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0.1. Hybrid Hamiltonian for the enhanced sampling of protein folding

We define an ideal biasing Hamiltonian H(B) leading to the real underlying partition of the
system represented by a free energy landscape (FEL) along suitable restraint vectors and state that
the standard forcefield parameter set describes the Hamiltonian H(A) as a reference energy function.
Therefore, any property X as a result from the sampling using the Hamiltonian H(A) leads to a
corresponding probability P to match a certain value :

PX = f (H(A)) . (1)

An additional bias H(B) in the energy space as conventionally applied in enhanced sampling
changes the resulting probability P′ to match a defined target property X to :

P′X = f (H(A) + H(B)) . (2)

The additional bias H(B) is applied along collective variables describing the slowest degrees
of freedom of the system, as for example in umbrella sampling [1] and related methods such as
Metadynamics [2], conformational flooding [3] or local elevation [4]. We recently have introduced
a renormalization scheme to solve the problem that the un-biased probability P(X) can be strongly
affected by the added bias H(B) [5]. In this scheme, the applied bias is renormalized to the un-biased
Hamiltonian H(A) in a way that its magnitude only equals a fraction of the un-biased Hamiltonian
H(A) in dependency of two coupling factors αmd and α′. Therefor, we introduce a renormalization of
the un-biased Hamiltonian by the same factor, which results in a new Hamiltonian H(C) :

H(C) =
H(A)

1 + αmd
+

α′|H(A)|
|H(B)| H(B) , (3)

where we distinguish between αmd as coupling parameter renormalizing the un-biased
Hamiltonian and α′, which defines the coupling of the bias to the system. Alternatively, the restrained
Hamiltonian H(B)R leads to :

H(C)R =
H(A)

1 + αmd
+

α′|H(A)|
|H(B)R|

H(B)R , (4)

where the new hybrid Hamiltonian H(C)R consists of a reweighted experimental restraint
component r. In principle, the total energy remains approximately un-affected, while other properties
can be introduced through the bias H(B). In other words, we generate a new probability distribution

Int. J. Mol. Sci. 2019, 20, 370; doi:10.3390/ijms20020370 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0001-6069-8883
https://orcid.org/0000-0002-1969-9304
http://dx.doi.org/10.3390/ijms20020370
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2019, 20, 370 2 of 28

P′′(X) as a result from adding a particular bias H(B) in dependency of two linear coupling factors αmd
and α′ :

P′′X = f
(

H(A)

1 + αmd
+

α′|H(A)|
|H(B)| H(B)

)
, (5)

which also affects the probabilities P′′(X†)† to find the transition state X†, leading to a behavior
which can enhance the sampling :

P′′†X = f †
(

H(A)

1 + αmd
+

α′|H(A)|
|H(B)| H(B)

)
. (6)

Alternatively, the restrained Hamiltonian H(B)R leads to :

P′′XR
= f

(
H(A)

1 + αmd
+

α′|H(A)|
|H(B)R|

H(B)R

)
, (7)

while the same dependency holds for the probability to find the transition state X†. Through this
formalism, we introduce another enhancing fragment H(B) or H(B)R to the original Hamiltonian
H(A), without affecting the total energy of the system. As we show later, we generate an accelerating
Hamiltonian H(B) or H(B)R from the parallel path-increments added to the system in the form of a
renormalized fluctuation. The orientiation of H(B) is explicitly determined based on a definition of a
path-increment and acts on the system through a renormalized fluctuation. That procedure has the
advantage that the propagation of the system remains ergodic as long as the coupling factors αmd and
α′ lie within a low range of approximately < 10−4 [5]. Considering the fact that bonded interactions
in the biomolecular forcefield can contribute with gradients > 104 − 105 kJ/mol/nm, a coupling
with a factor with a magnitude of αmd = α′ = 10−4 corresponds to the order of magnitude of typical
non-bonded interactions. We mention that we used parameters in the range αmd = α′ = 10−8 for DNA
systems using potentials of mean force derived from PDB-data [6].

0.2. Pathway dependent biasing increments : ∇H(B)

We define the bias Hamiltonian H(B) used for the accelerated sampling along multiple path
increments dLik (for pathways i and atom-indices k) as well as its modification to its principal
components, which is adaptively changed into a bias H(B)R in dependency of a distance restraint
r given by experimental data. We consider that the simulated system in an equilibrium simulation
propagates along a pathway with the general condition that the reduced action L as function of
momentum p and positions q remains constant [7,8] :

L =
∮

pdq = const. . (8)

Along a time-dependent MD trajectory of a system exposed to non-zero fluctuations of its
momenta dp, we rewrite the equation 8 as a time-integral :

L =
∫ t1

t=t0

(
d(p(t)dq(t))

dt

)
dt′ = const. , (9)

where t0 stands for the start and t1 for the end of the simulated MD trajectory. The time-dependent
integral is expressed as :

L =
∫ t1

t=t0

(
dp(t)

dt
dq(t) + p(t)

dq(t)
dt

)
dt′ = const. . (10)

We then define a differential dL(t) for a microscopic system, in which fluctuations of the momenta
dp(t) occur. That local change in L(t) at the time t is defined by :
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dL(t)
dt

=
d
dt
(p(t)dq(t)) =

dp(t)
dt

dq(t) + p(t)
dq(t)

dt
. (11)

We obtain the following differential at time t :

dL(t) = p(t)dq(t) + dp(t)dq(t) = (p(t) + dp(t))dq(t) . (12)

The expressions in the equations 9 to 12 relate to the standard MD-case with fluctuations in the
momenta dp(t) and displacements dq(t) at times t. Any arbitrary biasing technique developed to
accelerate a MD simulation adds an instantaneous increment dLs(t) to dL(t) :

dL′(t) = dL(t) + dLs(t) , (13)

where we obtain a modified increment dL′(t) and additional changes in the momenta resulting
from applied bias-energies affect the instantaneous action of a system in order to reach a faster
convergence to the statistical average, i.e. the free energy landscape [2,9,10]. In our recent work, we
used 2 biasing increments dLs(t) : dLab(t) (adaptive bias MD) (in the original work, we refer to the
variable dL) and dLσ(Lik(t)) (path-sampling) depending from 2 coupling time intervals τ1 (adaptive
bias MD) and τ2 (path-sampling) in which the gradient has been evaluated [11] :

dLs(t) = dLab(t) + dLσ(Lik(t)) . (14)

We extend the formalism to the sampling within NR multiple biases (and optionally NS multiple
simulations) and redefine the expression 9 to a multiple sampling in multiple bias-paths along NR
multiple biases, which the system can undergo simultaneously. The biased simulation then results in
the expression of a modified action expression :

Lm(t) =
∫ t1

t=t0

dL(t)dt′ +
∫ t1

t=t0

NR

∑
i

N

∑
k

(
dLabik

(t)

+ dLσik (Lik(t))
)

dt′ = const , (15)

where the multiple biasing pathway dependent increment dLsm is defined by :

dLsm =
NR

∑
i

N

∑
k

(
dLabik

(t) + dLσik (Lik(t))
)

, (16)

