetes mellitus, chronic hypertension, antiphospholipid syndrome (APS), chronic kidney
disease (CKD), and systemic lupus erythematosus (SLE), are also associated with an increased risk of
preeclampsia [1,2]. These maternal conditions have been reported to be associated with endothelial
dysfunction, which may contribute to increased risk of preeclampsia [22]. In addition, it has been
reported that pregnant women with chronic hypertension and pregnant women with diabetes showed
significantly higher sflt1 level, and pregnant women with obesity had significantly lower PlGF level [17].

3. Maternal Antiangiogenic State in Preeclampsia

Maternal endothelial dysfunction caused by placental factors and the two-stage theory have
long been accepted with regard to the pathophysiology of preeclampsia (Figure 1) [23]. The initial
step is considered to start from insufficient cytotrophoblast invasion of spiral arteries (abnormal
placentation) [24–27]. Predisposing immunological, genetic, and preexisting maternal risk factors may
affect this abnormal placentation. In preeclampsia, failure of the physiological remodeling of decidual
vessels results in reduced placental perfusion [28], which has been believed to release placental factors
into the maternal circulation.

In 2003, Maynard et al. [6] discovered increased levels of placental sFlt1 in the serum of women
with preeclampsia. They also reported that administration of sFlt1 to pregnant rats generated
preeclampsia-like symptoms. Subsequently, Levine et al. [7] showed that serum levels of sFlt1
correlates with disease severity and declines after resolution. These experimental and epidemiological
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studies as well as several following landmark reports [8,9], generated compelling evidence that placental
sFlt1 is one of the most important placental factors leading to maternal endothelial dysfunction [29].

sFlt1 is a splice variant of the VEGFR1 (Flt1) containing only the extracellular ligand-binding
domain of VEGFR1 [30]. As VEGFR1 (Flt1) interacts with VEGF and PlGF [31], sFlt1 inhibits
proangiogenic signaling by antagonizing VEGF and PlGF. Importantly, sFlt1 is mainly produced by the
trophoblastic cells, and released into the maternal circulation during pregnancy [32] (Figure 2).
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Figure 1. Two-stage theory of the pathophysiology of preeclampsia. Predisposing immunological, 
genetic, and preexisting maternal risk factors may affect abnormal cytotrophoblast invasion of spiral 
arteries (abnormal placentation) (First stage). The reduced uteroplacental perfusion induces placental 
release of antiangiogenic factors (soluble fms-like tyrosine kinase 1 (sFlt1)) into the maternal 
circulation, which antagonizes proangiogenic factors, leading to endothelial dysfunction and 
systemic vascular dysfunction (Second stage). Preexisting maternal conditions such as chronic 
hypertension, systemic lupus erythematosus (SLE), and obesity is also associated with endothelial 
dysfunction. 
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Figure 1. Two-stage theory of the pathophysiology of preeclampsia. Predisposing immunological,
genetic, and preexisting maternal risk factors may affect abnormal cytotrophoblast invasion of spiral
arteries (abnormal placentation) (First stage). The reduced uteroplacental perfusion induces placental
release of antiangiogenic factors (soluble fms-like tyrosine kinase 1 (sFlt1)) into the maternal circulation,
which antagonizes proangiogenic factors, leading to endothelial dysfunction and systemic vascular
dysfunction (Second stage). Preexisting maternal conditions such as chronic hypertension, systemic
lupus erythematosus (SLE), and obesity is also associated with endothelial dysfunction.
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Figure 2. Mechanisms of endothelial dysfunction leading to systemic vascular dysfunction in
preeclampsia. Excessive soluble fms-like tyrosine kinase 1 (sFlt1) antagonizes VEGF or PlGF, or both,
and causes endothelial dysfunction, including a decrease in vasodilators such as nitric oxide (NO) and
prostacyclin (PGI2) and an increase in vasoconstrictors such as endothelin-1 (ET-1). VEGF: vascular
endothelial growth factor; PLGF: placental growth factor; VEGFR1: VEGF receptor 1 (also known
as Flt1).
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4. Mechanisms of Endothelial Dysfunction by Inhibiting the VEGF Signal Pathway

