
 International Journal of 

Molecular Sciences

Article

Phenotypic Plasticity of Fibroblasts during Mammary
Carcinoma Development

Eiman Elwakeel 1,†, Mirko Brüggemann 2,† , Annika F. Fink 1, Marcel H. Schulz 3,
Tobias Schmid 1, Rajkumar Savai 4,5 , Bernhard Brüne 1,5,6,7 , Kathi Zarnack 2,* and
Andreas Weigert 1,*

1 Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany;
elwakeel@biochem.uni-frankfurt.de (E.E.); fink@biochem.uni-frankfurt.de (A.F.K.);
t.schmid@biochem.uni-frankfurt.de (T.S.); b.bruene@biochem.uni-frankfurt.de (B.B.)

2 Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt,
60438 Frankfurt, Germany; mirko.brueggemann@bmls.de

3 Institute of Cardiovascular Regeneration, Faculty of Medicine, Goethe-University Frankfurt,
60590 Frankfurt, Germany; marcel.schulz@em.uni-frankfurt.de

4 Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL),
Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany;
Rajkumar.Savai@mpi-bn.mpg.de

5 Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
6 Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology

and Applied Ecology, IME, 60590 Frankfurt, Germany
7 German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
* Correspondence: weigert@biochem.uni-frankfurt.de (A.W.); kathi.zarnack@bmls.de (K.Z.)
† These authors contributed equally to the paper.

Received: 15 July 2019; Accepted: 6 September 2019; Published: 9 September 2019
����������
�������

Abstract: Cancer-associated fibroblasts (CAFs) in the tumor microenvironment contribute to all stages
of tumorigenesis and are usually considered to be tumor-promoting cells. CAFs show a remarkable
degree of heterogeneity, which is attributed to developmental origin or to local environmental niches,
resulting in distinct CAF subsets within individual tumors. While CAF heterogeneity is frequently
investigated in late-stage tumors, data on longitudinal CAF development in tumors are lacking. To this
end, we used the transgenic polyoma middle T oncogene-induced mouse mammary carcinoma model
and performed whole transcriptome analysis in FACS-sorted fibroblasts from early- and late-stage
tumors. We observed a shift in fibroblast populations over time towards a subset previously shown to
negatively correlate with patient survival, which was confirmed by multispectral immunofluorescence
analysis. Moreover, we identified a transcriptomic signature distinguishing CAFs from early- and
late-stage tumors. Importantly, the signature of early-stage CAFs correlated well with tumor stage
and survival in human mammary carcinoma patients. A random forest analysis suggested predictive
value of the complete set of differentially expressed genes between early- and late-stage CAFs on
bulk tumor patient samples, supporting the clinical relevance of our findings. In conclusion, our data
show transcriptome alterations in CAFs during tumorigenesis in the mammary gland, which suggest
that CAFs are educated by the tumor over time to promote tumor development. Moreover, we show
that murine CAF gene signatures can harbor predictive value for human cancer.
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1. Introduction

Fibroblasts are the main cellular component of connective tissue. They are defined as
spindle-shaped cells that shape the extracellular matrix (ECM) by producing its major building
blocks such as collagens, fibronectins, and proteoglycans and by fine-tuning their arrangement through
proteases such as matrix metalloproteinases (MMPs) [1]. A molecular definition of fibroblasts is
challenging, since they show a remarkable degree of heterogeneity resulting mainly from genetic
imprinting in their local microenvironment across anatomical sites and their multiple cellular origins.
Fibroblasts are derived from diverse embryonic sources and a variety of cells can transdifferentiate
to fibroblasts once homeostasis is disturbed [2–4]. Molecular markers associated with fibroblasts
such as vimentin, the platelet-derived growth factor receptor chain α (Pdgfra), CD90, and collagens
are not expressed by all fibroblasts and are, moreover, also expressed by other cells including
endothelial cells, perivascular smooth muscle cells, immune cells and myoepithelia [1–3]. Fibroblasts
are usually quiescent, but are activated when homeostasis is disturbed, e.g., during tissue injury.
Fibroblast activation is usually triggered in response to tissue injury by wound-enriched factors such
as transforming growth factor β (TGF-β), but also by a number of cytokines, other growth factors such
as PDGF, activators of Wnt/β-catenin signaling, Toll-like receptor ligands, and reactive oxygen species,
among others [5–7]. Activated fibroblasts, also called myofibroblasts, show an enhanced proliferative
potential, synthesize increased amounts of ECM proteins, and aid in ECM remodeling. In addition,
they acquire activation markers such as α smooth muscle actin (αSMA), which enables them to actively
contract wound edges [1]. In wounds, fibroblast activation is reversible due to apoptotic death and
repopulation with non-activated fibroblasts [4,8]. However, if the tissue injury stimulus persists,
the healing response continues unabated. Thus, unrestricted fibroblast activation results in fibrosis
characterized by an excessive accumulation of ECM. Fibrosis may destroy normal tissue architecture
and consequently provoke loss of organ function [4,9].

Activated fibroblasts are important cellular players in the development of not only fibrosis, but
also cancer. In this pathological condition, the desmoplastic reaction triggered by chronically activated
fibroblasts, termed cancer-associated fibroblasts (CAFs), is one of the reasons why a tumor is considered
“a wound that does not heal” [10]. CAFs share similarities with myofibroblasts in wounds, particularly
the expression of αSMA, increased ECM synthesis, and enhanced ECM remodeling. They are generated
by similar factors including TGF-β and PDGF, which also induce CAF proliferation and expansion [4].
However, a key distinction between wound-associated fibroblasts and CAFs is epigenetic programming
of CAFs that renders them resistant to cell death, and maintains them in an activated state [11,12].
In this state, CAFs are usually linked to promoting tumor development by supporting tumor growth,
invasiveness, and epithelial-to-mesenchymal transition (EMT), as well as by suppressing anti-tumor
immunity [13–20]. On the contrary, in pancreatic ductal adenocarcinoma (PDAC), the presence of
CAFs was linked to improved immune control and the production of tumor-restraining rather than
tumor-supporting ECM [21,22]. These findings point to a heterogeneity of CAF phenotypes in tumors.
Indeed, it has been noted that CAFs can derive from a diverse set of immediate progenitors, depending
on tumor entity and experimental model, including resident fibroblasts, mesenchymal stem cells,
pericytes, pre-adipocytes, and myeloid progenitors [4,23]. For instance, two spatially separated and
functionally different subtypes of CAFs were identified in PDAC [17]. Similarly, two CAF subtypes
exist in oral squamous cell carcinoma, which were suggested as two different developmental stages of
CAFs [24]. With respect to mammary carcinoma, a recent study in the transgenic polyoma middle T
oncogene (PyMT)-induced mammary carcinoma mouse model described four subtypes of CAFs by
single-cell RNA sequencing (RNA-seq) [25]. The subtypes were suggested to be derived from distinct
cellular sources. Whereas matrix CAFs (mCAFs) and cycling CAFs (cCAFs) originate from resident
fibroblasts, vascular CAFs (vCAFs) shared endothelial markers and were suggested to originate
from a perivascular location. Developmental CAFs (dCAFs) corresponded to malignant cells having
undergone an EMT. Importantly, a transcriptomic signature corresponding to vCAFs was associated
with poor prognosis and metastasis in mammary cancer patients [25]. Thus, CAF heterogeneity may be



Int. J. Mol. Sci. 2019, 20, 4438 3 of 23

relevant from a therapeutic point of view. Besides these reports that clearly indicate CAF heterogeneity
in a single tumor at a given time point, the development of CAF subsets over time is largely unexplored.

