
 International Journal of 

Molecular Sciences

Article

Discrimination of DNA Methylation Signal from
Background Variation for Clinical Diagnostics

Robersy Sanchez * , Xiaodong Yang , Thomas Maher and Sally A. Mackenzie *

Departments of Biology and Plant Science, The Pennsylvania State University, University Park, PA 16802, USA;
xzy50@psu.edu (X.Y.); twm118@psu.edu (T.M.)
* Correspondence: rus547@psu.edu (R.S.); sam795@psu.edu (S.A.M.)

Received: 3 September 2019; Accepted: 24 October 2019; Published: 27 October 2019
����������
�������

Abstract: Advances in the study of human DNA methylation variation offer a new avenue for the
translation of epigenetic research results to clinical applications. Although current approaches to
methylome analysis have been helpful in revealing an epigenetic influence in major human diseases,
this type of analysis has proven inadequate for the translation of these advances to clinical diagnostics.
As in any clinical test, the use of a methylation signal for diagnostic purposes requires the estimation
of an optimal cutoff value for the signal, which is necessary to discriminate a signal induced by a
disease state from natural background variation. To address this issue, we propose the application of
a fundamental signal detection theory and machine learning approaches. Simulation studies and tests
of two available methylome datasets from autism and leukemia patients demonstrate the feasibility
of this approach in clinical diagnostics, providing high discriminatory power for the methylation
signal induced by disease, as well as high classification performance. Specifically, the analysis of
whole biomarker genomic regions could suffice for a diagnostic, markedly decreasing its cost.

Keywords: DNA methylation; signal detection; machine learning; leukemia; autism; clinical
diagnostic

1. Introduction

Cytosine DNA methylation (5-methylcytosine; 5mC, CDM) is one of the most well-studied
epigenomic marks and mechanistically understood epigenetic modifications to date [1,2]. It plays
important roles in various biological processes, including X-chromosome inactivation, genomic
imprinting, transposon suppression and transcriptional regulation [3]. Technological improvements
and dramatic cost reductions for whole-genome sodium bisulfite sequencing (WGBS) of DNA have
opened the door to the quantitative measurement of DNA methylation at a single base resolution, with
datasets now available from numerous species.

In humans, significant methylation differences are observed in the white blood cells of matched
monozygotic and dizygotic twins [4], and significant intra- and inter-population differential methylation
has been identified in a study of three human populations (Caucasian-American, African-American and
Chinese-American) [5]. Likewise, DNA methylation levels vary considerably in samples experiencing
changes during development [6,7] or in response to environmental change [5,8].

Translation of the advances in DNA methylation to clinical and personalized medical contexts has
been proposed [9–11]. Evidence of epigenetic alterations induced by disease emphasizes the significant
potential value of high-resolution methylation pattern analysis. However, proper translation of this
knowledge for diagnostics depends upon the development of genome-wide techniques for the rapid
and robust identification of specific epigenetic alterations associated with the disease [9,12].

Currently, there are numerous available bioinformatics tools to estimate the methylation status
of nearly every cytosine position within a whole-genome bisulfite sequencing dataset. These tools
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are generally supported by an application of robust statistical approaches; DSS [13], BiSeq [14], and
methylKit [15], among others, are ones that apply generalized linear regression (beta-regression) in the
estimation of differentially methylated positions (DMPs). In addition, methylKit provides the option
to apply Fisher’s exact test. Alternatively, methylpy [16] bases its estimation on the implementation of
the root-mean-square test (RMST) [17]. Most of these approaches do not incorporate the influence
of natural stochasticity (randomness) to their models, limiting their resolution predominantly to
genomic regions with the highest probability of having undergone a methylation change [1,18–20].
As a consequence, these approaches do not have the ability to distinguish the DMP signal associated
with a specific treatment (or disease) from DMPs deriving from natural variation within control (or
heathy) individuals, and are thus not suitable for clinical diagnostics. We suggest that methylation
variation in diagnostics is essentially a signal detection problem, equivalent to a binary classification
problem for discriminating healthy versus diseased individuals. Signal detection theory provides
the methodological framework to address this type of detection problem, evidenced in its common
application to clinical diagnostic tests, machine-learning (ML) approaches, and human communication
technologies [21–24].

The probability of extreme methylation changes occurring spontaneously in a control group
of samples by the stochastic fluctuations inherent to biochemical processes [25–27] and DNA
maintenance [18], requires the discrimination of this background variation from a biological treatment
signal. Regardless of environmental constancy, statistically significant methylation changes are found
in control populations with probability greater than zero [25,28,29]. These system fluctuations, inherent
in biological stochastic processes [30–32], comprise natural background variation detected in human
methylomes [5,33]. By simulation, it is feasible to demonstrate that DMPs spontaneously arise in control
populations, and that regulatory methylation signals also occur naturally in the control group [33].

Stochastic fluctuation of the methylation process is expected, since methylation regulatory
machinery participates, not only in organismal adaptation to micro- and macro-environmental
fluctuations [26,32], but also in transitions across different stages of organismal ontogenetic development.
This variation must be factored into the construction of a methylation pipeline to be used in
clinical diagnostics.

The need for the application of signal detection-based approaches in diagnostics was pointed out
decades ago [34], and is standard practice in current implementations of clinical diagnostic tests [21,35,
36]. Detection approaches are, by default, included in machine/statistical learning implementations for
classification tasks [37], since the evaluation of classifier performance is basically a detection problem.
Thus, the determination of the optimal cutoff (threshold) value at which signal can be discriminated
from noise at an acceptable signal-to-noise ratio (i.e., maximum accuracy and sensitivity, lowest false
discovery rate (FDR)) is equivalent to a classification problem, a direct corollary to diagnostic detection.