The precise mechanisms of endothelial dysfunction in women with preeclampsia due to high levels
of circulating sFlt1 remains unclear. Direct administration of VEGF augments the release of nitric oxide
(NO) from the vascular endothelium [33] and causes nitric oxide-dependent hypotension in vivo [34].
VEGF has been shown to stimulate NO production via upregulation of nitric oxide synthase (NOS)
expression in endothelial cells [35,36]. This vasodilation effect of VEGF may be mediated by both
VEGFR1 (Flt1) and VEGFR2 (KDR/FlK1) receptors, but VEGFR2 is the predominant receptor mediating
this effect [37]. VEGF, but not PlGF, was also shown to induce prostacyclin (PGI2) synthesis [38,39].
NO activates soluble guanylate cyclase (sGC), leading to cGMP synthesis. PGI2 activates adenylyl
cyclase (AC) and increases cAMP synthesis. Both cGMP and cAMP lead to decreased intracellular
Ca2+ concentrations, which induce smooth muscle relaxation and vasodilation [40].

The recent introduction of VEGF inhibitor therapies in cancer patients and its preeclampsia-like
adverse effects, particularly hypertension and renal injury, have attracted much attention and
made doubly sure that inhibiting the VEGF signal pathway is central to the pathophysiology in
preeclampsia [41–46]. VEGF inhibitor therapies in cancer patients also added several interesting insights
into the mechanisms of preeclampsia. Of these, several lines of evidence reported a dose-dependent
activation of the endothelin-1 (ET-1) in response to VEGF inhibitor therapies [47–49]. Considering
that ET-1 is the most potent vasoconstrictor and increased levels of ET-1 have also been reported in
women with preeclampsia [50,51], it seems plausible that ET-1 is involved in pathogenesis. Although
the precise mechanism leading to increased levels of ET-1 by inhibiting the VEGF signal pathway
remains unclear, it has been reported that VEGF enhances prepro-ET-1 mRNA expression and induces
endothelin-converting enzyme-1 (ECE-1), which is a key enzyme in endothelin processing [52,53].

5. Mechanism of Renal Injury by Inhibiting the VEGF Signal Pathway

VEGF is synthesized by podocytes within the glomerulus where it maintains fenestrated
endothelium [54]. Inhibiting the VEGF signal pathway causes endothelial swelling, termed glomerular
endotheliosis, which is the renal lesion frequently seen in women with preeclampsia [55,56].
The importance of NO in maintaining normal renal function has also been well documented [57].
Inhibiting the VEGF signal pathway reduces NO production due to the decreasing expression of
endothelial and neuronal NOS in the kidney [58]. In addition, it has been reported that proteinuria
and glomerular endotheliosis caused by VEGF inhibitor therapies were prevented by the endothelin
receptor blocker [59], indicating the involvement of the endothelin system in the mechanism of renal
injury by inhibiting the VEGF signal pathway.

6. Complement System and Angiogenic Imbalance

There has been compelling evidence that complement activation is implicated in the pathogenesis
of preeclampsia [60,61]. Clinical similarities between atypical hemolytic uremic syndrome (aHUS),
a disease of excessive activation of the alternative complement pathway, and HELLP syndrome, a severe
variant of preeclampsia, along with the findings of several studies [62,63], have strengthened the role
of complement activation in the pathogenesis of preeclampsia. Elevated levels of urinary C5b-9 in
women with preeclampsia have been shown to be a useful biomarker that differentiates preeclampsia
from other hypertensive disorders [64,65]. Immunohistochemical studies using renal biopsy specimens
from women with preeclampsia revealed increased renal C4d-a and C1q-positive glomeruli, suggesting
the importance of the classical complement pathway in the pathogenesis [66]. Increased C4 deposits in
the glomeruli were also shown in the sFlt1-injected pregnant mouse model, indicating that angiogenic
dysregulation may play a role in complement activation within the kidney [66]. It has also been
reported that aHUS was also induced in cancer patients under VEGF inhibitor therapies [67]. Recently,
a possible mechanism linking the complement system to angiogenic imbalance was shown, in which
inhibiting the VEGF signal pathway decreases local complement inhibitor synthesis in renal glomeruli,
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potentially making these sites vulnerable to complement activation [68]. Another study reported
that human extravillous trophoblast cell line HTR-8/Svneo treated with C5a expressed significantly
increased mRNA levels of sFlt1 and decreased mRNA levels of PlGF [69].

