

Supplementary Figure S1. Peptide maps of CAM-PPL3A $(\alpha+\alpha), 3 B(\alpha+\beta)$, and $3 C(\beta+\beta)$ digested by Achromobacter protease I (A) and Staphylococcus aureus V8 protease (B). Peptides were separated by reversed-phase HPLC on COSMOSIL ${ }^{\oplus}$ Protein-R colomn ($\varnothing 4.6 \times 250 \mathrm{~mm}$) using a linear gradient of acetonitrile in 0.1% trifluoroacetic acid. Common peaks between α and β subunits were marked by magenta and green-colored arrow heads, respectively.

Supplementary Figure S2. Nucleotide sequences of cDNAs and the corresponding amino acid sequences of PPL3 subunits. Nucleotide residues and amino acid residues different from PPL3 α and β subunits are indicated by bold characters, respectively. Peptide fragments generated by digestion with Achromobacter protease I (L) and S. aureus V8 protease (V), respectively, are indicated by lines. Italic letter with underline indicates the signal peptide region. Asterisk indicates the stop codon.

Supplementary Figure S3. Separation of CAM-PPL4 α and β subunits by reversed-phase HPLC. Separation of CAM-PPL4 subunits was conducted by HPLC on a CAPCELL PAK (C8) colomn ($\varnothing .6$ $\times 150 \mathrm{~mm}$) using graded linear gradient of acetonitrile in 0.1% TFA.

Supplementary Figure S4. Peptide maps of CAM-PPL4 α (A) and β (B) subunits digested by Achromobacter protease I. Peptides were separated by reversed-phase HPLC on COSMOSIL ${ }^{\otimes}$ ProteinR colomn ($\varnothing 4.6 \times 250 \mathrm{~mm}$) using a linear gradient of acetonitrile in 0.1% trifluoroacetic acid. Common peaks between α and β subunits were marked by magenta arrow heads.

```
(A) }1\mathrm{ ATGGGTGTCTATGTGTACATTGTTCTTCTAGTACCATGTCTAATGGCAATACAAGCAGAT 60
```



```
    61 GCAAGTTGCGGAGCCCTATCAGAATCATATGGGGGTCCAGGTGGTTTA.A.CCGTTTTGAC 120
    A S C G A L S S E S Y Y G G P F G G L L N R F F D
                            L9
```



```
    E K A L L V K N G D I K E E I E E L L L C G R R
181 GThacGGCAMTARGATTAAGATATGGCACAGTGTGGGGTACACTTCATGGTTGGAMATCC 240
    V T A A I I R I L R R Y G G T V N W G T T I H H G N K K
2 4 1 ~ C C A C C A G G A R A R A G T T G C G C A R G R G A T T G G G A T G T C G G C A G C A R A G T C A T T T A T A C A C T G ~ 3 0 0 ~
    P P G K S C A R D N D V G S K K V V I Y T L L
```



```
    |H! P N E Y V K
```



```
    T L K
421 RAATCAGTCGATGGCCGGCGATTARAGTATATA.ACCGGARA.CTCTGGATGTATTCTTGAC 480
    K S V D G R R L K Y I T G N S G C I L D
1 aghatachgttttactggccattgtggtak 510
    R I I Q F
(B)
```


Supplementary Figure S5. Nucleotide sequences of cDNAs and the corresponding amino acid sequences of PPL4 α (A) and β (B) subunits. Peptide fragments generated by Achromobacter protease I (L) digestion are indicated by lines. Italic letter with underline indicates the signal peptide region. Asterisk indicates the stop codon.

Supplementary Figure S6. Schematic representation of oligosaccharide structures. Note that the reducing terminal is pyridylaminated for FAC analysis. Symbols used to represent pyranose rings of monosaccharides are shown in the box at the bottom. Anomeric carbon, i.e. position 1, is placed at the right side, and 2, 3, 4 are placed clockwise. Thin and thick bars represent α-linkage and β-linkage, respectively.