The natural spontaneous variation of DNA methylation in human populations [33] complicates
the discrimination of the methylation signal from background variation. We address this issue by
determining whether a given DMP detected in the treatment/patient population occurs within the
control population as well, and the probability of observing it. Therefore, the focus is not on the
identification of DMPs, but on whether these statistically significant changes occur with high probability
(under the fixed experimental conditions) in only the treatment group. Here we address this problem
in the context of signal detection theory and ML frameworks [21,22].

To illustrate the feasibility of our proposed approach in clinical diagnostics, results from simulation
studies and tests of two available methylome datasets from leukemia [38] and autism [39] patients
are presented and discussed. This approach is implemented in the R package Methyl-IT, available
at GitHub: https://github.com/genomaths/MethylIT. The R scripts to reproduce these analyses are
available at the PSU GitLab: https://git.psu.edu/genomath/MethylIT_examples.

https://github.com/genomaths/MethylIT
https://git.psu.edu/genomath/MethylIT_examples
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2. Results

2.1. Detection of the Methylation Signal

A basic requirement for the application of signal detection is knowledge of the probability
distribution for background noise (noise plus signal) [21]. Models for the probability distributions of
information divergences for methylation levels where derived on the basis of statistical physics [40].
The basic concept for the application of signal detection theory is shown in Figure 1.
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Figure 1. Schematic of the theoretical principle underlying signal detection applied to methylation
analysis. Knowledge of the probability distribution for the methylation signal, here given as the
Hellinger Divergence (H) of methylation levels, permits the identification of “true” differentially
methylated positions (DMPs) [21,22]. Critical values are used to discriminate between a biological
methylation signal and the molecular thermal noise generated by biochemical processes and conforming
to laws of statistical physics [25–27,40]. Next, signal detection is designed to identify an optimal cutoff

value, (here denoted as HDT
33 ) to discriminate the methylation signal induced by the treatment from the

natural background variation [5,33]. Empirical comparisons allow the placement of Fisher’s exact test
for the discrimination of DMPs.

Biologically meaningful methylation changes are distinguishable in the tails of the probability
distributions for methylation signal, which are experimentally derived from each individual. In the
current case, the signal is given in terms of the Hellinger Divergence (H) of methylation levels (Figure 1).
For a given level of significance α (Type I error probability, e.g., α = 0.05), cytosine positions with
H > Hα=0.05 can be selected as sites carrying a potential biological signal (shown as the blue shaded
region under the curve in Figure 1). The true signal is detected based upon an optimal cutoff value,
which can be estimated from a receiver operating characteristic (ROC) using different optimized indices
or using different ML approaches [23,24,36,41]. The probability that a DMP is not induced by the
treatment is designated as the probability of a false alarm (PFA, false positive, Figure 1).

As suggested in Figure 1, we postulate that most of the observed methylation changes are
induced by stochastic fluctuations that serve to stabilize the DNA molecule, and consequently, can be
explained within a statistical physics context. Statistical physics, however, cannot explain Hellinger
Divergence values above the cut point HDT

33 . These would comprise methylation changes induced by
the methylation regulatory machinery.



Int. J. Mol. Sci. 2019, 20, 5343 4 of 19

The stochasticity of methylation regulatory machinery effects is presumed to reflect system
heterogeneity; cells from the same tissue are not necessarily in the same state, and therefore,
corresponding cytosine sites differ in their methylation status. Consequently, overall organismal
response is conveyed as a statistical outcome that distinguishes the regulatory methylation signal from
statistical background “noise”.

Estimation of optimal cutoff value for the signal is an additional step to remove any remaining
potential methylation background noise with probability 0 ≤ α ≤ 0.05. We define as a methylation
signal (DMP) each cytosine site with Hellinger Divergence values above the cut point (shown in
Figure 1 as HDT

33 ). Each DMP-associated signal may or may not be represented within a DMP derived
by Fisher’s exact test (or other current tests).

The statistical tests generally applied to methylome analysis were not designed to discriminate the
methylation signal from background variation, so that their sensitivity is lower than that provided by a
signal detection approach. As illustrated in Figure 1, at a low average of methylation level differences,
cytosine positions with H values between HDT

33 and Hmin carry a methylation signal, but a Fisher’s exact
test can only detect signals in cytosine positions with H values greater than Hmin. The difference in
resolution is illustrated. An analogous situation can be observed for any other statistical test that does
not include information on the signal probability distributions from the control and treatment groups.

A flow chart of the signal detection and machine learning approach applied to implement the
model discussed above is given in Figure 2. Briefly, raw bisulfite whole genome DNA sequencing reads
are aligned by Bismark [42], methylation count (COV) files are extracted and read into R software,
and Hellinger Divergence is calculated by using the pool of methylation counts from control (healthy)
individuals as a reference. Potential differentially methylated positions (pDMPs) are estimated based
upon critical values of HDα=0.05 and TVD cut off points estimated for each individual from the best
fitted probability distribution model. Final DMPs are derived from the set of pDMPs by estimating the
optimal cut-off threshold for HD based on the Youden index or ML classification performance.