7. Regulating sFlt1 Production by Trophoblastic Cells

The mechanisms of placental sFlt1 upregulation are largely unknown. Alternative splicing of
the pre-mRNA encoding FLT1 results in the production of sFlt1 containing only the extracellular
ligand-binding domain of Flt1 but lacking the intracellular and membrane-spanning domains [30]. It is
believed that hypoxic environment caused by abnormal placentation stimulates sFlt1 production [70].
In accordance with this notion, elevated expression of transcription factor hypoxia-inducible factor
1α (HIF1α) was shown to contribute to sFlt1 upregulation in in vivo and in vitro models of human
placenta [71]. Inhibition of complement activation has been shown to block the increase of sFlt1 in
pregnant mice [72]. Mitochondrial dysfunction leading to reactive oxygen species generation and
oxidative stress may contribute to sFlt1 production [73]. Recently, the upregulation of VEGF in maternal
decidual cell was advocated as a trigger of sFlt1 production by trophoblastic cells [74].

8. Preeclampsia as a Systemic Vascular Disorder of Pregnancy

Systemic vascular dysfunction is considered as a final step in the pathophysiology of preeclampsia
(Figure 1). During normal pregnancy, maternal vascular resistance decreases, resulting in slightly
decreased blood pressure [75–80]. In women with preeclampsia, it has been thought that these
adaptations do not occur sufficiently due to systemic vascular disorder with generalized endothelial
dysfunction. Although the precise mechanism of systemic vascular disorder caused by endothelial
dysfunction remains elusive, abnormalities in matrix metalloproteinases (MMPs) and increased
collagen deposition in extracellular matrix (ECM) are considered to play significant roles in inadequate
vascular remodeling leading to systemic vascular dysfunction [81].

Recently, noninvasive assessment of vascular function [82] has directly revealed the presence of
systemic vascular dysfunction in women with preeclampsia. FMD has been shown to increase during
pregnancy [83]. In women with preeclampsia, significantly lower FMD was found both before and after
the development of the disease as well as 3 years after delivery [84]. VEGF inhibitor therapies with
bevacizumab have also been shown to result in reduced endothelium-mediated vasodilation [45]. Pulse
wave analysis (PWA) measures the composite stiffness of the conduit and resistance artery [85–87]. PWA
indices (augmentation index and central systolic pressure) decline markedly during pregnancy [88–90].
In women with preeclampsia, these indices are significantly increased [91,92]. Abnormal PWA measures
have also been observed before the onset of disease [93,94], as well as 6–24 months postpartum [95].
Increased PWA measures were also shown to be more relevant to intrauterine fetal growth than
conventional brachial blood pressure [96,97]. Pulse wave velocity (PWV) has been considered to
provide information regarding the stiffness of conduit arteries [98,99], and is elevated in pregnant
women with preeclampsia [100,101].

The results from these vascular function tests provided a comprehensive picture of a systemic
vascular dysfunction due to endothelial dysfunction, the final step in the pathophysiology of
preeclampsia (Figure 1). It is expected that combining vascular function tests with the assessment
of angiogenic imbalance might improve prediction accuracy of preeclampsia-related adverse
complications. In addition, these tests revealed the presence of vascular dysfunction even after
the resolution of clinical symptoms of preeclampsia, indicating its possible association with future
cardiovascular disease risks.
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9. Novel Clinical and Therapeutic Strategies from the Viewpoints of Maternal
Angiogenic Imbalance

9.1. Prediction of Disease

Identifying women at risk for preeclampsia in the first trimester is now an area of important
clinical research, as low-dose aspirin started before 16 weeks of gestation was reported to be associated
with a significant decrease in the prevalence of preeclampsia in women identified to be at high-risk
based on the conventional maternal clinical risk factors, such as nulliparity, a history of preeclampsia,
and chronic hypertension [102].