1. Methods

1.1. Renormalization

As given in the equations 3 and 4, we employ a renormalization of the vector ∇H(B) or ∇H(B)R
to the underlying ensemble [5], derived from multiple biasing increments ∇H(B)ab (adaptive bias
MD) and ∇H(B)σ (path-sampling). We apply the relations 3 and 4 for the potential H(B) or H(B)R
acting on an individual atom , where the two parameters αmd and α′ allow fluctuations of the coupled
bias and the un-biased gradient around an average value :

αmd = β′mdη′md × (1− ξ) , (17)

and

α′ = β′η′ × (1− ξ) , (18)
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where η′md and η′ define the width of the fluctuation and ξ is a random number ∈]0, 1]. Using the
definition :

∇H(C) =
∇H(A)

1 + αmd
+ α′
|∇H(A)|
|∇H(B)| ∇H(B) , (19)

we add the bias ∇H(B) to the system. As mentioned before, we distinguished between αmd to
describe the fluctuation of the un-biased MD-gradient and α′ for the renormalization of the bias. Using
the absolute value of H(A), we can formulate the resulting modified absolute value of the hybrid
Hamiltonian |H(C)| of the biased system, which is expressed by :

|H(C)| =
1

1 + αmd
|H(A)|+ α′|H(A)|

= |H(A)|
1 + αmd + α2

md
1 + αmd

. (20)

If αmd = α′ and αmd on the order of 0 < αmd < 0.1, then 1+αmd+α2
md

1+αmd
≈ 1 , and we obtain :

|H(C)| ≈ |H(A)| , (21)

which means that the energy remains conserved for small αmd-values. The renormalization
to the underlying Hamiltonian leads to a reduction of the added bias s to the norm of the applied
un-biased gradient. We summarize that the magnitude of the added bias s derived from multiple
path-dependent increments depends from the coupling parameters β′md, β′ and the fluctuation
parameters η′md, η′. Considering the fact that bonded interactions in the biomolecular forcefield
can contribute with gradients > 104 kJ/mol/nm, a coupling with a factor with a magnitude of
β′md = β′ = 10−4 corresponds to the order of magnitude of typical non-bonded interactions. In general,
the renormalization procedure guarantees a sampling in which the occurrence of non-equilibrium
configurations is prevented and has the advantage that the applied bias enhances the sampling of the
system through the addition of renormalized fluctuations. That means that the underlying Hamiltonian
is not overdamped through the application of a bias exceeding the un-biased fluctuations, where
essential configurations are potentially not accessed. We tested the influence of the α parameters
in simulations of SPC/E and TIP3P water, where we investigated the dielectric and the structural
properties of water in dependency of the simulation parameters (see Figure 2 b and the supplementary
material : Section - 2. Water simulations. supplementary Table 1, Table 2, Figures S1 and S2).

1.2. Adaptive bias MD

For the adaptive bias MD section of the algorithm, we derive a history dependent bias ∇H(B)ab of
the form :

∇H(B)ab =
NR

∑
i

N

∑
k

γ′ik(t)dLabik
(t) =

NR

∑
i

N

∑
k

γ′ik(t)(pk(t) + dpk(t))dqk(t) . (22)

using a number of NR-biases in which the bias is re-evaluated within periods of τ1ik for the bias
with an index i and atom k. As we introduced in our previous work, we define the corresponding force
Fb(t) at time t, and use time-derivative of ∇H(B)ab : d

dt H(B)ab = ˙H(B)ab :
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d
dt

H(B)ab = ˙H(B)ab

=
NR

∑
i

N

∑
k

[
γ′ik(t)

d
dt

[(pk(t) + dpk(t))dqk(t)]

+ γ̇′ik(t)(pk(t) + dpk(t))dqk(t)
]

. (23)

As we defined in the equation 8, the added bias has to fulfill the condition that lim
t→∞
〈dLab(t)〉t ≈ 0

in order to sample the system at equilibrium. That also implies that the averages of γik have to fulfill

that < γ′ik(t) >= 0 and
〈

dγ′ik
dt

〉
≈ 0. That relation is fulfilled if :

〈
γ′ik(t)

〉
= 0 , (24)

which is implemented by :

〈
γ′ik(t)

〉
=
〈
γ′′ik − ξγ′′ik

〉
= 0 , (25)

where γ′′ik stands for the fluctuation range with the dimension of a length ([nm−1]) and ξ is a
normally distributed random number with a weight equal 1. We used a constant value γ′′ik = 10−4 in
all simulations. To enhance sampling along a history-dependent pathway in adaptive bias MD, we
employ a coarsening expressed by :

d
dτ1ik

˙H(B)ab =

=
NR

∑
i

N

∑
k

d
dτ1ik

×
(
(γ′ik(t)

d
dt

[(pk(t) + dpk(t))dqk(t)]

+ γ̇′ik(t)(pk(t) + dpk(t))dqk(t))
)

. (26)

By taking into account that d
dτ1ik

(
γ̇′ik(t)(pk(t) + dpk(t))dqk(t))

)
≈ 0 we use that formalism to

define the differential over a finite time increments τ1ik to coarse-grain the dynamics and to increase
the computational efficiency, which leads to an expression for the corresponding force in adaptive bias
MD :

∇H(B)ab(τ1) =
d ˙H(B)ab

dτ1
dτ1

=
NR

∑
i

N

∑
k

[
γ′ik(t)

d
dτ1ik

(
d
dt

[(pk(t) + dpk(t)) dqk(t)]
)

dτ1ik

+
dγ′1ik

(t)

dτ1ik

dτ1ik

(
d
dt

[(pk(t) + dpk(t)) dqk(t)]
)]

. (27)

1.3. Path sampling

In the path-sampling, we use a definition of the reactive coordinate σik(t) to determine the biasing
segment ∇H(B)σ as function of the increment dLσik (Lik)(t), which we define as [11] :

σik(t) = dLσik (Lik)(t), (28)
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with Lik(t) =
∫ t

t0

(
dp(t)

dt dq(t) + p(t) dq(t)
dt

)
dt′, equal to the path integral reached by integration till

time t for the bias with index i and atom k. In cartesian coordinates : σik(t) = {Lxik (t), Lyik (t), Lzik (t)}
and L(t) = {

∮
pxik dxik,

∮
pyik dyik,

∮
pzik dzik}. Along σik(t) a history dependent bias potential Φt

ik is
added in intervals of τ2ik :

Φt
ik = −

∂

∂σik
Wik ∑

t≤tb

∏
ik

exp

−|σik − σ
t−τ2ik
ik |

2δσ2
ik

 , (29)

where the height Wi and the width δσi are conventionally parameters chosen to provide
computational efficiency and an efficent exploration of the free energy F (∇H(B)σ). We define the bias
component as :

∇H(B)σ(τ2ik ) = ∇σik(t)Φ
t
ik . (30)

That formulation constantly drives the system to explore new configurations along the variable
Lik(t) and prevents the system to revisit conformers, which have been sampled previously. In the
implementation for an efficient exploration of this space, we note that our algorithm uses the definition
[2] :

δσik = |σ
tbik
ik − σ

t′bik
ik | , (31)

where the times tbik
and t′bik

are defined by τ2ik = tbik
− t′bik

. We apply a variable height of each
Gaussian added to an individual variable :

Wik = W exp (−Φt
ik/∆E)×

|σ
tbik
ik − σ

t′bik
ik |

σ
tbik
ik

, (32)

where W and ∆E are constants [12] We applied constant values W = 0.1 kJ/mol (∆E = 1000
kJ/mol) in all simulations. In order to accelerate the sampling along H(B) and H(B)R, we re-evaluate
the principal components of H(B) in order to sample the system along its slowest modes of the 2
segments H(B)ab and H(B)σ. Therefore, we diagonalize the matrices dLσik (Lik) and dLabik

(t). The
corresponding eigenvectors with the smallest eigenvalue represent the slowest modes and are applied
to the system [13].