Here, we investigated the nature of fibroblasts in the untransformed mammary gland and in the
PyMT mouse model at early- and late-stage carcinoma. Combining multispectral immunofluorescence
with transcriptional profiling, we determined the plasticity of CAFs over time. Importantly, the
accompanying changes in gene expression are linked to tumor stage and survival in human breast
cancer patients, underlining the pathological relevance of the observed changes.

2. Results

2.1. Varying Fibroblast Subtypes during Mammary Gland Transformation and Tumor Development

To analyze the heterogeneity of the CAF population in developing mammary tumors, we first
investigated the abundance of different CAF subtypes in the untransformed mammary gland of
12-week-old mice, compared to early-stage tumors (8–12 weeks) and late-stage tumors (18–20 weeks) of
mice expressing the PyMT oncogene in the mammary epithelium [26] (Figure 1A–C). Mammary glands
with early-stage tumors usually contained hyperplasia or adenoma/mammary intraepithelial neoplasia
(MIN), and rarely early carcinoma (comparable to human ductal carcinoma in situ with early invasion
(DCIS + EI)), as defined by Lin et al. [26]. Mammary glands with late-stage tumors (18–20-week-old
mice) also showed lesions in these stages, but all contained mainly tumors at the late carcinoma stage
(which is comparable to human invasive ductal carcinoma in the PyMT model) [26]. Stromal cells were
identified in the tissue sections by PhenOptics using the tissue segmentation algorithm in the InForm
software that capitalizes both on autofluorescence and specific markers. We first aimed to discriminate
four CAF subtypes previously described by Bartoschek et al. [25] and to track their abundance during
the development of mammary carcinoma. We co-stained the prototypical CAF marker αSMA with
an individual marker of each subtype, i.e., Rgs5 for vCAFs, Pdgfra for mCAFs, Top2a for cCAFs,
and Col9 for dCAFs [25]. In the untransformed mammary gland, αSMA was only expressed by
myoepithelial cells lining the epithelial layer of the mammary ducts (Figure 1A). Furthermore, these
cells co-expressed Col9 and Rgs5, but not Pdgfra. In contrast, Pdgfra was expressed by cells lining
the mammary ducts beyond the myoepithelial layer, and by cells interspersed into the adipocyte
population, both corresponding to the resident mammary gland fibroblasts. Adipocytes expressed
the vCAF marker Rgs5. The fibroblast phenotypes markedly diversified in the early-stage tumors of
the transformed mammary gland. The myoepithelial layer around the transformed mammary ducts
dissolved, giving rise to a mixed cell population that expressed αSMA, but rarely co-expressed Rgs5
and Col9. Pdgfra+ fibroblasts were still present, but a new subset of fibroblasts expressing mainly
Col9, with low levels of Rgs5, emerged (Figure 1B). In late-stage tumors, the picture changed again.
The dominating subset of fibroblasts within the tumor stroma were cells co-expressing αSMA and
Rgs5, whereas cells expressing Pdgfra and Col9 were located extratumoral and were comparatively
rare (Figure 1C). Throughout the tissues, the cCAF marker Top2a was mostly expressed by epithelial
cells, whereas Top2a+ CAFs were rarely found.

To monitor the extent of CAF plasticity during tumor development, we quantified the CAF
subtypes in tissue sections of mammary tumors from different mice. The quantitative analysis
confirmed a total increase in stroma during tumorigenesis over time, with a pronounced accumulation
of αSMA+ cells in late-stage carcinoma (Figure 2A,B). At the level of total stroma, we found that cCAFs
were barely detected, and dCAFs levels were not significantly altered (Figure 2C). Notably, vCAFs
showed a slight increase in the early stage, and then massively rose in the late-stage carcinoma, when
they dominated the CAF population (47% of all stromal cells). The sharp vCAF increase in late-stage
carcinoma was apparent for both αSMA+ and αSMA− cells, suggesting a widespread accumulation
of vCAFs in these tumors (Figure 2D,E). Accordingly, fibroblasts expressing mCAF marker Pdgfra,
which had been most prominent in the untransformed mammary gland, progressively declined during
tumorigenesis (Figure 2C). The mCAF decrease occurred at the level of quiescent cells (αSMA−,
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Figure 2E), whereas cells co-expressing αSMA and Pdgfra showed a mild but significant increase in
early-stage tumors compared to the untransformed mammary gland cells (Figure 2D). While levels of
Top2a+ stromal cells were still rare, Top2a+ αSMA+ cells significantly increased in late-stage tumors
(Figure 2D). Despite the still low abundance of proliferating CAFs in late-stage tumors, this relative
increase may suggest the appearance of proliferating cCAFs as the underlying reason for increased
αSMA+ fibroblast numbers at this stage. The amount of dCAFs (αSMA+ Col9+ stromal cells) increased
in tumors independent of stage, whereas αSMA− Col9+ cells were decreased in late-stage tumors.
Overall, these data suggest a global shift in the CAF population during tumor progression. Already
at the early stage, tumors show an altered CAF composition, which cumulates in a predominance of
vCAFs in late-stage tumors, while the resident mCAF levels progressively retreat, at least at the level
of non-activated fibroblasts.