Although extensive investigations revealed that the value of sFlt1 levels in the first trimester
showed no clear association with the development of preeclampsia [103], PlGF levels in the first trimester
have been shown to have consistent and promising results in the prediction of preeclampsia [104].
Recently, screening performance for preeclampsia in first trimester based on an algorithm combining
PlGF levels with maternal clinical factors, mean arterial pressure (MAP), and uterine artery pulsatility
index (UtA-PI) was reported to be by far superior to the screening performance based on conventional
maternal clinical risk factors [105]. Using this algorithm, a recent large clinical trial (ASPRE trial)
confirmed that first-trimester screening combining with low-dose aspirin administration resulted in a
substantial decrease in the incidence of preterm preeclampsia (odds ratio, 0.38; 95% confidence interval
(CI), 0.20–0.74; p = 0.004) [106].

9.2. Prediction of Adverse Maternal and Perinatal Complications

Clinically, it is not unusual for pregnant women without hypertension or without proteinuria
to develop preeclampsia-related adverse complications, such as eclampsia [107–109]. Conversely,
a significant portion of women who meet the diagnostic criteria for preeclampsia do not show any
adverse complications and are able to carry a pregnancy to nearly full term. Therefore, the association
of maternal angiogenic imbalance with the occurrence of preeclampsia-related adverse complications,
rather than with the development of preeclampsia, has been vigorously investigated.

In pregnant women with suspected preeclampsia, the severity of the maternal antiangiogenic state
predicted preeclampsia-related adverse complications more accurately than the highest systolic blood
pressure, a hallmark of the diagnostic criteria for preeclampsia [110,111]. In women with suspected
preeclampsia presenting at <34 weeks, an sFlt1/PlGF ratio ≥85 predicted preterm delivery within
2 weeks with a hazard ratio of 15.2 [110]. Furthermore, a secondary analysis of this study revealed that
patients who meet diagnostic criteria for preeclampsia but had a normal angiogenic profile showed
no preeclampsia-related adverse maternal and fetal complications [112]. In women with suspected
preeclampsia presenting at ≤36 weeks, an sFlt-1/PlGF ratio <38 showed an extremely high negative
predictive value of 99.3% on the occurrence of preeclampsia-related adverse complications within
1 week [113]. Furthermore, a secondary analysis of this study revealed that patients with an sFlt1/PlGF
ratio ≥38 showed significantly shorter remaining time to delivery and a higher rate of preterm delivery,
irrespective of the development of preeclampsia [114]. In 90% of women with suspected or confirmed
preeclampsia with an sFlt1/PlGF ratio ≤38, the ratio was largely stable and did not increase further
up to 100 days [115]. Recently, a randomized controlled trial confirmed that implementing PlGF
measurement in managing women with suspected preeclampsia significantly improved maternal
outcome [116].

9.3. Assessing Angiogenic Imbalance in Differential Diagnosis

Assessing angiogenic imbalance is reported to be useful in differentiating preeclampsia from other
diseases with preeclampsia-like symptoms, including chronic kidney disease (CKD) [117], gestational
thrombocytopenia [118], and chronic hypertension [119]. In case of a flare of SLE during pregnancy,
assessing angiogenic imbalance can lead to appropriate treatment (prednisolone escalation), instead
of unnecessary iatrogenic preterm deliveries [120,121]. In pregnant women with SLE, APS, or both,
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circulating angiogenic factors measured during early gestation have a high negative predictive value
of 93% in ruling out the development of severe adverse outcomes, including early-onset preeclampsia,
fetal/neonatal death, and iatrogenic preterm delivery before 30 weeks of gestation [122].