2. Results : Water simulations

In this section, we discuss our results from the simulations of 2 water models : TIP3P and SPC/E,
with the sampling algorithm along multiple pathways. We tested the influence of the 2 renormalization
parameters β, η′ and ηMD on the time-dependent relaxation of the total dipole moment of the system.
We also varied the parameters NR and the 2 time-periods τ1 and τ2 and tested their influence on the
dielectric properties of the 2 water models. As key quantities, we chose the radial distribution function
g(r), the dielectric permittivities (static) ε(0) (frequency dependent) ε(ω) and the diffusion coefficients
as a quantitative measure of the properties of water in dependency of the simulation parameters.

As stated in the main text, we consider the effect of the multiple renormalized biases and the
renormalization parameters on the dynamical relaxation behavior of a time-dependent quantity X
describing a system, such as the relaxation of the time-dependent total dipole moment M(t) of a water
system. Any quantity X(t) in an unbiased simulation follows a time-correlation function A(X)(t),
which can be described by an expansion to M monoexponential decay processes with periods τm,
which is defined by the time-behavior of a quantity X, rate constants km and prefactors Am0 :



Int. J. Mol. Sci. 2019, 20, 370 7 of 28

A(X)(t) =
M

∑
m

Am0 exp(−kmt) . (33)

In contrast to the equilibrium MD case, a bias coupled to a set of NR biases to N atoms, with τ1 and
τ2 leading to an actual acceleration in terms of a change in the time-correlation function. That results in
a modified relaxation behavior, affecting all dynamical quantities (That can lead to accelerated folding
times, modified diffusion constants and re-orientation kinetics of H-bonds or dipoles in the system.
There is also an effect on quantities such as the static and dynamic dielectric properties), which we
write as an heuristic equation (as described in our simulation results of the dielectic response of SPC/E
and TIP3P water) :

Am(X)(t) =
M

∑
m

(
A′i0

NR

∑
i

A′im0

)
(

exp
(
−
(

k′m +
NR

∑
i

kim

)
trel

))
, (34)

where NR stands for the number of renormalized biases and kiR is the rate-constant within each
bias with index l, and we note that the time t changes to a relative time trel , which scales linear
with an acceleration factor ρ > 1: trel = ρt, as long as the coupling to the underlying un-biased
gradient remains sufficiently low (βik ≤ 1 × 10−4, η′ = ηMD ≈ 25 - see Section : Methods, E:
’Renormalization to the underlying Hamiltonian’) in the enhanced sampling simulation. The relation
34 shows that depending on the magnitude and the parameters (β, NR and the coupling times τ1,
τ2), the Hamiltonian of the system and the time-correlation behavior in the simulation are modified,
while the processes depending from the parameters A and rate constants k still are described by
modified monoexponential time-dependent decays, since the renormalization and the conditions on
adaptive bias MD obey the principle of action as described in the equation 5 in the main text. In other
words, dynamical quantities such as dielectric quantities related to dipole fluctuations and in general
fluctuation-dependent properties related to a linear response of the system can effectively be varied
through the choice of the bias-parameters.

2.1. Water simulations : System preparation and analysis

We used SPC/E and TIP3P water simulations in order to test the influence of the new simulation
method on the correlation behavior of the system and to validate the property of the algorithm to
change dynamic properties while structural properties of water remain approximately unaffected.

For the sampling of dielectric properties of SPC/E and TIP3P water, we filled a box with
dimensions 1× 1× 1 nm3 with 33 water molecules (SPC/E or TIP3P). We applied PME electrostatics
with a cut-off of 0.4 nm, while van der Waals interactions have been calculated using a shift function
with the same cutoff. We checked the size-dependency of our results in simulations of a system with
size of 5× 5× 5 nm3 filled with 4124 water molecules (PME electrostatics with a real-space cut-off of
0.8 nm, and a cut-off for the Lennard-Jones 12-6 interactions of 0.6 nm). We used the same system and
applied identical parameters to test replica exchange MD (REMD) using 4 replicas at 300 K with an
exchange interval every 1,000 time-steps. For the REMD simulations, we omitted the determination of
frequency dependent dielectric properties. All simulations have been carried out in the NVT-ensemble
using the Nosé-Hoover thermostat (i.e. the Nosé-Hoover equations of motion) with a coupling interval
of τc = 1 ps and a reference temperature of 300 K. The small water-systems have been propagated
over 20 ns, while the larger reference systems have been sampled over approximately 5 ns.

For the biased water-simulations, we used a β coupling parameter of 5× 10−4, 20 replicas and
τ1=5 ps, τ2=10 ps. The variational parameters have been chosen with a width that no variation of β
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and τ1, τ2 has been performed. The gradient optimization have been switched off. We systematically
varied ηMD and η′ from 0 to 500.0. For the calculation of frequency dependent properties of the
dielectric constant ε(ω), we calculated the autocorrelation function using the g_dipoles module. We
normalized the faster decay of the dipole-autocorrelation function from the biased simulations to
the decay in the MD-simulations of SPC/E and TIP3P water using the relative positions of the first
zero-value of the autocorrelation functions. In other words, we determined the acceleration factor
η′ of the biased-simulation relative to the un-biased simulation in terms of the decay of the dipole
autocorrelation function from 1 to 0 (see Figure 1S), which means that the effective acceleration in
the reorientation of the water dipoles introduced by the bias is considered as general acceleration η′

in the sampling of the underying system. That prodedure leads to the correct frequency dependent
dielectric permittivity in comparison with the experiment (see section : Results and Discussion, Water
simulations, Dielectric properties).

The static dielectric constant ε(0) have been calculated using the Kirkwood factor gk as
implemented in the gromacs-4.5.5 analysis module g_dipoles, using [14] :

gk =
1

Nµ2 (〈M
2〉 − 〈M〉2) , (35)

and

ε(0) = 1 +
4
3

πNgkµ2/(kBT) . (36)

The frequency dependent dielectric constant ε(ω) has been calculated using the g_dielectric
module from GROMACS [15]. That formalism uses a normalized autocorrelation function Φ(t) :

Φ(t) =
〈M(0)M(t)〉
〈M2〉 , (37)

and uses the Fourier-Laplace transform[16] :

ε(ω)− 1
ε(0)− 1

2εr f + ε(0)
2εr f + ε(ω)

=
∫ ∞

0

(
−dΦ(t)

dt

)
e−iωtdt . (38)

For the case of the sampling along NR multiple biases, we refer to equation 34 and state that the
static permittivity can be modified in dependency of the coupling parameters η′, β and the number
of multiple biases NR. For the 2 processes as described in the equations 35 and 38, the correlation
functions then effectively yield different permittivity values. As starting parameters for the fit to the
decay of the autocorrelation function, we used a double exponential function with the fit parameters
A = 0.5, τ1=10 ps, τ2=1 ps, ε(0) resulting from the first analysis using the Kirkwood factor, εRF=78.5
and a smoothing over 10 data points.