The performance of the model classifier is evaluated by cross-validation in Methyl-IT. A Monte
Carlo cross-validation helps to prevent an overfitting issue, providing a more accurate indication of
how well the model generalizes to unseen data [43]. Model overfitting occurs when a model learns
the features and noise in the training data to the extent that it negatively impacts performance of
the model on new data. This means that the noise or stochastic fluctuations in the training data are
learned as features by the model [44]. In Methyl-IT, an extensive Monte Carlo resampling (default
999) splits the dataset into training (default 60%) and testing sets reiteratively. Each time, several
classification performance indicators are computed: Accuracy, kappa statistic, sensitivity, specificity,
positive predictive and negative predictive values, detection rate and false discovery rate. The final
report includes the means of all indicators and their bootstrap confidence intervals. In addition, a
prediction function is provided to evaluate the model classifier performance on an external dataset.

2.2. Simulation Study

A summary of the datasets generated for simulation experiments is presented in Table 1. The
analyses involved the application of the built-in Monte Carlo cross-validation of the ML binary
classification model and the validation on external data. Two main sets of simulation experiments
were accomplished. For experiments 1 to 3 (small sample size), ML classification models were built on
a training set, and Monte Carlo cross-validation was performed for each of them. External validations
for the ML model obtained in the training set from 1 to 3 were performed on datasets 4 to 6 (larger
sample size, Table 1). Similarly, ML classification models were built on a training set from datasets 7 to
9 (sample size 50) and validation was accomplished as described previously. All control and treatment
DMPs from each subset, training or test subset (from all samples) were used for model building and
cross-validation, and likewise for the external validation, since the predictions were performed not for
samples, but for cytosine sites.
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Figure 2. Flow diagram of the signal detection and machine learning approach applied in our
methylation analysis study. The approach is implemented in the R package Methyl-IT, which is
available at GitHub: https://github.com/genomaths/MethylIT. Ovals represent input and output
data, squares represent processing steps, with signal detection processing and machine learning
steps highlighted in blue. For the machine learning classification performance evaluation, data from
independent individuals in the same population are preferred. The final step shown (DMGRs) is not
included in the current study, but is an analytical step that can be accomplished with Methyl-IT. Related
references are cited accordingly for each key step.

Classification performances shown in Table 1 suggest that if read counts come from the same
populations, (control/healthy or treatment/patient), that were used to build the binary ML classification
model, then the model is able to properly distinguish, with high accuracy, control DMPs from treatment.
Moreover, the robustness of the signal-detection-ML approach is retained even when the model is built
from a small sample size. Thus, the signal-detection-ML approach relies not on sample size, but on the
genome-wide probability distribution of the Hellinger Divergence.

The population homogeneity assumed in the simulation studies summarized in Table 1 is not
always the case for actual human data, where patients can belong to different subpopulations. In the
next section we show that in such a situation the signal-detection-ML remains sufficiently robust.

https://github.com/genomaths/MethylIT
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Table 1. Summary of the datasets generated for simulation experiments.

Dataset TV Average Cytosine
Sites/Sample Samples/Group * Cut-Point Accuracy Sen. Spe. FDR

1. Model building & cross-validation 0.0356 1,000,000 3 0.3500 1.0000 1.0000 1.0000 0.0000
2. Model building & cross-validation 0.1332 1,000,000 3 0.9404 0.9998 0.9997 1.0000 0.0000
3. Model building & cross-validation 0.1845 1,000,000 3 0.9251 1.0000 1.0000 1.0000 0.0000
4. External data for validation 0.0356 1,000,000 50 0.3500 1.0000 1.0000 1.0000 0.0000
5. External data for validation 0.1332 1,000,000 50 0.9404 0.9998 1.0000 1.0000 0.0000
6. External data for validation 0.1845 1,000,000 50 0.9251 1.0000 0.9999 1.0000 0.0000
7. Model building & cross-validation 0.0356 1,000,000 50 0.3500 1.0000 1.0000 1.0000 0.0000
8. Model building & cross-validation 0.1332 1,000,000 50 0.8667 1.0000 1.0000 1.0000 0.0000
9. Model building & cross-validation 0.1845 1,000,000 50 0.8306 1.0000 1.0000 1.0000 0.0000
10. External data for validation 0.0356 1,000,000 50 0.3500 1.0000 1.0000 1.0000 0.0000
11. External data for validation 0.1332 1,000,000 50 0.8667 1.0000 1.0000 1.0000 0.0000
12. External data for validation 0.1845 1,000,000 50 0.8306 1.0000 1.0000 1.0000 0.0000

* Four independent control samples were used to build the reference sample (the centroid) for each simulation 1 to 6; while twenty were used for simulations 7 to 12. All the R scripts for
these simulations are available at https://git.psu.edu/genomath/MethylIT_examples.

https://git.psu.edu/genomath/MethylIT_examples


Int. J. Mol. Sci. 2019, 20, 5343 7 of 19

As suggested in Figure 1, the signal detection-ML proposed here confronts two binary classification
problems to solve at once: (1) The classification of cytosine sites into two classes, DMPs and non-DMPs,
and; (2) the classification of DMPs into two classes, control and treatment DMPs. Results suggest
that the false positive rate (FPR) on the simulated (external) datasets for the classification problem (1)
remains below 0.05 (Supplementary Table S1).

Results from the simulation study involving different approaches to estimate DMPs are shown in
Figure 3. Three approaches were considered: (i) Fisher’s exact test (FT), (ii) differential methylation
analysis with the DSS R package [45], and (iii) signal detection (SD) implemented in the R package
Methyl-IT. The analyses considered three averages of (absolute) methylation level difference: 0.356,
0.133 and 0.184. Details are given in Methods.
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Figure 3. Direct comparison of the classification performance for control and treatment DMPs based
on three different approaches and at three different averages of absolute methylation level differences
(mild difference, 0.0356, medium difference, 0.133 and large difference, 0.184). Panels (A–C) report the
sum of DMPs detected, while panels (D–F) report the sum of main classifier performance indicators.
An extended list of performance indicators is given in the supplementary information. C1-C3: control
individuals. T1–T3: Treatment individuals. FT: Fisher’s exact test, used by methylKit [15]. DSS: An
R package that uses generalized linear regression and Wald Test in the DMP identification [13]. SD:
Signal detection approach, implemented in Methyl-IT.