Figure 1. Histology of cancer-associated fibroblast (CAF) subset marker expression during PyMT tumor
development. Untransformed mammary glands (A) as well as early (8–12 weeks) (B) and late-stage
(18–20 weeks) (C) PyMT tumors were harvested and CAF subset marker expression was analyzed by
PhenOptics. Representative images show expression of the activated fibroblast marker αSMA, the
developmental CAF (dCAF) marker Col9, the matrix CAF (mCAF) marker Pdgfra, the vascular CAF
(vCAF) marker Rgs5, and the cycling CAF (cCAF) marker Top2a. Nuclei were counterstained with
DAPI. Large images display coexpression of all markers, with colored arrowheads indicating fibroblasts
expressing the marker shown in the same color. The smaller images show tissue segmentation and
single stainings computed using InForm software. Scale bars: 100 µm.
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Figure 2. Quantitative analysis of cancer-associated fibroblast (CAF) subset marker expression during
PyMT tumor development. Untransformed mammary glands (Ctrl) as well as early (EC; 8–12 weeks)
and late-stage (LC; 18–20 weeks) PyMT tumors were harvested. CAF subset marker expression
(αSMA, activated fibroblasts; Rgs5, vascular CAF (vCAF); Pdgfra, matrix CAF (mCAF); Top2a, cycling
CAF (cCAF); Col9, developmental CAF (dCAF)) and tissue category abundance were analyzed by
histology as in Figure 1. The abundance of stroma (A) and total αSMA+ stromal cells (B), as well as
expression of CAF subset markers in total stroma (C), αSMA+ stromal cells (D) and αSMA− stromal
cells (E). Individual data points indicate mean expression of markers in tissue sections of one individual
animal (twelve individual animals were analyzed in the Ctrl and LC groups, and seven in the EC
group). Additionally, means ± SEM are shown. p-values were calculated using one-way ANOVA with
Bonferroni’s correction, * p < 0.05, ** p < 0.01, *** p < 0.001.

2.2. A Gene Signature Separates Early versus Late-stage CAFs

To investigate the changes in the CAFs between tumor stages in more detail, we FACS-sorted
fibroblasts from the untransformed mammary gland, and early- and late-stage PyMT tumors [26]
(Figure 3A–C). Fibroblasts were identified as cells lacking expression of the endothelial cell marker
CD31, the immune cell marker CD45, and the epithelial markers CD326/Epcam and CD49f/Itga6, but
expressing CD140b/Pdgfrb and/or CD140a/Pdgfra. CD49f marks myoepithelial cells that co-express
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fibroblast markers such as αSMA, Col9 and Rgs5 (Figure 1A). It was therefore essential to exclude these
cells to obtain a pure fibroblast population. Control samples were analyzed to obtain a baseline setting
from which tumor development could be followed. Using this baseline, we noticed, as expected, a
relative increase in epithelial cells in mammary glands of PyMT mice over time. Additionally, we
observed an increased abundance of fibroblasts, particularly in late-stage carcinoma (Figure 3D),
confirming the histological observations (Figure 2A,B) at another quantitative level. After FACS-sorting
(CAFs from tumors of five individual animals per stage), the transcriptome of the isolated fibroblasts
from early- and late-stage tumors was determined by mRNA sequencing (75-nt single end sequencing;
~50 M reads per sample). To identify genes that would discriminate early- and late-stage CAFs,
we performed differential gene expression analysis using DESeq2 [27]. Since initial quality controls
indicated batch effects and inter-animal variability, we implemented a series of corrections to detect
expression changes explicitly caused by the tumor progression (Figure S1). This procedure identified
906 genes that displayed a significant differential expression in the CAFs from early to late-stage
carcinoma (523 up- and 383 downregulated, adjusted p value < 0.01; Figure 4 and Table S1). In line
with our in situ results, upregulated genes included numerous markers that were identified as unique
signature genes for vCAFs in the previous single-cell transcriptomics study [25], further supporting the
predominance of vCAFs in the late-stage tumors (Figure 4). Moreover, we noticed preferred expression
of a limited number of genes marking cCAFs and dCAF (Figure 4), the former also supported by our
histology data (Figure 2D).

Figure 3. FACS of fibroblasts from untransformed mammary gland, early and late PyMT tumors.
Untransformed mammary glands (Ctrl) as well as early (EC; 8–12 weeks) and late stage (LC; 18–20 weeks)
PyMT tumors were harvested. Single cell suspensions were stained for the markers indicated and
subjected to flow cytometric analysis and FACS-Sorting. Fibroblasts were identified as CD31− CD45−
CD49f− CD326− Pdgfrb+ cells. Mock H&E images (scale bars: 100 µm) indicating tissue architecture
and the sorting strategies for untransformed mammary glands (A), early- (B) and late-stage (C) PyMT
tumors and the quantification of fibroblast abundance (D) are displayed. (D) Individual data points,
means + SEM are shown. p-values were calculated using one-way ANOVA with Bonferroni’s correction,
* p < 0.05.
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Figure 4. Comparative transcriptome analysis of early- and late-stage PyMT cancer-associated
fibroblasts (CAFs). Transcriptomes of FACS-sorted early (EC) and late-stage (LC) PyMT CAFs were
generated by mRNA sequencing. The heat map shows differentially expressed genes between both
groups. Genes corresponding to individual CAF subsets (matrix CAFs, mCAFs; cycling CAFs, cCAFs;
vascular CAFs, vCAFs; and developmental CAFs, dCAFs) are highlighted.

Using this gene signature, we performed gene set enrichment analysis (GSEA) and analyzed
enrichment of reactome pathways as well as gene ontology (GO) terms. GSEA revealed that only
two curated gene sets from the Molecular Signatures Database were altered (normalized enrichment
score ≥ 1.4, p-value ≤ 0.01, FDR q-value ≤ 0.25) in late-stage compared to early-stage CAFs (Table 1).



Int. J. Mol. Sci. 2019, 20, 4438 8 of 23

Table 1. Gene sets, reactome and GO terms enriched in late-stage (LC) and early-stage EC) CAFs. ES,
enrichment score; NES, normalized enrichment score; NOM, nominal; FDR, false discovery rate. +/−

indicates enrichment or depletion of a given term.

Upregulated in LC

GSEA

GENE SET NAME ES NES NOM p-value FDR q-val
HINATA_NFKB_TARGETS_KERATINOCYTE_UP 0.79 1.81 <0.001 0.15

SESTO_RESPONSE_TO_UV_C0 0.78 1.78 <0.001 0.15

Reactome

Reactome pathways Fold
enrichment +/− Raw p-value FDR

Chemokine receptors bind chemokines 12.08 + 1.05E-04 2.41E-02
G alpha (i) signaling events 5.00 + 6.87E-07 1.10E-03

GO

PANTHER GO-Slim Biological Process Fold
enrichment +/− Raw p-value FDR

Granulocyte chemotaxis 14.49 + 8.35E-06 2.46E-03
Cytokine-mediated signaling pathway 8.45 + 3.45E-05 7.62E-03

Regulation of MAPK cascade 7.51 + 2.31E-04 2.55E-02
Inflammatory response 6.63 + 1.42E-04 1.80E-02

PANTHER GO-Slim Molecular Function Fold
enrichment +/− Raw p-value FDR

Potassium channel regulator activity 19.10 + 8.92E-04 2.63E-02
Endopeptidase inhibitor activity 10.66 + 8.80E-06 4.90E-04

Cytokine receptor binding 9.87 + 1.93E-07 2.42E-05
Protease binding 9.25 + 2.03E-05 9.24E-04
Cytokine activity 8.76 + 5.27E-07 4.40E-05