2.2. Water simulations : Results

2.2.1. Dielectric properties

We determined the static permittivities ε(0) (ε(ω) at frequency ω = 0) as function of simulation
time in biased and unbiased simulations for SPC/E and TIP3P water. Through the investigation of
the dependency from the ηMD and the η′-parameters on the static permittivity, we determined the
property of our algorithm to influence the correlation behavior of the underlying system. We used a
static amount of bias-replicas and a constant coupling constant β in order to measure the dependency
from the fluctuation dependent parameters ηMD and η′. Our results are summarized in Table 2.

In the biased simulations of SPC/E water, a parameter of ηMD=500, η′=1.0 yielded the lowest
value of ε(0)=53. We reach a maximum value in the static permittivity of ε(0)=119 using parameters
ηMD=100.0, η′=100.0, and obtain a permittivity value of ε(0)=78.4 using the parameters ηMD=30.0,
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Fig. S1. Normalized dipole autocorrelation functions from MD- and biased simulations of SPC/E
and TIP3P water. We scaled the decay time of the autocorrelation result of biased SPC/E and TIP3P
water to determine the linear acceleration factor η′ by which the reorientation of the dipole of water
is accelerated (see section Methods in the main text). We find that η′=10 yields an optimal fit to the
decay of the unbiased simulation and also leads to a good agreement with the experimental frequency
dependent permittivity ε(ω) (see main text).

η′=30.0 independent from the dimension of the system (1 nm3 and 125 nm3). In the MD-simulations of
the systems with dimensions 1× 1× 1 nm3 and 5× 5× 5 nm3, we determine values for the permittivity
of ε(0)=68.7 and ε(0)=66.5 (see Figure 2S c). We mention that the results contain an associated error of
approximately ∆ε(0) ≈ 1-2.

Using biased simulations of the TIP3P-water model in systems with the same dimensions, we
obtain the lowest value for the static permittivity of ε(0)=55 using ηMD=500, η′=1.0 . In contrast, we
measure a maximum value in the static permittivity of ε(0)=92 with the parameters ηMD=1.0, η′=1.0.
We obtain a permittivity value of ε(0)=78.0 using ηMD=110.0, η′=1.0. In the MD-simulations of the
1× 1× 1 nm3 and the 5× 5× 5 nm3 box we determine values for the permittivity of ε(0)=93 and
ε(0)=102 (see Figure 2S d). We yielded approximately an identical value in a 5× 5× 5 nm3 box with
the same parameters.

We analyzed the frequency dependent permittivities ε(ω), and observed a decay in ε′(ω)spec

from a value of 78.4 to 2.69 within the frequency range from 8E-3 to 1 THz in the simulation of
SPC/E water using ηMD=30.0, η′=30.0. The same function decays 4 times slower in the simulation
of TIP3P-water using ηMD=110.0, η′=1.0 in the frequency range from 8E-3 to 4 THz. In the unbiased
MD-simulation of SPC/E water, we observe a decay of ε′(ω)spec from 72 to 3.2 in the frequency range
from 2.5E-3 to 7.5E-2 THz, while we measure a decay from 92.6 to 3.1 within the frequency range
from 8.7E-3 to 4 THz in the unbiased MD-simulation of TIP3P-water. In the case of ε′′(ω) (i.e. the
imaginary part of the frequency dependent permittivity), we observe a strong effect of the bias on the
location of the maximum along the frequency axis. In the simulation of SPC/E water using ηMD=30.0,
η′=30.0, we find a maximum value of ε′′(ω)spec=39.7 at 0.11 THz. For TIP3P water simulated with
the parameters ηMD=110.0, η′=1.0, we find a maximum value of ε′′(ω)spec=31.47 at 0.107 THz. The
experimental maximum is located at approximately ε′′(ω)spec=37.24 and ε=0.12 THz [17]. In contrast,
in the unbiased MD-simulations of SPC/E and TIP3P-water, we obtain maxima in ε′′(ω)spec=39.69
at ω=0.031 THz (SPC/E) and ε′′(ω)spec=44.5 at ω=0.19 THz (TIP3P). In the analysis of the REMD
simulations, we omitted this analysis for the REMD trajectories of SPC/E and TIP3P water.
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Fig. S2. Results from simulations of SPC/E and TIP3P water using MD and the path sampling
technique. (a) Final configuration of a SPC/E water simulation after 20 ns of simulation. (b) Site-site
radial distribution functions (RDF) (water oxygen - OW, water hydrogen - HW) from biased and
unbiased MD simulations of SPC/E and TIP3P-water. (c, d) Static permittivities ε(0) as function of
MD-simulation time using different coupling ηMD and η′′-parameters in the individual simulations (c)
- SPC/E water, (d) TIP3P water. (e) Frequency dependent permittivities ε(ω) as function of frequency
ω obtained from biased and un-biased simulations of SPC/E and TIP3P water (SPC/E ηMD = η′=30.0,
TIP3P ηMD=120, η=1.0). (f) Mean-square displacement as function of simulation time from MD- and
biased simulations of SPC/E and TIP3P water. Experimental values for the dielectric spectrum (ε′′(ω))
taken from ref. [17]. For the REMD simulations, we used 4 replicas at an identical target temperature
(see section Methods) in order to sample the properties of water at 300 K.

2.2.2. Structural and dynamic properties

We analyzed the site-site specific radial distribution functions (RDF) of SPC/E and TIP3P-water
obtained from biased and un-biased simulations of the system with a dimension of 125 nm3. We
measured the RDFs between water-oxygen, water-oxygen (OW-OW), water-oxygen, water-hydrogen
(OW-HW) and water-hydrogen, water-hydrogen (HW-HW). Our results on the structural and dynamic
properties are summarized in Table 2.

In unbiased MD-simulations of SPC/E water the RDFs contain maxima ((water
oxygen-oxygen)(OW-OW) 0.276 nm (1), 0.45 nm (2) and 0.69 nm (3)), ((water
oxygen-hydrogen)(OW-HW) 0.176 nm (1) and 0.326 nm (2)), while biased simulations of the
same system using ηMD=40.0 and η’=40.0 contain maxima ((water oxygen-oxygen)(OW-OW) 0.276 nm
(1), 0.45 nm (2) and 0.676 nm (3)), ((water oxygen-hydrogen)(OW-HW) 0.176 nm (1) and 0.322 nm
(2)). In unbiased MD-simulations of TIP3P water we find maxima ((water oxygen-oxygen)(OW-OW)
0.278 nm (1), 0.45 nm (2) and 0.698 nm (3)), ((water oxygen-hydrogen)(OW-HW) 0.184 nm (1) and
0.322 nm (2)), while biased simulations of the same system using ηMD=120.0 and η’=1.0 contain
maxima ((water oxygen-oxygen)(OW-OW) 0.272 nm (1), 0.54 nm (2) and 0.802 nm (3)), ((water
oxygen-hydrogen)(OW-HW) 0.178 nm (1) and 0.314 nm (2)) (see Figure 2S b). Using the same
η-coupling parameters, the REMD simulations of both SPC/E and TIP3P lead to approximately the
same results as in the sequential simulations.