The three approaches were able to identify DMPs in the control group as predicted. Such detection
is implicit (by construction) in the SD approach. An optimal cut off estimation to distinguish the
control DMPs from treatment was accomplished for each approach as well, classifying the set of DMPs
into control and treatment groups.

Results indicate that the application of a statistical test alone, ignoring the distribution of
methylation signals, leads to an overestimation of DMPs in both populations, control and treatment
(Figure 3A–C, FT bars). For any population where the average methylation level differences are
relatively high, the risk of DMP overestimation trends higher than in a population with low average
methylation (dark-green bars, FT, Figure 3A–C). This overestimation can be eliminated by introducing
information from signal detection (Figure S1A–C, FT.SD bars). Note that all DMPs detected by the
Fisher test and DSS were valid by statistical terms. The 95% empirical quantile (TV95) of absolute
difference in methylation levels (total variation distance, TV) was applied as the cutoff value in each
approach, so that only sites with TV ≥ TV95 were included in the analyses (minimum value TV95 = 0.35
in the case of 0.0356 average methylation level difference). This approach gives a range of values
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detectable by any statistical test designed to test counts. For the signal detection approach (SD bar in
Figure 3A–C), the number of cytosine sites with (TV ≥ TV95) that are identified as DMPs depends on
the optimal cutoff value estimated based on signal detection criteria [21,22,34–37], i.e., the information
divergence value that leads to best DMP classification performance.

For the proper discrimination of DMPs into control and treatment groups, machine learning
classifiers were used (as well as the Youden Index [34], see Methods). The optimal cutoff value
estimated based on signal detection criteria was derived for each approach, which in the case of SD is
a default step, as indicated above. The best classification performance obtained for each simulation
approach is shown in Figure 3D–F. The application of a statistical test alone leads to low classification
performance, based on frequency of reporting control DMPs as treatment-induced. Since the optima
HD cut-off value increases as the genome-wide average of methylation level differences increases, the
number of control DMPs also found in the treatment dataset increases as well. This outcome does not
reflect a failure of the Fisher Test or DSS statistical approaches, since it is a typical signal detection and
ML (classification) problem.

2.3. Analyses of Experimental Datasets

Signal detection was further evaluated with two experimental DNA methylation datasets:
(i) Chromosome 9 from patients with pediatric acute lymphoblastic leukemia (PALL, including CD19
control cells [38]) and (ii) placental tissue of typically developing and autistic children [39].

2.3.1. Analysis of PALL Dataset

DMPs were estimated for control (four normal CD19+ blood cell donors) and patient (ALL cells
from three patients) groups relative to a reference group of four independent normal CD19+ blood
cell donors. Results of the methylation analysis and DMP classification performance are presented in
Figure 4.
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Figure 4. Direct comparison of classification performance for the control and treatment DMPs obtained
on Chromosome 9 from the pediatric acute lymphoblastic leukemia (PALL) dataset by four methylation
analysis approaches. Panel (A), DMP counts. Panel (B), classification performance evaluation. For a
diseased individual, a diagnostic is based on the high classification performance obtained for hundreds
of thousands of DMPs (when the whole methylome is analyzed) that are discriminated from methylation
background variation found in the control population. NB1–NB4: Healthy individuals. PALL1-3:
PALL patient individuals. FT: Fisher’s exact test, used by methylKit [15]. DSS: An R package that uses
generalized linear regression and the Wald Test in the DMP identification [13]. RMST: Root-mean-square
test, used by methylpy [16]. SD: Signal detection approach, implemented in MethylIT.

Figure 4A suggests that FT performs poorly in the PALL methylome dataset, partly due to the
p-value adjustment required for multiple comparisons. This detail is evident from the FT.SD approach
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(Figure S2), which relies on the direct FT results with knowledge derived from signal detection (for
the optimal cut point), and does not require p-value adjustment. RMST, a test with higher sensitivity
than FT, was applied as well [16]. Again, resolution loss with RMST, by ignoring the signal probability
distribution, comes in a lower classification performance than with approaches that include this
information (SD in Figure 4B). The classification performance of DMPs derived from FT and RMST
approaches are notably improved when the ML classifiers are fed information on the optimal cutoff

divergence value and probability distribution of the methylation signals (FT.SD, RMST.SD, and SD, in
Figure S2B).

2.3.2. Analysis of Placenta from Typically Developing and Autistic Children

Twenty placenta methylomes from typically developing (TDP) and autistic (ADP) children
were analyzed with the signal detection approach implemented in the Methyl-IT R package (https:
//github.com/genomaths/MethylIT). The methylome datasets were split into two groups. The first
group (G1) with five TDP and four ADP samples, and a second (G2) with three TDP and nine ADP
samples (details in Methods). Results are summarized in Table 2.

Table 2. Classification performance of four different classifier models based on DMPs identified from
the placenta tissue of children with autism by signal detection.