G-protein coupled receptor binding 6.29 + 1.93E-04 6.90E-03
G-protein coupled receptor activity 3.45 + 2.78E-04 8.71E-03

Upregulated in EC

GO

PANTHER GO-Slim Biological Process Fold
enrichment +/− Raw p-value FDR

Regulation of transcription by RNA polymerase II 3.97 + 9.12E-07 8.06E-04
Transcription by RNA polymerase II 3.10 + 2.84E-06 8.37E-04

PANTHER GO-Slim Molecular Function Fold
enrichment +/− Raw p-value FDR

Transcription regulatory region DNA binding 4.55 + 1.88E-05 4.71E-03

These gene sets indicated an increased activity of the transcription factor nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB) in late-stage CAFs, corresponding to a
number of cytokine and chemokine genes overexpressed in these cells when compared to early-stage
CAFs (Table S1). Moreover, late-stage CAFs expressed a small number of genes upregulated in
keratinocytes, particularly genes that were induced at high UV doses after 24 h [28]. These genes
encompassed Il1rn, Rela, and Cdc37, again indicating increased inflammatory signaling in late-stage
CAFs. Increased inflammatory signaling in late-stage CAFs was also apparent when looking at
enriched reactome and GO terms (Table 1; shown are the most specific terms in a lineage), as indicated
by terms related to immune cell chemotaxis, cytokine activity and inflammatory response. Besides,
protease inhibitor activity, mainly attributable to the serine protease inhibitors (genes Serpina1d,
Serpina3f, Serpine2, and Serpini1) as well as the MMP inhibitor Timp1, was also detected as a potentially
enriched function of late-stage CAFs. When looking at early-stage CAFs, the only enriched terms
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were GO terms related to transcription (Table 1). This was due to an increase in the expression of
transcription factors and other regulators of transcription including epigenetic regulators such as the
histone acyltransferase Ep300 and the histone deacetylase Sirt1. Interestingly, Sirt1 was previously
connected to negative regulation of NF-κB signaling [29], and was shown to affect TGF-β signaling
in fibroblasts [30]. Among the identified transcription factors, Foxo1 was connected to suppressing
fibroblast proliferation, with the notion that inflammatory signaling suppresses Foxo1 transcription
and activity [31,32]. We therefore tested the expression of Sirt1 and Foxo1 in CAFs in comparison with
nuclear expression of the inflammatory NF-κB subunit p65, which is required for NF-κB signaling,
by PhenOptics (Figure 5A). In both early- and late-stage tumors, we found cells with a fibroblast
morphology co-expressing Foxo1 and Sirt1. However, these cells were significantly enriched in the
stroma of early-stage tumors (Figure 5B,C). Nuclear p65 was also found in stroma of both early- and
late-stage tumors. Nevertheless, only late-stage PyMT tumors contained fibroblasts expressing nuclear
p65, with the notion that only αSMA-expressing but not Foxo1 and Sirt1-expressing fibroblasts showed
nuclear p65. Stromal cells expressing nuclear p65 in early-stage tumor stroma had a lymphocyte
morphology (Figure 5A). Quantitatively, we unexpectedly observed no difference in stromal cells
expressing nuclear p65 between early- and late-stage tumors (Figure 5D). However, there was a strong
increase in nuclear p65 in αSMA-expressing cells in late-stage tumors, while more αSMA-negative cells
expressed p65 in early-stage tumors, which, again, were mainly lymphocytes (Figure 5D). These data
indicate a reciprocal regulation of NF-κB signaling in different stromal cells during cancer development.
Next, we tested a number of other antibodies against genes present in the signature of differentially
expressed genes (DEGs) between early- and late-stage CAFs for determination of protein levels in
PyMT tumors. Of those, antibodies targeting the proteins orthodenticle homeobox 1 (Otx1) and
hexamethylene bisacetamide inducible protein 1 (Hexim1) were of sufficient quality for validation
in PyMT carcinoma sections. Consistent with a decrease at the mRNA level, the Hexim1 protein
was expressed at high levels in fibroblasts in the early stage, but its expression was low in late-stage
carcinoma CAFs (Figure 6A,B). Otx1 was increased at the mRNA level, reflected by a high expression
of Oxt1 protein in late-stage carcinoma CAFs (Figure 6A,C), with the notion that also tumor cells
expressed higher levels of Otx1 in the late stage (Figure 6C). Overall, histology data, thus, confirmed
our findings at the transcriptome level.

2.3. Changes in CAF Development in PyMT Tumors are reflected in Mammary Carcinoma Patients

To investigate whether our findings in the murine PyMT model are relevant in human mammary
carcinoma patients, we tested the expression of the genes discriminating early- versus late-stage
CAFs in the published data from the Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC) and The Cancer Genome Atlas (TCGA). The METABRIC dataset contains gene expression
and clinical data of ~2000 patients with mammary cancer [33], whereas TCGA dataset lists ~1000
invasive mammary carcinoma patients [34]. We performed a GSEA analysis with the human orthologs
of genes that were upregulated in early- or late-stage PyMT CAFs, corresponding to 55 genes (PyMT
early carcinoma (EC) signature), and 106 genes (PyMT late carcinoma (LC) signature), respectively
(Table S2). When comparing stage 0 or stage 1 versus stage 4 human mammary carcinoma with our
signatures using GSEA, we noticed a significant enrichment of the PyMT EC signature in early tumors
of both datasets (FDR q value < 0.05; Figure 7A,B). Conversely, genes from the PyMT LC signature
were enriched in late human mammary tumors, albeit it did not reach significance (data not shown).
To test for prognostic capabilities of our gene signatures beyond tumor stage, we performed survival
analyses with patient data from the METABRIC study. Notably, patients had a better survival prognosis
when they expressed high levels of the genes that were predominantly expressed in early-stage
CAFs (Figure 7C,D). This was at least partially independent of tumor stage as, even within stage 0/1
human mammary tumors alone, the gene signature of early-stage CAFs predicted favorable survival
(Figure 7E,F). In line with the weak enrichment of the PyMT LC signature in human stage 4 mammary
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carcinoma, we did not find a correlation of this signature with patient survival (data not shown).
These data indicate that early-stage CAFs are associated with increased survival of patients.