The relative probability densities as the different positions of the maxima are shifted in the
biased simulations relative to the unbiased MD-simulations. Between the un-biased and the biased
simulation of SPC/E water, we observe shifts (OW-OW) : 0.276 (3.08483)-0.274 nm (3.19019) (un-biased,
biased) ∆ ≈ 0.11, 0.45 (1.11738)-0.45 nm (1.04048) (un-biased, biased) ∆ ≈ 0.07, 0.69 (1.04572)-0.676
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RDF(OWOW) 1st. d(nm) (g(r)) RDF(OWOW) 2nd. RDF(OWOW) 3rd d(nm) RDF (OWHW) 1st.
SPC/E, MD 0.276 nm (3.08483) 0.45 nm (1.11738) 0.69 nm (1.04572) 0.176 nm (1.601)
SPC/E, ηMD=30.0, η′=30.0 0.274 nm (3.19019) 0.45 nm (1.04048) 0.676 nm (1.02558) 0.176 nm (1.65284)
SPC/E, ηMD=30.0, η′=30.0, REMD 0.276 (3.05329) 0.45 nm (1.09015) 0.69 (1.03992) 0.178 nm (1.57627)
TIP3P, MD 0.278 nm (2.68578) 0.45 nm (1.00191) 0.698 nm (1.02386) 0.184 nm (1.25325)
TIP3P, ηMD=120.0, η′=1.0 0.272 nm (2.76855) 0.54 nm (1.06742) 0.802 nm (1.00734) 0.178 nm (1.12709)
TIP3P, ηMD=120.0, η′=1.0, REMD 0.28 nm (2.25373) 0.56 nm (1.04699) 0.806 nm (1.00143) 0.186 nm (0.902549)
Experiment[18] 0.288 nm (3.09) 0.45 nm (1.14) 0.673 nm (1.07) 0.185 nm (1.38)

Table 1. Results from biased and unbiased MD-simulations of SPC/E and TIP3P water in a comparison
with experimental results [17–21]. For the biased simulations, we used 20 bias replicas, a coupling
strength β = 5× 10−4, and ηMD=30.0 (SPC/E), 110.0 (TIP3P), η′=30.0 (SPC/E), 1.0 (TIP3P) which
influences the fluctuation strength and quantities connected to the correlation behavior as the static and
frequency dependent permittivity (ε(0), ε(ω)). For the REMD simulations, we used 4 replicas at the
same target temperature of 300 K (see section Methods), while we used the same coupling parameters
and number of bias-replicas. From left to right : Maxima of the site-site specific radial distribution
functions averaged over the individual trajectories (water-oxygen, water-oxygen (OW-OW)) (position
d(nm), g(r) value in brackets), (water-oxygen, water-hydrogen (OW-HW)). Self diffusion coefficients
(D). Static permittivity. Maximal value of the imaginary part of the frequency dependent permittivity
(ε′′(ω)max). Frequency ω at the maximal value of ε′′(ω). We omitted this analysis for the REMD
simulations.

nm (1.02558) (un-biased, biased) ∆ ≈ 0.07, (OW-HW) : 0.176 (1.601)-0.176 nm (1.65284) (un-biased,
biased) ∆ ≈ 0.05, and 0.326 (1.58315)-0.326 nm (1.57126) (un-biased, biased) ∆ ≈ 0.01. In the biased
and un-biased simulations of TIP3P water, we measure shifts (OW-OW) : 0.278 (2.68578)-0.272 nm
(2.76855) (un-biased, biased) ∆ ≈ 0.08, 0.45 (1.00191)-0.54 nm (1.06742) (un-biased, biased) ∆ ≈ 0.06,
0.698 (1.02386)-0.802 nm (1.00734) (un-biased, biased) ∆ ≈ 0.02, (OW-HW) : 0.184 (1.25325)-0.178
nm (1.12709) (un-biased, biased) ∆ ≈ 0.1, and 0.322 (1.44738)-0.314 nm (1.35551) (un-biased, biased)
∆ ≈ 0.09. In terms of the structural properties, the REMD simulations of both water systems (TIP3P
and SPC/E) reach an approximately identical behavior as in the sequential simulations.

In the MD-simulation of SPC/E water, we measure a self-diffusion coefficient D of 1.0866 (±
0.2011) 10−5 cm2

s . The self diffusion in the enhanced sampling simulation of SPC/E water using
ηMD=30.0 and η’=30.0, equals 2.4436 (± 0.1665) 10−5 cm2

s . In the MD-simulation of TIP3P water, we
measure a self-diffusion coefficient D with a value of 2.3045 (± 0.1547) 10−5 cm2

s , while the enhanced
simulation of the same system using ηMD=120.0 and η’=1.0 results in a value for D of 17.0078 (±
5.2154) 10−5 cm2

s (see Figure 2S f). The self-diffusion coefficient observed in the REMD simulations
exceeds the values from the sequential runs, where we observe a value of 10.3925 10−5 cm2

s for SPC/E
water and a value of 50.5028 10−5 cm2

s for TIP3P water.

2.2.3. Discussion

SPC/E water and the TIP3P model have been investigated in a number of MD simulation studies
[15,17,22–26]. For the self diffusion coefficients of SPC/E water, a coefficient D of 3.02 10−5 cm2

s

has been determined in simulations, while simulations of TIP3P yielded 6.23 10−5 cm2

s [25]. An
experimental value of 2.30 10−5 cm2

s has been reported for the self-diffusion coefficient of water
[19,20]. The self-diffusion coefficient obtained in the biased simulation of SPC/E water is in very good
agreement with that experimental value. Maxima in the site-site specific RDFs ((OW-OW) 0.288 nm
(1), 0.45 nm (2) and 0.673 nm (3)), ((OW-HW) 0.185 nm (1) and 0.330 nm (2)) have been determined
in neutron diffraction experiments [18], while site-site specific RDFs ((OW-OW) 0.278 nm (1), 0.45
nm (2) and 0.685 nm (3) (SPC/E)) ((OW-OW) 0.277 nm (1), 0.45 nm (2) and 0.684 nm (3) (TIP3P)),
((OW-HW) 0.180 nm (1) and 0.327 nm (2) (SPC/E)) ((OW-HW) 0.183 nm (1) and 0.322 nm (2) (TIP3P))
have been measured in simulations [25]. Our results from the biased and un-biased simulations of
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RDF(OWHW) 2nd. d(nm) (g(r)) D (10−5 cm2

s ) ε(0) ε′′(ω)max ωmax(THz)
SPC/E, MD 0.326 nm (1.58315) 1.0866 (± 0.2011) 68.7/66.5 39.69 0.031
SPC/E, ηMD=30.0, η′=30.0 0.326 nm (1.57126) 2.4436 (± 0.1665) 78.4 39.7 0.11
SPC/E, ηMD=30.0, η′=30.0, REMD 0.328 nm (1.55756) 10.3925 (± 1.8549) 77.7 – –
TIP3P, MD 0.322 nm (1.44738) 2.3045 (± 0.1547) 93/102 31.47 0.19
TIP3P, ηMD=120.0, η′=1.0 0.314 nm (1.35551) 17.0078 (± 5.2154) 78.0 44.5 0.107
TIP3P, ηMD=120.0, η′=1.0, REMD 0.326 nm (1.34292) 50.5028 (± 4.7595) 79.7 – –
Experiment[17–21] 0.33 nm (1.6) 2.30 78.4 37.24 0.12

Table 2. Results from biased and unbiased MD-simulations of SPC/E and TIP3P water in a comparison
with experimental results [17–21]. For the biased simulations, we used 20 bias replicas, a coupling
strength β = 5× 10−4, and ηMD=30.0 (SPC/E), 110.0 (TIP3P), η′=30.0 (SPC/E), 1.0 (TIP3P) which
influences the fluctuation strength and quantities connected to the correlation behavior as the static and
frequency dependent permittivity (ε(0), ε(ω)). For the REMD simulations, we used 4 replicas at the
same target temperature of 300 K (see section Methods), while we used the same coupling parameters
and number of bias-replicas. From left to right : Maxima of the site-site specific radial distribution
functions averaged over the individual trajectories (water-oxygen, water-oxygen (OW-OW)) (position
d(nm), g(r) value in brackets), (water-oxygen, water-hydrogen (OW-HW)). Self diffusion coefficients
(D). Static permittivity. Maximal value of the imaginary part of the frequency dependent permittivity
(ε′′(ω)max). Frequency ω at the maximal value of ε′′(ω). We omitted this analysis for the REMD
simulations.