9.4. Therapeutic Potential of Modulating Angiogenic Factors

A large number of basic research studies have suggested the therapeutic potential of modulating
angiogenic factors [123–130], including administration of recombinant VEGF [126] or PlGF [127], and
reducing sFlt1 levels via RNA interference (RNAi) [130]. However, currently, only one pilot human
trial aimed at direct modulation of maternal angiogenic imbalance has reported a clinical benefit,
in which removal of sFlt1 by dextran sulfate apheresis resulted in the stabilization of blood pressure
and prolongation of pregnancy in women with very preterm (<32 weeks) preeclampsia [131].

10. Prevention of Preeclampsia

10.1. Low-Dose Aspirin

The role of aspirin in the primary or secondary prevention of preeclampsia has long been
an important clinical concern. In preeclampsia, thromboxane A2 (TXA2: platelet activator and
vasoconstrictor) production by the platelets increases, whereas PGI2 production by the endothelium
decreased [132]. Both TXA2 and PGI2 are synthesized from arachidonic acid by the action of
cyclooxygenase (COX) [133]. Although low-dose acetylsalicylic acid (aspirin) blocks COX irreversibly,
the endothelium recovers PGI2 production by de novo synthesis of COX [134]. However, the platelets,
where TXA2 is synthesized, cannot synthesize COX as the platelets are anuclear. In accordance
with this notion, several studies reported that low-dose aspirin reduced TXA2 production without
altering the PGI2 production [135,136], leading to normal TXA2/PGI2 balance by two weeks of
treatment [137]. Aspirin is also shown to have angiogenic properties by blocking sFlt1 production in
human trophoblasts [138] and by increasing PlGF production in BeWo trophoblast cells [139].

Although the first clinical trials showed significant efficacy of aspirin in preventing preeclampsia in
1985 [140], subsequent large-scale clinical studies have shown limited or no clinical benefit of low-dose
aspirin for the prevention of preeclampsia [141–143]. In 2010, Bujold et al. published a meta-analysis
of double-blind randomized trials and suggested a greater benefit when aspirin treatment was started
before 16 weeks of gestation (relative risk (RR), 0.47; 95% CI 0.34–0.65) in high-risk patients [102].
As mentioned above, a recent multicenter, double blind, randomized, placebo-controlled trial (ASPRE
trial) evaluated the effect of low-dose aspirin, administered from 11 to 14 weeks of gestation until
36 weeks of gestation, among women who were identified as high risk following first-trimester
screening. This trial revealed a substantial reduction in the incidence of preterm preeclampsia (odds
ratio, 0.38; 95% CI, 0.20–0.74; p = 0.004) [106].

10.2. Low-Dose Aspirin plus Heparin

Antiphospholipid syndrome (APS) is an autoimmune disease that causes an increased risk of
thrombotic or adverse obstetrical events in patients with persistent antiphospholipid antibodies [144].
In pregnant women with APS, of whom a third of these women develop preeclampsia, treatment
with low-dose aspirin plus heparin has long been the most efficacious regimen, with significant
improvement of maternal and perinatal outcomes [144]. In a mouse model of APS, one of the beneficial
mechanisms of heparin in women with APS was shown to be mediated by inhibition of the complement
system [145], which also can be beneficial in women with preeclampsia.

For preventing preeclampsia in patients with and without APS, a recent meta-analysis reported
that heparin improved the efficacy of low-dose aspirin alone (RR, 0.54; 95% CI 0.31–0.92) [146]. However,
subsequent large multicenter trials did not show the potential efficacy of heparin for the prevention of
preeclampsia in high-risk patients without APS, indicating that heparin may benefit only a subset of
patients [147,148]. Moreover, several studies reported the contradictory but consistent observations
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that heparin increases both circulating PlGF and sFlt1 levels, suggesting that heparin does not have
ideal properties for restoring angiogenic imbalance observed in women with preeclampsia [149–151].