Figure 5. Histological validation of enriched gene signature in early versus late cancer-associated
fibroblasts (CAFs). (A) Early- and late-stage PyMT tumors were harvested and analyzed for expression
of nuclear p65, as well as Sirt1 and Foxo1 using PhenOptics. Nuclei were counterstained with DAPI.
Representative images show combined expression of all markers as well as expression of single markers.
Colored arrowheads indicate fibroblasts co-expressing Foxo1 and Sirt1 (orange) or α-SMA and nuclear
p65 (blue), and nuclear p65-expressing lymphocytes (white). Scale bars: 50 µm. (B) Foxo1 expression in
total stroma, αSMA+ stromal cells, and αSMA- stromal cells is displayed. (C) Sirt1 expression in total
stroma, αSMA+ stromal cells, andαSMA− stromal cells is displayed. (D) Nuclear p65 expression in total
stroma, αSMA+ stromal cells, and αSMA- stromal cells is displayed. Individual data points indicate
mean expression of markers in tissue sections of one individual animal. Additionally, means ± SEM
are shown. p-values were calculated using one-way ANOVA with Bonferroni’s correction, * p < 0.05,
*** p < 0.01.
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Figure 6. Histological validation of early versus late cancer-associated fibroblast (CAF) signature.
(A) Early- and late-stage PyMT tumors were harvested and analyzed for expression of the activated
fibroblast marker, as well as the predicted early CAF marker Hexim1 and the late CAF marker Otx1
using PhenOptics. Nuclei were counterstained with DAPI. Representative images show combined
expression of all markers as well as expression of single markers. Scale bars: 50 µm. (B) Hexim1
expression in total stromal cells is shown. (C) Otx1 expression in total stroma, αSMA+ stromal cells,
and αSMA- stromal cells is displayed. Individual data points indicate mean expression of markers
in tissue sections of one individual animal. Additionally, means ± SEM are shown. p-values were
calculated using one-way ANOVA with Bonferroni’s correction, * p < 0.05, *** p < 0.001.

To further test if our murine CAF gene signature has predictive power in human breast cancer
patients, utilizing information contained in both sets of DEGs (up- and downregulated), we performed
random forest-based classification. The random forest model was trained on the entire CAF gene
signature and compared to 100 randomly picked gene sets of comparable size. The CAF gene signature
achieved an out-of-bag (OOB) error rate of 27% and consistently outperformed the random gene sets by
6% on average to predict tumor stage (Figure S2A). Accordingly, the receiver operating characteristic
(ROC) curve showed a moderate dominance of the CAF gene signature-based model (AUC = 73%)
over the random gene sets (Figure 8A). The predictions were largely independent of the fraction of
stromal cells in the tumor samples [35], which showed no systematic differences between predicted and
annotated tumor stages (Figure S2B,C). To minimize the risk of overfitting, we further validated the
predictive power of our model by performing 10-fold cross-validation. The CAF gene signature-based
model achieved an accuracy of 71.8%, which was superior to the distribution of accuracy values of the
random gene sets (z-score = 2.13, Figure 8B). Random forest models provide an importance ranking
of features with respect to their ability to correctly classify the test observations, measured as the
decrease in classification accuracy upon permutation of the respective feature (Gini index). The top 20
genes according to the Gini index encoded, for instance, the transcriptional regulator EGR1, as well as
components and products of inflammatory signaling pathways such as IL-1 (IL1RN, TIFA, MMP13) and
IL-17 signaling (IL17RC), which are associated with fibroblast function [36–39] (Figure S2D). Moreover,
EEF2K (encoded by the gene LOC10160570) limits fibroblast proliferation [40] and was accordingly
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among the genes downregulated in late-stage CAFs. Although the expression of the top 20 genes
displays a certain level of variability between patients, a clear trend of regulation was captured for
some of them (Figure 8C). Importantly, all of the top 20 genes in the CAF gene signature for which a
reliable antibody staining was available were expressed in stromal cells in breast carcinoma section in
the Human Protein Atlas [41]. EGR1, OSBPL8 (encoded by the gene KIAA1451), FAM171A2, FGD6,
and CEP131 showed particularly high or largely exclusive staining in stromal cells, supporting the
notion that indeed the expression profile of CAFs drives tumor classification in our random forest
model. Together, these results underline that the information on gene expression changes in CAFs
from our mouse experiments can be utilized to predict tumor stage in human breast cancer patients.
Analyzing the CAF composition in the tumor microenvironment may therefore hold predictive value
for human disease.

Figure 7. Correlation of an early PyMT CAF signature with human mammary carcinoma patient data.
The METABRIC dataset and TCGA breast cancer dataset were analyzed for a correlation with an early
PyMT CAF signature (= downregulated in late-stage CAFs (LC_DN), Table S2). Gene set enrichment
analysis was performed to compare stage 0 and/or stage 1 mammary tumors with stage 4 mammary
tumors in the METABRIC dataset (A) and TCGA dataset (B) using the early PyMT CAF signature as
gene set input. (C,D) Patients were grouped into quartiles based on unranked mean expression of early
PyMT CAF signature genes and survival rates were analyzed. Survival rates within all four quartiles
(C) and of patients expressing high (>75% percentile) or lower (<75% percentile) levels early PyMT
CAF signature genes (D). p-value was calculated using log-rank test. (E,F) Patients with stage 0 and
stage 1 mammary tumors were grouped into quartiles based on unranked mean expression of early
PyMT CAF signature genes and survival rates were analyzed. Survival rates within all four quartiles
(E) and of patients expressing high (>75% percentile) or lower (<75% percentile) levels early PyMT
CAF signature genes (F). p-value was calculated using log-rank test.
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Figure 8. Random forest (RF) analysis to classify tumor stages in mammary carcinoma patients. A RF
analysis was used to test the predictive power of the murine cancer-associated fibroblast (CAF) gene
signature in staging of human breast cancer (patient cohort from TCGA dataset). (A) Receiver operating
characteristic (ROC) curves based on the out-of-bag (OOB) error, for the RF trained on the 624 CAF
signature genes (blue) and 10 RFs trained on random gene sets. (B) Accuracy distribution based on a
10-fold cross-validation for RFs trained on 100 randomly sample gene sets (grey), and the accuracy of
the CAF signature gene set (blue). z-scores were obtained using the accuracy distribution from the 100
random gene sets. (C) Heat map that shows the influence of the 20 most informative genes in the RF
classification (left). Genes are ordered by Gini index and patients are grouped according to their tumor
stage (right). Gene expression is visualized as z-score transformed TPM values. The expression trend
per tumor stage is captured for each gene in the form of boxplots (middle). Since the amount of stroma
varies between samples, a stromal score is shown for each patient, which indicates the stromal content
of each tumor tissue sample (top).
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3. Discussion

The present study highlights once more that, as already described, the term CAF collectively
refers to a heterogeneous group of cells. The PyMT model imposes some challenges on analyzing
CAF phenotypes. Tumors develop in each of the ten mammary glands at different times. Moreover,
within a single mammary gland, late- and early-stage tumors can be found at the same time [26].
When analyzing a single mammary gland in animals that are around 18–20 weeks old by histology
(here defined as animals bearing late-stage tumors), we always observed tumors in the late carcinoma
stage, but at the same time also hyperplastic, adenoma and/or early carcinoma lesions. In these early
developmental stage lesions, fibroblast phenotypes were similar to those observed in mammary glands
of younger mice (8–12 weeks) that do not yet contain late carcinomas. This feature likely leads to
dilution of differences in CAF phenotypes when analyzing CAFs as a bulk population. Therefore,
we likely observed only major differences in CAF phenotypes between early- and late-stage tumors
(which we defined by the age of the mice), while subtle changes may have been missed. Moreover,
this characteristic of the PyMT model suggests that rather the proximity to late-stage tumor cells or
a corresponding microenvironment than the age of the mice per se is responsible for establishing
late-stage fibroblast phenotypes.