SPC/E-water are in good agreement with their results. Investigations on the dielectric properties
of water are of specific interest and especially the SPC/E water model has been found to describe
frequency dependent dielectric permittivities shifted by -0.1 THz to the experimental maximum of
ε′′(ω) [17], while a value of 70.7 [23] for the static permittivity value ε(0) has been reported. That
value is shifted in comparison to the experiment by a value of approximately 8, while the experimental
value is at 78.4 at room temperature [21]. In contrast to the SPC/E water model, static permittivities
in the range from 93 to 104 have been observed for the TIP3P water model, while its peak for ε′′ in
the dielectric spectrum is shifted by approximately +0.1 THz in relation to the experimental value
[17,24]. In terms of the static and frequency dependent permittivity value, our result from the biased
simulation of SPC/E water is in good agreement with the experiment. That also holds for the REMD
simulation in the case of the static permittivity, while we omitted the frequency dependent analysis
due to the dependency of the dynamics of the system from the exchange frequency. The dielectric
behavior of water plays an important role in the behavior of biomolecules, while static dielectric
constants for biomolecular systems ranging from 10 to 20 have been reported [27,28]. Especially the
non-polar region of proteins, which is shielded from the solvent in its folded state, can contain values
for ε(0) of approximately 5 [29]. However, here it remains questionable to speak of a dielectric constant,
which is a macroscopic quantity and might not be reducable to a range below the nm length-scale.
Recent studies investigated the effect of ions and the folding of alanine-pentapeptide on the dielectric
relaxation behavior of the underlying systems [30,31].

We conclude that the presented algorithm can change the time-dependent properties of SPC/E
and TIP3P water through a scaling of ηMD and η′, as we stated in the main body of the text in the
Section : Methods. Especially the parameter ηMD can modify the time-dependent decay of the total
dipole moment in comparison with the conventional MD propagation. We found that the magnitude
η′ affects the fluctuations of the applied bias averaged and also can change with the number of parallel
replicas, as we find in the REMD simulations. For the TIP3P model, the charge density has a high
value that a large value for ηMD=120.0 has to be used to scale down the static permittivity to a value of
78. That scaling has a significant effect on the water structure in comparison with the experimental
result and shifts the location of maxima in the RDF. In the case of the SPC/E water, a scaling of η′ to
larger values yields the correct static permittivity value, an approximately correct water-structure in
comparison with the experiment as well as a comparatively good agreement in its dielectric relaxation
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behavior with experimental results. As we find in the REMD case, we observe that the combination of
REMD with the multiple path-sampling can sample the structural properties of water in terms of the
radial distribution function and the static permittivities in the same way as the sequential technique.
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Fig. S3. (a, c, e, g) Difference dij(t) − dij(exp) of the distance between NMR-distance restraint
indexed atoms ij and the experimental value as function of time and the restraint index. (b, d,
f, g) Probability of finding the system within the difference of the distance between NMR-distance
restraint indexed atoms ij and the experimental value dij(t)− dij(exp). (a, b) Results from un-restrained
path-sampling simulation in implicit solvent. (c, d) Results from restrained path-sampling simulation
in implicit solvent using NMR-restraints. (e, f) Results from un-restrained path-sampling simulation
in explicit solvent. (g, h) Results from restrained path-sampling simulation in explicit solvent using
NMR-restraints.
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Fig. S4. Cluster populations from the cluster analysis of the simulations in implicit solvent
(unrestrained).
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Fig. S5. Cluster populations from the cluster analysis of the simulations in implicit solvent (NMR
restraints).
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Fig. S6. Cluster populations from the cluster analysis of the simulations in explicit solvent
(unrestrained).
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Fig. S7. Cluster populations from the cluster analysis of the simulations in explicit solvent (NMR
restraints).
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Fig. S8. (a, c) Average and minimal distance values along 11 distance restraints. (b, d) Population
densities of each of the 11 distance restraints as function of the difference between the distance and
the chemical restraint distance value as given in ref. [32]. (a, b) Resuls from restrained simulations in
implicit solvent. (c, d) Results from restrained simulations in explicit solvent.
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3. Restraint parameters

• Experimental NMR-NOESY restraint data used for the restraint simulations of the TrpCage
miniprotein from ref. [33] (restraint-index, residue number 1, atom-name, residue number 2,
atom-name, distance (Å)):

1 2LEU H 1ASN HA 2.500
2 1ASN HB2 2LEU H 2.900
3 3TYR H 2LEU H 2.500
4 4ILE H 2LEU H 3.300
5 5GLN H 2LEU HA 2.500
6 5GLN HB2 2LEU HA 2.900
7 2LEU HA 3TYR H 2.900
8 2LEU HB2 3TYR H 2.900
9 4ILE H 3TYR H 2.000