Group Accuracy Sensitivity Specificity Detection Rate FDR Classifier

G1 0.995 0.998 0.966 0.906 0.004 PCA-QDA
G2 1.000 1.000 1.000 0.994 0.000 PCA-QDA

G2 pred. G1 0.935 0.996 0.332 0.904 0.064 LDA
G1 pred. G2 1.000 1.000 1.000 0.994 0.000 LDA

G1: The classifier models built based on Group 1 individuals (60% of DMP were used as training set), and then
used to classify the rest (40%) within Group1. G2: The classifier models built based on Group 2 individuals (60% of
DMP were used as training set), and then used to classify the rest (40%) within Group 2. G2 pred. G1: The classifier
models built based on Group 2 individuals were used to classify the individuals within Group 1. G1 pred. G2: The
classifier models built based on Group 1 individuals were used to classify the individuals within Group 2. All four
classifier models performed well.

Placental DMPs from children with autism were distinguishable from the control (TDP). Moreover,
model classifiers from each group were able to predict with high accuracy DMPs from the other group.
In this case, the best performance was obtained for predicting DMPs from group G2 by using a model
classifier built with a training set from group G1 (Table 1, G1 pred. G2), which likely indicates that, for
a model classifier, group G1 has more balanced learning samples (TDP and ADP individuals) than G2.

2.3.3. Methylation Signal Association with Genes Involved in Disease Development

Results indicated that signal detection provided a high classification performance of DMPs.
This outcome led us to assess DMP association with known genes involved in disease development.
Although it is not the purpose of the current work to present an exhaustive analysis of genes targeted
by a differential methylation signal, relevant examples are presented in Figure 5 to illustrate the
distribution of this signal on genes.

https://github.com/genomaths/MethylIT
https://github.com/genomaths/MethylIT
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Figure 5. Distribution of the methylation signal on gene-body for seven relevant genes reported to be
associated with PALL (A,B) and autism (C,D). Methylation level difference at each cytosine is computed
by (mC/(mC + uC))each individual − (mC/(mC +uC)average of all reference individuals, with mC and uC denoting
the numbers of methylated and unmethylated reads, respectively. Each cytosine is represented by one
single vertical line. The Integrated Genome Browser (version 9.0.2) was used to generate this figure.

Three relevant genes from chromosome 9, known to be involved in leukemia development, are
shown in Figure 5A,B: NOTCH1, EGFL7 and AGPAT2. NOTCH1 is reported to be epigenetically
regulated and proposed as a drug target for the treatment of T-cell acute lymphoblastic leukemia [46,47].
Interestingly, most of the detected methylation signal is concentrated within introns at the 3’ end
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(Figure 5A). EPIDERMAL GROWTH FACTOR-LIKE DOMAIN 7 (EGFL7) is also associated with
cancer development [48], and the methylation signal detected in EGFL7 covers most of the gene-body
(Figure 5B). The EGFL7 gene is reported to be a key factor for the regulation of the EGFR signaling
pathway [49]. EGFL7 is also a secreted angiogenic factor that can result in pathologic angiogenesis
and enhance tumor migration and invasion via the NOTCH signaling pathway [50], a conserved
intercellular signaling pathway that regulates interactions between physically adjacent cells.

ACYLGLYCEROL-3-PHOSPHATE ACYLTRANSFERASE 2 (AGPAT2) promotes the survival and
etoposide resistance of cancer cells under hypoxia [51]. The hypomethylation pattern observed in the
gene-body region of EGFL7 spans a substantial part of AGPAT2 (Figure 5B).

Although the methylation signal induced by cancer has typically been reported as genome-wide
hypermethylation, and this is the case for the PALL methylome as well, Figure 5A,B indicate that some
relevant genes can experience hypomethylation.

The methylation signal within three genes reportedly associated with autism disorder are shown
in Figure 5C,D: SNX29, TRAPPC9, and KCNK9. SORTING NEXIN 29 (SNX29, also known as RUN
Domain-Containing Protein 2A, RUNDC2A) is a gene previously associated with schizophrenia [52].
This locus has been reported as a differentially methylated locus and autism-associated gene in the
US patent US20180142298A1. The gene TRAFFICKING PROTEIN PARTICLE COMPLEX 9 (TRAPPC9)
appears to function in neuronal cell differentiation and is reported as an autism susceptibility gene
in the SFARI database (https://gene.sfari.org/). Mutations in this gene have been associated with
autosomal-recessive cognitive disability, causing non-syndromic intellectual disability and speech
disorder [53].

The TRAPPC9 locus was identified by an extended hypomethylation signal region that spans
two other genes of interest, KCNK9 and AGO2, down- and up-stream, respectively (located on the
negative strand). POTASSIUM TWO PORE DOMAIN CHANNEL SUBFAMILY K MEMBER 9 (KCNK9)
encodes a typical potassium channel protein that is especially abundant in brain neurons. KCNK9 is a
maternally-expressed and imprinted gene, so that only the maternal gene copy is active [54]. Mutations
in this gene produce KCNK9 imprinting syndrome [54]. KCNK9 has been reported within a list of gene
expression biomarkers for autism in patent US20130210650A1.

Finally, ARGONAUTE RISC CATALYTIC COMPONENT 2 (AGO2) is a gene required for
RNA-mediated gene silencing (RNAi) by the RNA-induced silencing complex (RISC). AGO2 plays a key
role in neuronal plasticity [55]. RISC proteins Dicer and Ago2 localize to distal neuronal compartments,
indicating a spatial, functional role for microRNAs [56]. In the current set of placental methylomes
from autistic children, the three genes KCNK9, TRAPPC9 and AGO2, are located in a contiguous
hypomethylated region. This result contrasts with a recent report addressing uncertainty about the
diagnostic value of AGO2 gene expression in blood samples from autistic patients, where the authors
concluded that further studies are required [57].