Cancer-associated fibroblasts are generally thought to support tumor growth, although their
impact in different tumor stages has not been tested. Our data suggest that CAFs in the PyMT
mammary carcinoma model are educated to a tumor-supportive phenotype over time, although they
do not necessarily support tumor growth in early-stage carcinoma. Our signature of early-stage
CAFs correlated well with early stage (stage 0 and/or 1) and favorable survival in human mammary
carcinoma patients, suggesting an inhibitory impact of CAFs in early-stage breast tumors. This may
sound counterintuitive, since accumulating evidence suggests that alterations in the ECM driven
by activated fibroblasts precede tumor development. Fibrosis and a high mammographic density
are risk factors for the development of breast cancer [42–44]. Moreover, mammary carcinomas are
accompanied by sclerosis of the peritumoral extracellular matrix (ECM) [45,46]. Patients with germline
BRCA1 mutations harbor dermal fibroblasts that show a CAF-like activation state and support rather
than limit epithelial cell proliferation [47]. Nevertheless, these data only indicate that an altered ECM
predisposes to the development of breast cancer. This still leaves room for an anti-tumoral role of
recruited and/or converted CAFs during early progression of already established lesions, as suggested
by our data.

The signature of early-stage CAFs identified in our study predicted favorable survival of mammary
carcinoma patients. However, gene expression datasets from complex tissues can only display gene
expression in a mixed cell population. This is exemplified by Otx1, a transcription factor mainly
expressed in neurons. Otx1 is also expressed in breast cancer cells, where it is thought to be induced by
p53 to affect cancer stem cell differentiation [48]. We observed increased Otx1 expression in both CAFs
and tumor cells. It is therefore unclear whether the prognostic relevance of OTX1 in human mammary
carcinoma patients stems from its expression in stromal or cancer cells.

While our signature of late-stage CAFs did not significantly correlate with stage in human
mammary carcinoma and patient survival, we detected an enrichment of genes indicating the presence
of vCAFs in late-stage PyMT tumors. A vCAF signature was previously associated with metastasis in
human mammary carcinoma [25]. Since PyMT tumors start metastasizing to the lungs [26] within
18–20 weeks after birth in C57BL/6 PyMT mice, the increase of vCAFs in late-stage PyMT tumors
appears rational. Future studies may selectively interfere with vCAFs generation or their functional
program to test the impact of vCAFs on pulmonary metastasis. Concerning the latter, our late-stage
CAF dataset was enriched in protease inhibitors, among them Serpine2 and Slpi. These protease
inhibitors were shown to contribute to metastasis by promoting vascular mimicry in breast cancer [49].
Therefore, they might be attractive targets to interfere with the pro-metastatic potential of vCAFs.

Importantly, comparing our dataset with other published CAF datasets in different tumor entities
(iCAFs, myCAFs, etc. [17,24]) using GSEA did not reveal enrichment of other published subtypes over
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time (data not shown). This may indicate that discrete CAF subtypes are formed dependent on the
tissue origin of the tumor.

The vCAF marker Rgs5 was prominently expressed by myoepithelial cells in the untransformed
mammary gland, and to a lesser extent by adipocytes. The myoepithelial structure around the
mammary ducts appeared to dissolve in early tumors, with few cells expressing both αSMA and
Rgs5 around the tumor islands. When looking at the localization of the main CAF subset in late
tumors, which still were localized between tumor islets, one may speculate that these αSMA and Rgs5
expressing cells might have stemmed from myoepithelial cells. Sophisticated fate mapping would
be required to test this hypothesis. Recently, Raz et al. reported a decrease in Pdgfra-expressing
fibroblasts in PyMT mammary tumors over time, which is confirmed by our data. They additionally
observed an increase in bone marrow (BM)-derived CAFs that contributed substantially to the CAF
pool in PyMT tumors [50]. We did not observe any markers indicating an increase in BM-derived
cells (e.g., CD14, CD33, etc.) between early- and late-stage CAFs. This may be due to the fact that
BM-derived CAFs accumulated already in tumors of 12-week-old mice, and were thus not specific for
late-stage tumors. Moreover, BM-derived CAFs did not express high levels of αSMA and therefore are
unlikely contributors to the dominant αSMA and Rgs5-expressing CAFs in late PyMT carcinomas.

GSEA, reactome and GO term analysis provided only little insight into the difference between
early- and late-stage CAFs. The enriched gene sets provided a hint for increased inflammatory
signaling in late-stage CAFs that may have been occurred via the transcription factor NF-κB. NF-κB
indeed is a well-established driver especially of the inflammatory properties of CAFs that promote
tumor growth [51]. Accordingly, we observed an increase in the NF-κB subunit p65 in the nucleus of
αSMA-expressing late-stage CAFs, while nuclear p65 expression was higher in lymphocytic cells in
early-stage tumors. It is important to note that NF-κB signaling in lymphocytes was mainly connected
to their anti-tumor function, which is lost upon tumor development [52]. Interestingly, classical NF-κB
target genes such as Il6 and Tnfa were not expressed at higher levels in late-stage PyMT CAFs. Therefore,
mechanisms that fine-tune the NF-κB response in CAFs need to be determined. Such analyses would
need to include other levels of regulation of gene expression including mRNA stability, epigenetics
and post-translational regulation of transcriptional regulators, which occur in CAFs, but were not
addressed by the methodology employed in our study. It is unclear why NF-κB activity was higher
in late-stage CAFs. Interestingly, both Foxo1 and Sirt1, which were highly expressed in early-stage
CAFs and never co-expressed with nuclear p65, were connected to NF-κB signaling previously. Sirt1 is
a direct negative regulator of NF-κB by deacetylating p65 [29]. Foxo1 was shown to synergize with
NF-κB in the nucleus, but to be transcriptionally repressed by NF-κB [32]. The cytosolic localization of
Foxo1 in early-stage CAFs and the absence of its expression in late-stage CAFs that show nuclear p65
support the pattern of increased NF-κB signaling in late-stage CAFs. Our data therefore indicate that
activation of NF-κB signaling is a late event during CAF development at least in the PyMT model.