10 3TYR HB2 3TYR HA 2.000
11 6TRP H 3TYR HA 2.900
12 6TRP HB2 3TYR HA 2.900
13 6TRP HE3 3TYR HA 2.900
14 19PRO HB2 3TYR HA 3.300
15 19PRO HD2 3TYR HA 2.900
16 19PRO HG2 3TYR HA 2.900
17 19PRO HG2 3TYR HB2 2.900
18 3TYR HA 4ILE H 2.900
19 4ILE HB 4ILE H 2.000
20 5GLN H 4ILE H 2.500
21 6TRP H 4ILE H 3.300
22 4ILE HB 4ILE HA 2.900
23 7LEU H 4ILE HA 2.500
24 4ILE HA 5GLN H 2.900
25 4ILE HB 5GLN H 2.500
26 5GLN HB2 5GLN H 2.000
27 7LEU H 5GLN H 3.300
28 8LYS H 5GLN HA 2.500
29 8LYS HB2 5GLN HA 2.900
30 6TRP H 5GLN HB2 2.900
31 5GLN HA 6TRP H 2.900
32 5GLN HA 6TRP H 2.900
33 6TRP HB2 6TRP H 2.000
34 6TRP HE3 6TRP H 3.300
35 7LEU H 6TRP H 2.500
36 6TRP HD1 6TRP HA 2.500
37 9ASP H 6TRP HA 3.300
38 9ASP HB2 6TRP HA 3.300
39 6TRP HA 6TRP HB2 2.000
40 6TRP HD1 6TRP HB2 2.500
41 16ARG HB2 6TRP HD1 2.900
42 16ARG HD2 6TRP HD1 2.900
43 16ARG HG2 6TRP HD1 2.900
44 18PRO HA 6TRP HD1 3.300
45 16ARG H 6TRP HE1 3.300
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46 16ARG HB2 6TRP HE1 2.900
47 17PRO HA 6TRP HE1 2.900
48 18PRO HA 6TRP HE1 2.900
49 12PRO HA 6TRP HZ2 2.000
50 17PRO HA 6TRP HZ2 3.300
51 18PRO HD2 6TRP HZ2 3.300
52 12PRO HG2 6TRP HH2 2.900
53 7LEU HG 6TRP HZ3 3.300
54 7LEU HA 6TRP HE3 2.900
55 7LEU H 6TRP HE3 2.500
56 7LEU HG 6TRP HE3 2.000
57 6TRP HA 7LEU H 2.900
58 7LEU HB2 7LEU H 2.000
59 7LEU HG 7LEU H 2.500
60 8LYS H 7LEU H 2.500
61 9ASP H 7LEU H 3.300
62 7LEU HB2 7LEU HA 2.900
63 9ASP H 7LEU HA 3.300
64 10GLY H 7LEU HA 3.300
65 11GLY H 7LEU HA 2.000
66 11GLY HA2 7LEU HA 2.900
67 7LEU HA 8LYS H 2.900
68 7LEU HB2 8LYS H 2.500
69 8LYS HB2 8LYS H 2.000
70 9ASP H 8LYS H 2.000
71 10GLY H 8LYS H 3.300
72 8LYS HA 9ASP H 2.900
73 8LYS HB2 9ASP H 2.900
74 9ASP HB2 9ASP H 2.000
75 10GLY H 9ASP H 2.000
76 11GLY H 9ASP H 3.300
77 9ASP HA 10GLY H 2.900
78 11GLY H 10GLY H 2.000
79 10GLY HA2 11GLY H 2.900
80 11GLY HA2 11GLY H 2.000
81 12PRO HB2 12PRO HD2 2.500
82 13SER H 12PRO HD2 2.900
83 13SER H 12PRO HB2 3.300
84 6TRP HH2 12PRO HA 3.300
85 13SER H 12PRO HA 2.900
86 14SER H 12PRO HA 3.300
87 15GLY H 12PRO HA 3.300
88 13SER HB2 13SER H 2.500
89 14SER H 13SER H 2.000
90 13SER HA 14SER H 2.900
91 15GLY H 14SER H 2.000
92 14SER H 14SER HB2 2.000
93 15GLY H 14SER HB2 3.300
94 13SER HA 15GLY H 2.900
95 14SER HA 15GLY H 2.900
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96 15GLY HA2 15GLY H 2.000
97 15GLY HA2 16ARG H 2.900
98 15GLY H 16ARG H 2.000
99 17PRO HD2 16ARG HA 2.000

100 17PRO HD2 16ARG HB2 2.500
101 17PRO HD2 17PRO HB2 2.900
102 18PRO HD2 17PRO HA 2.500
103 18PRO HD2 18PRO HB2 2.900
104 19PRO HD2 18PRO HB2 2.500
105 6TRP HD1 19PRO HD2 3.300
106 18PRO HA 19PRO HD2 2.500
107 19PRO HD2 19PRO HB2 2.900
108 20SER H 19PRO HB2 2.900

• Experimental chemical crosslinking restraint data used for the restraint simulations of the Killer
Cell Lectin-like Receptor Subfamily B Member 1A from ref. [32] (restraint-index, residue number
1, atom- name, residue number 2, atom-name, distance (Å)):

1 166LYS N 179LYS N 20.000
2 179LYS N 196LYS N 20.000
3 148LYS N 196LYS N 20.000
4 146LYS N 196LYS N 20.000
5 125LYS N 212LYS N 20.000
6 146LYS N 148LYS N 20.000
7 147GLU N 148LYS N 12.000
8 121ASP N 125LYS N 12.000
9 123ASP N 125LYS N 12.000

10 143ASP N 146LYS N 12.000
11 176ASP N 196LYS N 12.000
12 176ASP N 179LYS N 12.000

• Restraint data set used for the restraint simulations of the Killer Cell Lectin-like Receptor
Subfamily B Member 1A from ref. [32] (restraint-index, residue number 1, atom-name, residue
number 2, atom-name, distance (Å)). We note that we considered each distance-value to be
significantly lower than the chemical cross-linking distances as described before (7.5 Å). The
distance value only affects the sign of the overlappling segment of the path-increment dL in
contrast to harmonic potentials:

1 212LYS N 121ASP N 7.500
2 212LYS N 121ASP H 7.500
3 212LYS N 121ASP CA 7.500
4 212LYS N 121ASP HA 7.500
5 212LYS N 121ASP CB 7.500
6 212LYS N 121ASP HB1 7.500
7 212LYS N 121ASP HB2 7.500
8 212LYS N 121ASP CG 7.500
9 212LYS N 121ASP OD1 7.500

10 212LYS N 121ASP OD2 7.500
11 212LYS N 121ASP C 7.500
12 212LYS N 121ASP O 7.500
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13 125LYS N 123ASP N 7.500
14 125LYS N 123ASP H 7.500
15 125LYS N 123ASP CA 7.500
16 125LYS N 123ASP HA 7.500
17 125LYS N 123ASP CB 7.500
18 125LYS N 123ASP HB1 7.500
19 125LYS N 123ASP HB2 7.500
20 125LYS N 123ASP CG 7.500
21 125LYS N 123ASP OD1 7.500
22 125LYS N 123ASP OD2 7.500
23 125LYS N 123ASP C 7.500
24 125LYS N 123ASP O 7.500
25 212LYS N 125LYS N 7.500
26 212LYS N 125LYS H 7.500
27 212LYS N 125LYS CA 7.500
28 212LYS N 125LYS HA 7.500
29 212LYS N 125LYS CB 7.500
30 212LYS N 125LYS HB1 7.500
31 212LYS N 125LYS HB2 7.500
32 212LYS N 125LYS CG 7.500
33 212LYS N 125LYS HG1 7.500
34 212LYS N 125LYS HG2 7.500
35 212LYS N 125LYS CD 7.500
36 212LYS N 125LYS HD1 7.500
37 212LYS N 125LYS HD2 7.500
38 212LYS N 125LYS CE 7.500
39 212LYS N 125LYS HE1 7.500
40 212LYS N 125LYS HE2 7.500
41 212LYS N 125LYS NZ 7.500
42 212LYS N 125LYS HZ1 7.500
43 212LYS N 125LYS HZ2 7.500
44 212LYS N 125LYS HZ3 7.500
45 212LYS N 125LYS C 7.500
46 212LYS N 125LYS O 7.500
47 146LYS N 143ASP N 7.500
48 146LYS N 143ASP H 7.500
49 146LYS N 143ASP CA 7.500
50 146LYS N 143ASP HA 7.500
51 146LYS N 143ASP CB 7.500
52 146LYS N 143ASP HB1 7.500
53 146LYS N 143ASP HB2 7.500
54 146LYS N 143ASP CG 7.500
55 146LYS N 143ASP OD1 7.500
56 146LYS N 143ASP OD2 7.500
57 146LYS N 143ASP C 7.500
58 146LYS N 143ASP O 7.500
59 196LYS N 146LYS N 7.500
60 148LYS N 146LYS N 7.500
61 196LYS N 146LYS H 7.500
62 148LYS N 146LYS H 7.500
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63 196LYS N 146LYS CA 7.500
64 148LYS N 146LYS CA 7.500
65 196LYS N 146LYS HA 7.500
66 148LYS N 146LYS HA 7.500
67 196LYS N 146LYS CB 7.500
68 148LYS N 146LYS CB 7.500
69 196LYS N 146LYS HB1 7.500
70 148LYS N 146LYS HB1 7.500
71 196LYS N 146LYS HB2 7.500
72 148LYS N 146LYS HB2 7.500
73 196LYS N 146LYS CG 7.500
74 148LYS N 146LYS CG 7.500
75 196LYS N 146LYS HG1 7.500
76 148LYS N 146LYS HG1 7.500
77 196LYS N 146LYS HG2 7.500
78 148LYS N 146LYS HG2 7.500
79 196LYS N 146LYS CD 7.500
80 148LYS N 146LYS CD 7.500
81 196LYS N 146LYS HD1 7.500
82 148LYS N 146LYS HD1 7.500
83 196LYS N 146LYS HD2 7.500
84 148LYS N 146LYS HD2 7.500
85 196LYS N 146LYS CE 7.500
86 148LYS N 146LYS CE 7.500
87 196LYS N 146LYS HE1 7.500
88 148LYS N 146LYS HE1 7.500
89 196LYS N 146LYS HE2 7.500
90 148LYS N 146LYS HE2 7.500
91 196LYS N 146LYS NZ 7.500
92 148LYS N 146LYS NZ 7.500
93 196LYS N 146LYS HZ1 7.500
94 148LYS N 146LYS HZ1 7.500
95 196LYS N 146LYS HZ2 7.500
96 148LYS N 146LYS HZ2 7.500
97 196LYS N 146LYS HZ3 7.500
98 148LYS N 146LYS HZ3 7.500
99 196LYS N 146LYS C 7.500