3. Discussion

In this work we emphasize the need for the application of detection theory and machine learning
on the discrimination of the DNA methylation signal from background population variation for clinical
diagnostic purposes. As a consequence of natural background variation, DMPs are detected not only
in the patient population, but also in any set of control individuals [33]. As a result, the diagnosis
problem is essentially a classification problem.

The methylation signal is often altered in patients suffering from disease, and Methyl-IT can be
effective for the diagnosis of patients based upon signal detection. As highlighted in earlier reports [21]
and [22], signal detection theory provides the methodological framework to effectively confront a
detection problem.

Hence, regardless of the statistical test applied to identify this methylation signal, the application
of detection theory and machine learning is valid to discriminate endogenous background signal
(DMPs) from that induced by the treatment or disease-state in patients. A proper diagnostic requires

https://gene.sfari.org/
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evaluation with suitable classification performance measurements: High accuracy, sensitivity and
specificity values, low FDR and other performance indicators commonly reported (Tables 1 and 2,
Figures 3 and 4).

Proper application of signal detection requires knowledge of the probability distribution of the
background noise in a system [21,22]. The probability distribution of the signal can be inferred from the
experimental datasets, control and treatment [40]. This information provides a strong predictive value,
and one can infer the probability of signal values in the control and treatment (patient population) that
are not observed in the available datasets. Consequently, this signal probability distribution allows
an estimation of the optimal cutoff value to discriminate signal induced by treatment or disease state
from background.

Current methylation analysis methods that employ FT, RMST and DSS are limited to direct
multiple comparisons of control versus treatment to search for significant statistical differences at each
cytosine site in methylome datasets. This approach does not allow for predictive modeling, since the
statistical tests are only designed to evaluate differences, not to serve as model classifiers. Moreover,
these statistical tests do not directly evaluate background variation.

Proper measurement of the methylation signal requires a reference sample from which an
information divergence of methylation levels can be measured for control and treatment samples. In
this way, signals derived from background variation and that induced by the treatment are measured
with the same origin of coordinates.

Simulation studies showed that, depending on the statistical approach (FT or DSS) and TV average,
ignoring natural background variation can lead to a misestimation of the methylation signal (Figure 2).
In all scenarios, DMPs detected by FT and DSS approaches were valid in statistical terms. However,
the signal-to-noise issue comprises a post-DMP detection problem.

As shown in Figures S1 and S2, the classification performance obtained for the FT and RMST
approaches notably improve after being fed the ML classifier with information derived from the
methylation signal probability distribution and the detection step (the optimal cutoff HD value).
Therefore, invoking the parsimony principle, we assume that signal detection and machine learning
classifiers are sufficient [58].

The combination of signal detection and machine learning appears to be adequately robust to
perform diagnostics on experimental/clinical datasets displaying either a low or high average of
absolute methylation level differences (TV, Figure 3). To test empirical examples of these natural
scenarios, two patient datasets were considered, pediatric acute lymphoblastic leukemia (PALL) and
placental tissue from autistic children. Both datasets displayed a relatively high natural background of
TV average in the control population, and a weaker methylation signal in placental tissue from autistic
children than in the PALL patient dataset. Results were consistent with those obtained in the simulation
study (Figure 4 and Table 1). The PALL dataset demonstrated that regardless of any statistical test
applied, signal detection was required to reach the high classification performance required for clinical
diagnostics (Figure 4 and Figure S2). Pronounced signal differentiating control and disease state was
observed in association with loci known to be altered during cancer development.

Encouraging results were also obtained with placental tissue from autistic children (Table 2). This
dataset was selected to reflect common sources of variation inherent to clinical studies, including
diagnoses from different doctors, tissue samples reflecting collection feasibility rather than site of
abnormality, and modest bisulfite sequencing depth per patient sample. In spite of the high natural
background variation detected in placental samples, model classifiers which are built in training sets
of one group of patients, independently analyzed with respect to control samples, could be applied to
predict the entire set of individual DMPs (control and patient) from the other group (cases “G2 pred.
G1” and “G1 pred. G2”).

It is important to emphasize the value of the classification performance evaluation, which is built
into the Methyl-IT package as a validation procedure. It would not be advisable for users to continue
an analysis if the classification performance is poor, even when optimal parameters are used. In the
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case presented, the robustness of the classification model built on Group G1, previously evaluated by
cross-validation, was corroborated by the high classification performance reached on predicting the
whole G2 (external data). Admittedly, further studies are needed to properly establish and validate a
clinical diagnostic test for autism based on methylome data from placental tissue, but results suggest a
potential avenue to address this seemingly intractable challenge.

Epigenetic variation can influence biologically relevant networks that are specific to each cell type,
often occurring near genes that have functional relevance to the cell type [33]. As shown in Figure 5,
we were able to identify relevant genes displaying differential methylation signals distinguishable
from the natural background variation and putatively associated with disease, several proposed as
drug targets for patient treatment or reported as biomarker candidates.

These observations are not sufficient alone to conclude a direct disease relationship, but the
reproducibility of these data, combined with machine learning-based validation, provide a compelling
argument for their further study.

4. Materials and Methods

4.1. Divergences of Methylation Levels

Information divergences of methylation levels, total variation distance T̂Vd(p̂c, p̂t) and Hellinger
Divergence Ĥ(p̂c, p̂t), were estimated for control and treatment (disease stage) relative to a reference
virtual individual. The reference sample was built from a subset of individuals from the control
population that were not included as our control.