In a study by Calvo et al. fibroblasts were isolated from PyMT tumors in different stages, cultured,
immortalized, and then subjected to transcriptome analysis by microarray [53]. These analyses revealed
that fibroblasts from hyperplastic tissue and adenomas rather than from carcinomas showed an NF-κB
signature. However, the signature of these cells, which were expanded and immortalized is unlikely to
be comparable with a signature obtained from freshly isolated CAFs. Calvo et al. rather observed an
increased Yes-associated protein (Yap) signature in late-stage CAFs via GSEA. While we did not observe
such a complete signature in our dataset, our late-stage CAF signature showed increased expression of
Tead4, a main transcription factor through which Yap transmits its effects on gene expression [54].

Besides modulating inflammation, CAFs are often connected to modification of the ECM in tumors.
When considering genes regulating the ECM, only Col12a1 and three matrix metalloproteinases (Mmp8,
Mmp12, and Mmp13) were upregulated in late-stage CAFs. Col12a1 encodes collagen XII, which is a
member of the FACIT collagens (fibril-associated collagens with interrupted triple helices). Collagen
XII binds to collagen I-containing fibrils to connect them to associated matrix proteins such as decorin
or tenascin, thereby forming flexible bridges between collagen I fibers [55]. Interestingly, Col12a1
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was previously connected to metastasis in breast and colon cancer [56]. Similarly, Mmp13 has been
connected to increased breast cancer metastasis [57]. In contrast, Mmp8 and Mmp12 have been ascribed
a protective role in cancer, although this may be independent of their ability to shape the ECM [58].
Activity of MMPs is difficult to judge based on our data since we only tested mRNA levels of these
factors. Moreover, our dataset may also suggest a rather negative impact on MMP activity based on
the expression of the MMP inhibitor Timp1 in late-stage CAFs. Therefore, the association of CAF
development with ECM modulation needs to be tested independently using other methods.

We predicted stages in human mammary carcinoma based on our 624 CAF gene signature, which
combines both up- and downregulated genes, using random forest analysis. Random forest models are
commonly used for such tasks in biomedical research due to their versatility for large-scale datasets,
while achieving a high accuracy. The resulting model indicates that the CAF gene signature is a suitable
predictor for mammary carcinoma stage in humans. Despite having only an accuracy of 71.8%, the
classifier trained with the CAF gene signature performed consistently better than a classifier trained
with a random gene set. This underpins the predictive capacity of the identified gene set. However,
when we investigated the expression of the most important genes that contributed to our model, we
observed a relatively noisy expression pattern that reflect the rather high error rate. However, some
of the genes show a visible expression trend per tumor stage, indicating the regulatory changes in
gene expression during tumor progression. Additionally, we found genes highly expressed in breast
cancer stroma in the Human Protein Atlas (EGR1, OSBPL8, FAM171A2, FGD6, and CEP131), or likely
expressed in fibroblasts (MMP13), that are reported to play a role in breast cancer progression among
the most important ones [59–63]. Their specific role in mammary carcinoma CAFs remains to be
determined. This finding hints towards a species-conserved gene signature, potentially relevant in
diagnostics and clinical practice.

In conclusion, besides generating hypotheses as outlined above, our data add predictive
value to CAF phenotypes that change during breast cancer progression. While early-stage CAFs
may restrict tumor growth, late-stage CAFs are associated with metastasis. Taken together, we
demonstrate alterations in CAF phenotypes during mammary tumor progression that are of relevance
in human mammary carcinoma. Our data moreover provide new targets whose manipulation
may allow switching CAF phenotypes, thereby potentially improving the outcome of mammary
tumor development.

4. Materials and Methods

4.1. Animal Experiments

Mice expressing the polyoma virus middle T oncoprotein (PyMT) under the Mouse Mammary
Tumor Virus (MMTV) promoter in a C57BL/6 background were used. In the PyMT model, the
expression of the PyMT oncoprotein is restricted to the mammary epithelium, which results in the
appearance of mammary tumors starting from 6 weeks after birth in C57BL/6 mice and the occurrence
of pulmonary metastases starting after 18 weeks [64]. For all animal experiments, the guidelines of the
Hessian animal care and use committee were followed (approval number FU/1095, 12 October 2015).

4.2. Flow Cytometry

For FACS-sorting of fibroblasts, tissue single suspensions were generated using the
gentleMACS dissociator and the mouse Tumor dissociation kit (both from Miltenyi Biotec,
Bergisch Gladbach, Germany). Single cell suspensions were stained with fluorochrome-conjugated
antibodies and sorted using a FACS Aria III cell sorter (BD Biosciences, Heidelberg, Germany). Data
were analyzed using FlowJo software Vx (BD Biosciences, Heidelberg, Germany). Antibodies and
secondary reagents were titrated to determine optimal concentrations. CompBeads (BD Biosciences)
were used for single-color compensation to create multi-color compensation matrices. For gating,
fluorescence minus one (FMO) controls were used. The instrument calibration was controlled
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daily using Cytometer Setup and Tracking beads (BD Biosciences). The following antibodies were
used: anti CD49f-PE-CF594, anti-CD140b-PE, anti-CD140a-APC, anti-CD326-BV711 (BD Biosciences),
anti-CD31-PE-Cy7 (eBioscience, Frankfurt, Germany), and anti-CD45-VioBlue (Miltenyi Biotec). 7-AAD
was used for dead cell exclusion.

4.3. cDNA Synthesis, Library Generation and Whole Transcriptome RNA Sequencing

RNA isolation and cDNA preparation of FACS-sorted fibroblasts were performed using the
SMARTer® Universal Low Input RNA Kit (Takara Bio, Saint-Germain-en-Laye, France) according
to the manufacturer’s instructions. Prepared cDNA was purified by immobilization on AMPure XP
beads (Beckman Coulter), and quantified using Qubit™ cDNA HS Assay Kits (ThermoFisher Scientific,
Dreieich, Germany). Quality of purified cDNA was checked using the Agilent 2100 Bioanalyzer® with
High Sensitivity DNA Chips. Purified cDNA of sufficient quality was sheared using a M220 focused
ultrasonicator (Covaris, Brighton, UK), yielding cDNA fragments around 400 bp. Fragmented cDNA
was then used to prepare libraries using the SMARTer ThruPLEX DNA-Seq Kit (Takara Bio) according
to the manufacturer’s instructions. Amplified libraries were purified by immobilization on AMPure XP
beads, and quality and DNA content were checked using High Sensitivity DNA Chips as well as again
with Qubit™ cDNA HS Assay Kits. Libraries were diluted, denatured according to Illumina Denture
and Dilute Libraries Guide, and mixed with PhiX control (8%). Six to eight libraries were loaded
on one sequencing cartridge of the TG NextSeq® 500/550 High Output Kit v2 (75 cycles) (Illumina,
Eindhoven, The Netherlands) and sequencing was performed on the NextSeq platform (Illumina).