100 148LYS N 146LYS C 7.500
101 196LYS N 146LYS O 7.500
102 148LYS N 146LYS O 7.500
103 148LYS N 147GLU N 7.500
104 148LYS N 147GLU H 7.500
105 148LYS N 147GLU CA 7.500
106 148LYS N 147GLU HA 7.500
107 148LYS N 147GLU CB 7.500
108 148LYS N 147GLU HB1 7.500
109 148LYS N 147GLU HB2 7.500
110 148LYS N 147GLU CG 7.500
111 148LYS N 147GLU HG1 7.500
112 148LYS N 147GLU HG2 7.500



Int. J. Mol. Sci. 2019, 20, 370 25 of 28

113 148LYS N 147GLU CD 7.500
114 148LYS N 147GLU OE1 7.500
115 148LYS N 147GLU OE2 7.500
116 148LYS N 147GLU C 7.500
117 148LYS N 147GLU O 7.500
118 196LYS N 148LYS N 7.500
119 196LYS N 148LYS H 7.500
120 196LYS N 148LYS CA 7.500
121 196LYS N 148LYS HA 7.500
122 196LYS N 148LYS CB 7.500
123 196LYS N 148LYS HB1 7.500
124 196LYS N 148LYS HB2 7.500
125 196LYS N 148LYS CG 7.500
126 196LYS N 148LYS HG1 7.500
127 196LYS N 148LYS HG2 7.500
128 196LYS N 148LYS CD 7.500
129 196LYS N 148LYS HD1 7.500
130 196LYS N 148LYS HD2 7.500
131 196LYS N 148LYS CE 7.500
132 196LYS N 148LYS HE1 7.500
133 196LYS N 148LYS HE2 7.500
134 196LYS N 148LYS NZ 7.500
135 196LYS N 148LYS HZ1 7.500
136 196LYS N 148LYS HZ2 7.500
137 196LYS N 148LYS HZ3 7.500
138 196LYS N 148LYS C 7.500
139 196LYS N 148LYS O 7.500
140 179LYS N 166LYS N 7.500
141 179LYS N 166LYS H 7.500
142 179LYS N 166LYS CA 7.500
143 179LYS N 166LYS HA 7.500
144 179LYS N 166LYS CB 7.500
145 179LYS N 166LYS HB1 7.500
146 179LYS N 166LYS HB2 7.500
147 179LYS N 166LYS CG 7.500
148 179LYS N 166LYS HG1 7.500
149 179LYS N 166LYS HG2 7.500
150 179LYS N 166LYS CD 7.500
151 179LYS N 166LYS HD1 7.500
152 179LYS N 166LYS HD2 7.500
153 179LYS N 166LYS CE 7.500
154 179LYS N 166LYS HE1 7.500
155 179LYS N 166LYS HE2 7.500
156 179LYS N 166LYS NZ 7.500
157 179LYS N 166LYS HZ1 7.500
158 179LYS N 166LYS HZ2 7.500
159 179LYS N 166LYS HZ3 7.500
160 179LYS N 166LYS C 7.500
161 179LYS N 166LYS O 7.500
162 196LYS N 176ASP N 7.500
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163 179LYS N 176ASP N 7.500
164 196LYS N 176ASP H 7.500
165 179LYS N 176ASP H 7.500
166 196LYS N 176ASP CA 7.500
167 179LYS N 176ASP CA 7.500
168 196LYS N 176ASP HA 7.500
169 179LYS N 176ASP HA 7.500
170 196LYS N 176ASP CB 7.500
171 179LYS N 176ASP CB 7.500
172 196LYS N 176ASP HB1 7.500
173 179LYS N 176ASP HB1 7.500
174 196LYS N 176ASP HB2 7.500
175 179LYS N 176ASP HB2 7.500
176 196LYS N 176ASP CG 7.500
177 179LYS N 176ASP CG 7.500
178 196LYS N 176ASP OD1 7.500
179 179LYS N 176ASP OD1 7.500
180 196LYS N 176ASP OD2 7.500
181 179LYS N 176ASP OD2 7.500
182 196LYS N 176ASP C 7.500
183 179LYS N 176ASP C 7.500
184 196LYS N 176ASP O 7.500
185 179LYS N 176ASP O 7.500
186 196LYS N 179LYS N 7.500
187 196LYS N 179LYS H 7.500
188 196LYS N 179LYS CA 7.500
189 196LYS N 179LYS HA 7.500
190 196LYS N 179LYS CB 7.500
191 196LYS N 179LYS HB1 7.500
192 196LYS N 179LYS HB2 7.500
193 196LYS N 179LYS CG 7.500
194 196LYS N 179LYS HG1 7.500
195 196LYS N 179LYS HG2 7.500
196 196LYS N 179LYS CD 7.500
197 196LYS N 179LYS HD1 7.500
198 196LYS N 179LYS HD2 7.500
199 196LYS N 179LYS CE 7.500
200 196LYS N 179LYS HE1 7.500
201 196LYS N 179LYS HE2 7.500
202 196LYS N 179LYS NZ 7.500
203 196LYS N 179LYS HZ1 7.500
204 196LYS N 179LYS HZ2 7.500
205 196LYS N 179LYS HZ3 7.500
206 196LYS N 179LYS C 7.500
207 196LYS N 179LYS O 7.500
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