In a Bayesian framework assuming uniform priors, the methylation level p̂i can be defined
as: p̂i =

(
nmC

i + 1
)
/
(
nmC

i + nC
i + 2

)
, where nmC

i and nC
i represent the numbers of methylated and

non-methylated read counts observed at the genomic coordinate i, respectively. We estimate the shape
parameters α and β from the beta distribution minimizing the difference between the empirical and
theoretical cumulative distribution functions (ECDF and CDF, respectively):

P
(
p
∣∣∣α, β

)
=

pα−1(1− p)β−1

B(α, β)
(1)

where B(α, β) is the beta function with shape parameters α and β. Since the beta distribution is a prior
conjugate of binomial distribution, we consider the parameter p (methylation level) in the binomial
distribution as randomly drawn from a beta distribution. The hyper-parameters α and β are interpreted
as pseudo counts. Then the mean E

[
pi
∣∣∣D]

= p̂i of the methylation levels pi, given the data D, is
expressed by:

p̂i =
α+ nmC

i

α+ β+ nmC
i + nC

i

(2)

The methylation levels at the cytosine with genomic coordinate i are then estimated according to this
equation.

As shown in Figure S4, total variation distance TVd(pc, pt) sets the natural metric in the probabilistic
space (p, 1− p), and it is defined the absolute value of methylation level differences:

T̂Vd
(
p̂c

i , p̂t
i

)
=

∣∣∣p̂t
i − p̂c

i

∣∣∣ (3)

Notice that T̂Vd(pc, pt) is the Manhattan distance in the space (p, 1− p). Biostatisticians and
biologists in general are familiar with the root-square transformation of the original variables:

√
x.

The root-square transformation maps the space (p, 1− p) into the new space
(√

p,
√

1− p
)
. The

Euclidean distance dE
(√

pc,
√

pt
)

is a ‘natural’ metric to introduce into the space
(√

p,
√

1− p
)
, which

turns out to be the Hellinger Divergence of the original variables (Figure S4). The square of the
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Euclidean distance dE
(√

pc,
√

pt
)2

in the space
(√

p,
√

1− p
)

corresponds to the Hellinger Divergence

Ĥ
(
p̂c, p̂t

)
=

(√
p̂t −

√
p̂c

)2
+

(√
1− p̂t −

√
1− p̂c

)2
in the space (p, 1− p).

Here, however, the Hellinger Divergence will be used as given in reference [59], which is defined
based on the estimated methylation levels p̂i at given cytosine site i as:

Ĥ
(
p̂c

i , p̂t
i

)
= w

(√
p̂c

i −

√
p̂t

i

)2
+

(√
1− p̂c

i −

√
1− p̂t

i

)2
(4)

where wi = 2
mc

i mt
i

mc
i +mt

i
, mt

i = nmCc
i + nCc

i + 1, and mt
i = nmCt

i + nCt
i + 1.

According with Equation (4), not only the methylation levels are considered in the estimation of
H, but also the control and treatment coverage at each given cytosine site. Under the null hypothesis of
non-difference between distributions p̂c

i and p̂t
i , Equation (4) asymptotically has chi-square distribution

with one degree of freedom, which sets the basis for a Hellinger chi-square test (HCT) [59].
Distance T̂Vd(p̂c, p̂t) and Hellinger Divergence (as given in Equation (4)) hold the inequality:

T̂Vd
(
p̂c

i , p̂t
i

)
≤
√

2Ĥd
(
p̂c

i , p̂t
i

)
, where Ĥd

(
p̂c

i , p̂t
i

)
=

√
Ĥ
(
p̂c

i , p̂t
i

)
/wi is the Hellinger Distance, a direct

consequence of the Cauchy-Schwarz Inequality.
Only cytosine sites with methylation level differences (T̂Vd) greater than a cut-off value were

included in the analysis.

4.2. Non-Linear Fit of Distribution Functions

The cumulative distribution functions (CDF) for Hk
(
pc

k, pt
k

)
can be approached by a Weibull

distribution model:
P
(
Hk ≤ H0

∣∣∣α,λ,µ
)
= 1− e(

Hk−µ
λ )

α

(5)

where α, β, and µ are the parameters shape, scaling, and location, respectively, or the gamma
distribution:

P
(
Hk ≤ H0

∣∣∣α, β,µ
)
=
γ(α, β(Hk − µ))

Γ(α)
(6)

where Γ(α) is the gamma function. γ(α, β(Hk − µ)) is the lower incomplete gamma function with shape
parameters α and β, and location parameter µ. Model parameters are estimated by non-linear regression
analysis of the ECDF F̂n

(
Ĥk ≤ H0

)
versus Ĥk

(
p̂c

i , p̂t
i

)
. The ECDF of the variable Ĥk is defined as:

F̂n
(
Ĥk ≤ H0

)
=

number of CDMs in the samples with Ĥk ≤ H0

n
=

1
n

n∑
k=1

1Ĥk≤H0 (7)

where 1Ĥk≤H0 =

{
1 if Ĥk ≤ H0

0 if Ĥk > H0 is the indicator function. Function F̂n
(
Ĥk ≤ H0

)
is easily computed

(for example, by using function “ecdf ” of the statistical computing program R).