11. Preeclampsia and Future Risk of Cardiovascular Disease

As mentioned above, it is now established that preeclampsia is associated with the future risks for
cardiovascular diseases [152–155]. Women with a history of preeclampsia are at increased risks for
future cardiovascular diseases, such as chronic hypertension (RR, 3.7; 95% CI, 2.70–5.05) [153], and
heart failure [RR, 4.19 (2.09–8.38)] [152], stroke (RR, 1.81 (1.29–2.55)) [152], coronary heart disease (RR,
2.50 (1.43–4.37)) [152], and cardiovascular mortality (RR, 2.21 (1.83–2.66)) [152] when compared to
women without a history of preeclampsia.

Although the precise mechanisms remain unclear, several recent studies revealed that the
persistence of maternal endothelial and vascular dysfunction after delivery by using several
non-invasive vascular function tests or echocardiography [95,156,157]. Although the sFlt1 level
has been reported to decrease to less than 1% of its pre-delivery value within 24 h of the delivery [115],
the levels of sFlt1 and the sFlt1/PlGF ratio were still higher at 1 year postpartum in women with
preeclampsia [158]. Elevated levels of sFlt1 were also reported at 5–8 years postpartum in women with
preeclampsia [159].

Recently, the clinical significance of sFlt1 in cardiac functions has been advocated. Increased
levels of sFlt1 were related to the development of acute heart failure in patients with acute myocardial
infarction [160]. In women with preeclampsia, the extent of subclinical cardiac dysfunction correlates
with the circulating levels of sFlt1, and women with peripartum cardiomyopathy showed abnormally
increased level of sFlt1 even 4–6 weeks postpartum [161]. In addition, systemic administration of sFlt1
in a mouse model of peripartum cardiomyopathy induced substantial cardiac dysfunction [161].

Although a history of preeclampsia is now recognized as a women-specific risk factor for
cardiovascular disease in later life, it is still unclear how the cardiovascular health of these women
should be improved. Presently, several guidelines suggest management for monitoring of hypertension,
hyperlipidemia, and diabetes, and provision of healthy lifestyle advice for women with a history of
preeclampsia [162]. Further studies are needed to define the appropriate monitoring and intervention
strategies for these women.

12. Conclusions

Our understanding of the pathophysiology of preeclampsia has advanced considerably in the past
decade. Maternal systemic vascular dysfunction caused by generalized endothelial dysfunction due to
placental antiangiogenic factors has emerged as one of the most important mechanisms, and clinical
strategies from the viewpoints of maternal angiogenic imbalance has been increasingly incorporated
in the clinical practice. In the future, novel clinical and therapeutic strategies aimed at restoring
angiogenic imbalance is expected to ameliorate complications and prolong gestation in women with
preeclampsia. In addition, elucidation of pathophysiology and establishment of effective screening and
prevention strategies will guide clinicians to reduce future risks of cardiovascular disease in women
with preeclampsia.
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Abbreviations

FMD Flow-mediated dilation
sFlt1 Soluble fms-like tyrosine kinase 1
VEGF Vascular endothelial growth factor
PlGF Placental growth factor
sVEGFR1 Soluble vascular endothelial growth factor receptor 1
NO Nitric oxide
NOS Nitric oxide synthase
PGI2 Prostacyclin
TXA2 Thromboxane A2
COX Cyclooxygenase
sGC Soluble guanylate cyclase
AC Adenylyl cyclase
ET-1 Endothelin 1
ECE-1 Endothelin-converting enzyme 1
aHUS Atypical hemolytic uremic syndrome
IUGR Intrauterine growth restriction
APS Antiphospholipid syndrome
CKD Chronic kidney disease
SLE Systemic lupus erythematosus
PWA Pulse wave analysis
PWV Pulse wave velocity
RNAi RNA interference
MAP Mean arterial pressure, and
UtA-PI Uterine artery pulsatility index
MMPs Matrix metalloproteinases
ECM Extracellular matrix
HIF1α Hypoxia-inducible factor 1α
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