Supplementary Table S1. The amino acid sequences and masses of the peptides generated by cleavage of the CAM-PPL3B with Achromobacter protease I (A) and S. aureus V8 protease (B).
(A) Achromobacter protease I

Fragment number	Amino acid sequences			Molecular mass (m / z)	
			Calculated	Observed	
L4	YVQSITFK		984.55	987.10	
L5	EIASEYLGGPGGDAFDDK	[N terminus]	1839.84	1844.19	
L8	YISGRWGCRIDGLRFHAK		2192.18	2196.43	
L9	VDSRQWGWANENCIQWSK		2264.09	2269.28	
L10	AVAQNGDITRIEMQCTDVATYIK	2597.33	2601.46		
L11	ALAQNGDITRIEMQCTDVATYIK	2611.34	2616.13		

(B) S.aureus V8 protease

Fragment number		Molecular mass $(\mathrm{m} / \mathrm{z})$	
		Calculated	Observed
V7	NCIQWSKKGE	1250.64	1250.01
V8	NCIQWSKKGEKVVHE	1842.97	1842.29
V9	ITFKTNKRTLPRCGTSATE	2182.18	2181.85
V10	NCIQWSKKGVKVVHE	1813.00	1812.06
V14	YLGGPGGDAFDDKAVAQNGDITRIE	2579.24	2579.64
V16	YLGGPGGDAFDDKALAQNGDITRIE	2593.25	2593.96
V17	VATYIKLRYGKVDSRQWGWANE	2640.37	2640.23
V19	MQCTDVATYIKLRYGKVDSRQWGWANE	3276.61	3276.47
V20	KSVTVLIPGGLKYISGRWGCRIDGLRFHAKC	3546.99	3545.02
V21	LSSGEYITSAIVTYGKYVQSITFKTNKRTLPRCGTSATE	4329.26	4325.63

Common peptides between PPL3A $(\alpha+\alpha)$ and PPL3B $(\alpha+\beta)$, and between PPL3B $(\alpha+\beta)$ and PPL3C $(\beta+\beta)$ are indicated by magenta and green boxes, respectively.

Supplementary Table S2. The amino acid sequences and masses of the peptides generated by cleavage of the CAM-PPL4 $\alpha(\mathrm{A})$ and β (B) subunits with Achromobacter protease I.

(A) PPL4 α

Fragment number		Amino acid sequences		Molecular mass $(\mathrm{m} / \mathrm{z})$	
		Calculated	Observed		
L3	SVDGRRLK	929.56	932.82		
L4	PNEYVK	748.40	773.46		
L5	TNMRELPK	987.54	991.19		
L6	SCARDWDVGSK	1280.62	1283.11		
L8	VIYTLK		735.48	760.08	
L9	SCGALSESYGGPGGLNRFDEK	[N terminus]	2201.05	2203.56	
L10	GATITYDRFVNSLTLK		1797.99	1802.24	
L11	EIELLCGRRVTAIRLRYGTVWGTLHGWK	3340.88	3344.89		
L12	YITGNSGCILDRIQFYWPLW	2502.28	2506.58		

(B) PPL4 β

Fragment number	Amino acid sequences	Molecular mass $(\mathrm{m} / \mathrm{z})$		
		Calculated	Observed	
L4	TNMRELPK	987.54	990.42	
L6	SCARDWDVGVK	1292.66	1295.40	
L10	VLYTLQPNEYVK	1465.81	1469.29	
L11	VCTALSESYGGFGGLNRFDENALAK	[N terminus]	2626.31	2630.86
L14	GATITYDRFVNSLTLK	1797.99	1802.24	
L15	EIELLCGRRVTAIRLRYGSVWGTLHGWK	3326.86	3331.88	
L18	YITGNSGCILDRIQFYWPSW	2476.23	2478.06	

Common peptides between PPL4 α and β subunits are indicated by magenta boxes.

Supplementary Table S3. Properties of lectin-immobilized columns used for FAC analysis.

	Amount of Immobilized Lectin name $(\mathbf{m g} / \mathrm{ml}$ gel $)$	$\mathbf{B t}(\mathbf{n m o l})$	$\boldsymbol{K d} \mathbf{(M)}$	$\mathbf{R}^{2 \boldsymbol{a}}$	Used carbohydrate
PPL2A	0.05	0.02	2.0×10^{-7}	0.996	1M2M-5NC-Asn Fmoc
PPL3	0.5	0.63	3.01×10^{-5}	0.985	1M2M-5NC-Asn Fmoc
PPL4	1.0	0.98	2.0×10^{-5}	0.996	ManapNP

${ }^{\text {a }}$ the coefficient of determination quantified the degree of linear correlation obtained from a Woolf-Hofstee-type plot in each concentration-dependent analysis. B_{t} and K_{d} values were calculated from those determined by concentration-dependent analysis.