4.3. Detection of the Methylation Signal

As for any signal in nature or treatment induced, a suitable detection of the methylation signal is
based on the knowledge of its probability distribution. The basic idea behind the application of signal
detection is illustrated in Figure 1. Critical values Hα=0.05 are estimated from the best fitted model
(Equations (5) or (6)) for each individual sample from the control and treatment group. Depending on
the average of methylation on the populations under screening, the true signal would be found at the
right of the highest observed critical value Hα=0.05. A cytosine position with a Hellinger Divergence
value H greater than the critical value Hα=0.05 is considered for further downstream analyses. A further
step to estimate an optimal cutoff value of H is required. Although H is used here, other information
divergences can be used as well.
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For an estimation of an optimal cutoff value of H, three approaches were taken: (1) Based on
the estimation of the Youden Index [34], (2) Based on the posterior classification probabilities of the
potential signal (potential DMPs) into two classes (given by a model classifier), from control and from
treatment, and (3) Based on the posterior classification probabilities derived from a gamma mixture
model. Next, cytosine positions with H values greater than the cutoff value are considered DMPs,
regardless of which group they belong to, control or treatment.

For the analysis with the DSS R package, methylation count (COV) files were read into R and
prepared by the makeBSseqData function (DSS), DMPs then were computed using DMLtest function
(DSS) without smoothing at p-value < 0.05.

4.4. DMP Prediction Based on Machine Learning Model Classifiers

The following model classifiers were tested for DMP predictions: PCA+LDA, PCA + QDA, PCA
+ logistic, and logistic models. That is, a principal component analysis (PCA) is applied on the original
raw matrix of the data and then the derived principal components are used in a further linear/quadratic
discriminant analysis (LDA/QDA). A scaling step is applied to the raw matrix of this data before
the application of the mentioned procedure, which is not applied for the logistic model. Here, PCA
will yield new orthogonal (non-correlated) variables, the principal components, which prevent any
potential bias effect originated by correlation or association of the original variables.

Four predictor variables were considered: TVd, H, relative position of the cytosine site in the
chromosome, and the logarithm base two of the probability to observe a Hellinger Divergence value H
greater than the critical value Hα=0.05: log2P(H > Hα=0.05).

All data analysis was performed with the R package MethylIT version 0.3.2 available at GitHub
(https://github.com/genomaths/MethylIT), where several user guide examples illustrate the application
of MethylIT downstream methylation analysis.

4.5. Simulations

Twelve simulated datasets of methylated cytosines were generated based on three different
averages of absolute methylation level differences: mild difference, 0.0356, medium difference, 0.133
and large difference, 0.184, and with different samples size (Table 1). Simulated data were generated
using the function simulateCounts from the R package MethylIT.utils (https://github.com/genomaths/
MethylIT.utils). Methylation coverages (minimum 10) were generated from a negative binomial
distribution with the function rnegbin from the R package MASS. This function uses the representation
of the negative binomial distribution as a continuous mixture of Poisson distributions with Gamma
distributed means. Prior methylation levels are randomly generated with beta distribution using the
Beta function from R package “stats”, and posterior methylation levels are generated according to
Bayes’ Theorem.

The fact that each dataset of read counts was sampled from the same populations, control or
treatment, does not mean that the individual samples will have the same probability distribution for
the Hellinger Divergences of the methylation levels. Simulation was performed under the standard
clinical assumption that each individual sample of read counts belongs to one of the two possible
populations: Control/healthy or treatment/patient. Therefore, although each dataset is sampled from
these populations, they are independent up to the limit for the algorithms of pseudorandom number
generation (which is a standard simulation assumption). Since we are simulating a stochastic process,
the Hellinger Divergence from each sample follows a different probability distribution, as indicated in
Figure 1.

The reads of methylation counts are obtained as the product of coverage by the posterior
methylation level. The R scripts for these simulations are available at the PSU GitLab: https:
//git.psu.edu/genomath/MethylIT_examples.
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4.6. Experimental Methylation Datasets

The datasets of genome-wide methylated and unmethylated read counts (for each cytosine site)
from normal CD19+ blood cell donors (NB) and from patients with pediatric acute lymphoblastic
leukemia (PALL) were downloaded from the Gene Expression Omnibus (GEO) database [38]. DMPs
were estimated for control (NB, GEO accession: GSM1978783 to GSM1978786) and for patients (ALL
cells, GEO accession number GSM1978759 to GSM1978761) relative to a reference group of four
independent normal CD19+ blood cell donors (GEO accession: GSM1978787 to GSM1978790). For the
purposes of the analysis presented here, we only focused on the analysis of chromosome 9.

For the autism analysis [39], raw sequencing reads were downloaded from NCBI (GEO: GSE67615).
The following methylome datasets from autistic children were retrieved from the GEO database:

Group 1: GSM1655495, GSM1655490, GSM1655488, GSM1652180, GSM1652179, GSM1652173,
GSM1652172, GSM1652171, GSM1652157.

Group 2: GSM1655498, GSM1655497, GSM1655492, GSM1652167, GSM1652160, GSM1652156,
GSM1652155, GSM1652154, GSM1652152, GSM1652149, GSM1652148.

Quality-controlled with FastQC (version 0.11.5), trimmed with TrimGalore! program(version
0.4.1) and Cutadapt (version 1.15), then aligned to the Homo sapiens reference genome
(Homo_sapiens.GRCh37.dna.toplevel.fa) using Bismark (version 0.19.0) with bowtie2 (version 2.3.3.1).
Bismark methylation extractor with default parameters was used to get methylation counts files
(COV files).

5. Conclusions

The present study was designed to test the feasibility of performing clinical diagnostics of diseased
individuals based on the application of signal detection theory and machine learning approaches
to DNA methylation profiles obtained from patients. Simulation studies and analyses of reported
methylome datasets from patients demonstrate the feasibility of such an approach. With the datasets
tested, we were able to reach high classification performance that approaches the confidence level
required for clinical diagnostics. We suggest that this system is appropriate for more extensive testing
on a larger scale.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/21/
5343/s1.
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