

Supplementary Material Investigations of the Kinetics and Mechanism of Reduction of a Carboplatin Pt(IV) Prodrug by the Major Small-Molecule Reductants in Human Plasma

One supporting table (Table S1) and six supporting figures (Figures S1-S6) are included in the Supplementary Material.

Thiol	pН	$k'/\mathrm{M}^{-1}\mathrm{s}^{-1}$
Cys	2.47	0.79 ± 0.02
	2.67	1.15 ± 0.03
	2.93	1.62 ± 0.04
	3.23	2.50 ± 0.06
	3.57	5.16 ± 0.15
	4.01	11.9 ± 0.2
	4.47	32.9 ± 0.7
	5.07	127 ± 3
	5.72	549 ± 9
	6.29	$(1.96 \pm 0.06) \ge 10^3$
	6.94	$(8.2 \pm 0.2) \times 10^3$
	7.40	$(1.93 \pm 0.06) \ge 10^4$
	7.90	$(3.70 \pm 0.09) \ge 10^4$
	8.43	$(6.2 \pm 0.1) \ge 10^4$
	8.60	$(8.0 \pm 0.2) \times 10^4$
	9.09	$(1.22 \pm 0.03) \ge 10^5$
	9.48	$(1.66 \pm 0.04) \ge 10^5$
	9.96	$(2.37 \pm 0.08) \ge 10^5$
	10.83	$(3.22 \pm 0.15) \ge 10^5$
	11.24	$(3.86 \pm 0.16) \ge 10^5$
CEU	0.47	0.54 + 0.02
GSH	2.47	0.54 ± 0.02
	2.67	0.82 ± 0.02
	2.93	1.19 ± 0.03
	3.23	1.96 ± 0.04
	3.57	2.99 ± 0.06
	4.01	5.36 ± 0.15

Table S1. Observed second-order rate constants k' for the reduction of *cis,trans*-[Pt(cbdca)(NH₃)₂Cl₂] by Cys and GSH as a function of pH at 25.0 °C and μ = 1.0 M. Int. J. Mol. Sci. 2018, 19, 5660

4.47	14.4 ± 0.3
5.07	59.0 ± 1.5
5.72	272 ± 8
6.29	$(1.02 \pm 0.03) \ge 10^3$
6.94	$(4.34 \pm 0.09) \ge 10^3$
7.40	$(1.01 \pm 0.03) \ge 10^4$
7.90	$(2.38 \pm 0.06) \ge 10^4$
8.43	$(8.15 \pm 0.19) \ge 10^4$
8.60	$(1.00 \pm 0.03) \ge 10^5$
9.09	$(1.74 \pm 0.04) \ge 10^5$
9.48	$(2.41 \pm 0.06) \ge 10^5$
9.96	$(2.59 \pm 0.08) \ge 10^5$
10.34	$(2.74 \pm 0.08) \ge 10^5$
10.83	$(3.30 \pm 0.08) \ge 10^5$
11.24	$(2.83 \pm 0.08) \ge 10^5$

Figure S1. Plots of k_{obsd} versus [Cys]_{tot} for the reduction of *cis,trans*-[Pt(cbdca)(NH₃)₂Cl₂] by Cys at 25.0 °C, μ = 1.0 M in buffer solutions at pH between 4.47 and 9.96 as denoted by the red numbers above each line.

Figure S2. Plots of k_{obsd} versus [GSH]_{tot} for the reduction of *cis,trans*-[Pt(cbdca)(NH₃)₂Cl₂] by GSH at 25.0 °C, μ = 1.0 M in buffer solutions at pH between 4.01 and 6.94 as denoted by the red numbers above each line.

 $Pt(IV) = cis, trans-[Pt(cbdca)(NH_3)_2Cl_2]; Pt(II) = cis-[Pt(cbdca)(NH_3)_2]$

Figure S3. Reaction mechanism proposed for the reduction of *cis,trans*-[Pt(cbdca)(NH₃)₂Cl₂] by GSH.

Figure S4. High-resolution mass spectra. (Top): 10 mM L-Cys in 10 mM HAc. (Bottom): A reaction mixture of 10 mM L-Cys with 1 mM *cis,trans*-[Pt(cbdca)(NH₃)₂Cl₂] in 10 mM HAc after a reaction time of 5 min.

Peak assignments: m/z = 122.027 for Cys·H⁺; m/z = 241.03 for CysS-SCys·H⁺; m/z = 372.05 for carboplatin·H⁺ (or *cis*-[Pt(cbdca)(NH₃)₂]·H⁺).

Figure S5. (Top): Distribution diagram for the various Cys protolytic species versus pH calculated from $pK_{a1} = 1.9$, $pK_{a2} = 8.07$, and $pK_{a3} = 9.95$. (Bottom): Reactivity fraction of the Cys species in the reduction of *cis,trans*-[Pt(cbdca)(NH₃)₂Cl₂] versus pH. The pK_a values and the rate constants in Table 2 were utilized to generate this diagram. Structures of the Cys species **I** – **IV** are given in Figure 7 in the main text.

Figure S6. (Top): Distribution diagram for the various GSH protolytic species versus pH calculated from $pK_{a1} = 2$, $pK_{a2} = 3.35$, $pK_{a3} = 8.64$ and $pK_{a4} = 9.44$. (Bottom): Reactivity fraction of the GSH species in the reduction of *cis,trans*-[Pt(cbdca)(NH₃)₂Cl₂] versus pH. The pK_a values and the rate constants in Table 2 were utilized to generate this diagram. Structures of the GSH species **I** – **V** are given in Figure S3.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).