4.4. RNA-seq Data Processing

Initial sequence quality was monitored with FastQC (V 0.11.5). Potential 3′ end degradation biases
were visualized using PicardTools CollectRnaSeqMetrics (V 2.17.2). Using Flexbar (V 3.0.3) [65], adapter
sequences were removed from the 3′ ends, and resulting reads were subjected to a window-based
quality trimming (Phred score < 20, 5-nt window). Processed reads were mapped to the mouse genome
(assembly GRCm38/mm10) based on GENCODE gene annotations (release m16) using STAR [66].
Reads were allowed to map with up to 5 mismatches, while considering no multi-mapping reads.

4.5. Differential Expression Analysis

The differential expression analysis was performed using the R/Bioconductor package DESeq2 (V
1.22.2) [27]. Read overlaps were counted within annotated exons using GenomicAlignments (V 1.18.1) in
“union” mode. The resulting count matrix contained expression values for 53,379 mouse genes across 10
biological replicates (5 early-stage carcinoma, 5 late-stage carcinoma). Initial quality control via Principal
Component Analysis (PCA) revealed a batch effect (Figure S1A,B). To account for this effect, changes
in response to tumor stage were modeled using the design formula “design = ~date_batch + stage”.
To detect expression changes explicitly caused by tumor progression and not by the batch effect, each
variable was modeled separately (cooksCutoff = FALSE). Genes significantly regulated by tumor
progression or batch were extracted by specifying the contrast argument (Figure S1C,D). Both sets
were used to identify a subset of genes that are regulated by tumor progression, but unaffected by
the batch (Figure S1E). This analysis yielded 906 differentially regulated genes, including 523 and 383
genes that were up- and downregulated in late-stage compared to early-stage carcinoma, respectively
(adjusted P value < 0.1, Benjamini–Hochberg correction). k-means clustering with k = 2 separated
genes in those that are up- or downregulated during tumor progression (Figure 4 and Figure S1F).

4.6. Analysis of Publicly Available Human Mammary Carcinoma Datasets

TCGA dataset and the METABRIC dataset [33] were downloaded from cBioPortal for Cancer
Genomics (http://www.cbioportal.org) including associated clinical data.

http://www.cbioportal.org
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4.7. Assignment of Human-mouse Orthologs

TCGA dataset contained gene expression values for 20,531 genes (identified by Entrez IDs) in
1102 patients. First, genes were linked to stable Ensembl gene IDs [67] using the BioMart tool. Next,
orthology assignments to putative mouse orthologs were extracted from the Orthologous MAtrix
(OMA, release December 2018) [68]. This yielded 16,326 human genes in TCGA that had at least one
ortholog in mouse, including 624 human orthologs out of the 906 differentially expressed mouse genes.
We resolved 13 co-ortholog relationships by selecting a single representative.

4.8. GSEA, Reactome Pathway and GO Term Analysis

Differentially expressed gene between early- and late-stage carcinoma CAFs were used as an
input to analyze gene sets in the Molecular Signatures Database [69] using GSEA 3.0 [70], as well
as reactome pathways and GO terms using PANTHER V14 [71]. For correlation analysis between
the PyMT EC or LC gene signatures and human mammary carcinoma datasets, gene lists of up- or
downregulated genes in late-stage compared to early-stage carcinoma CAFs were generated using
the following inclusion criteria: adjusted P value < 0.01, |log2 fold change in expression| > 1, and
normalized base mean above 50. The lists were ranked based on adjusted P value.

4.9. PhenOptics Immunofluorescence Analysis

OpalTM 7-Color Fluorescent Immunohistochemistry (IHC) Kits were used according to the
manufacturer’s instructions. The following antibodies were used: αSMA (Sigma; F3777), Col9 SANTA
CRUZ; sc-376969), Pdgfra (Cell Signaling; #3174), Rgs5 (Biozol; bs-2794R), Top2a (Biozol; orb379272),
p65 (Cell Signaling; #8242), Foxo1 (Cell Signaling; #2880), Sirt1 (Upstate; 07-131), Hexim1 (Cell Signaling;
#12604), and Otx1 (Abcam; ab25985). Stained tumor and mammary gland sections were scanned using
Vectra® 3 automated quantitative pathology imaging system and analyzed using InForm software
V2.3. Expression of markers in cells was quantified using the Scoring algorithm of the InForm software,
either 4 bin (Hexim1) or double positivity (all others markers) scoring.

4.10. Random Forest Analysis

The random forest analysis was implemented using the randomForest R package (version 4.6).
Differentially expressed genes with an ortholog in TCGA dataset served as features for model training
(n = 624). The model was trained for a binary classification task, to discriminate between early- and
late-stage tumor patients. In total, the dataset comprised 174 patients of breast cancer stage I (n = 90)
and stage IIIC/ IV (n = 84) according to the classification system by the American Joint Committee
on Cancer (AJCC). A random forest consists of a collection of decision trees, where each tree is built
from a random subset of features and observations, leading to robust classification results. The final
classification result is the average across all trees in the forest [72]. The performance of the forest
usually increases with the number of trees until it stabilizes. In our case, the error stabilized with
2000 trees (parameter ntree), while considering 19 gene features to be randomly sampled for each tree
(parameter mtry). During model generation, an error rate is computed as the out-of-bag error. This is
done by using all observations not used for the particular random training set, and using the left-out
observations for estimation of the classification error [72]. Despite being very robust, the model might
still overfit to the data [73]. Therefore, we implemented a 10-fold cross validation strategy, in which
always 10% of the observations were left out, and the classification accuracy was estimated on this
hold-out dataset. To assess the predictive power of our mouse-derived gene set, we compared the
performance to 100 randomly sampled datasets of comparable size (n = 500). Random datasets were
chosen from all human genes in TCGA dataset having an ortholog in mouse, while ignoring those
genes already used in our main classifier (n = 15,702). For each gene set, a random forest classifier was
trained with 2000 trees. Stromal scores for all samples in TCGA breast cancer dataset were obtained
from the ESTIMATE webpage [35].
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4.11. Statistical Analysis

Data were analyzed using GraphPad Prism 8.0 (GraphPad Software, San Diego, CA, USA).
p-values were calculated using two-tailed Student’s t-test, one-way or two-way ANOVA.

To check for Gaussian distribution, D’Agostino and Pearson omnibus normality tests were performed.
Differences in patient survival were analyzed using Log-rank (Mantel–Cox) test. Parametric or
non-parametric tests were applied accordingly. Asterisks indicate significant differences between
experimental groups (* P value < 0.05, ** P value < 0.01, *** P value < 0.001).

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/20/18/4438/s1.
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