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Abstract: The need for more effective therapies of chronic and acute diseases has led to the attempts
of developing more adequate and less invasive treatment methods. Regenerative medicine relies
mainly on the therapeutic potential of stem cells. Mesenchymal stem cells (MSCs), due to their
immunosuppressive properties and tissue repair abilities, seem to be an ideal tool for cell-based
therapies. Taking into account all available sources of MSCs, perinatal tissues become an attractive
source of allogeneic MSCs. The allogeneic MSCs provide “off-the-shelf” cellular therapy, however,
their allogenicity may be viewed as a limitation for their use. Moreover, some evidence suggests that
MSCs are not as immune-privileged as it was previously reported. Therefore, understanding their
interactions with the recipient’s immune system is crucial for their successful clinical application.
In this review, we discuss both autologous and allogeneic application of MSCs, focusing on
current approaches to allogeneic MSCs therapies, with a particular interest in the role of human
leukocyte antigens (HLA) and HLA-matching in allogeneic MSCs transplantation. Importantly,
the evidence from the currently completed and ongoing clinical trials demonstrates that allogeneic
MSCs transplantation is safe and seems to cause no major side-effects to the patient. These findings
strongly support the case for MSCs efficacy in treatment of a variety of diseases and their use as an
“off-the-shelf” medical product.

Keywords: cell-based therapy; clinical trials; allogeneic; autologous; HLA; HLA-matching;
immunomodulation; mesenchymal stem cells

1. Introduction

Regenerative medicine is currently a dynamically growing field of modern medicine. The use of
different kinds of stem cells can be viewed as an alternative to organ transplantation and treatment
of many diseases such as neurological or cardiovascular diseases [1,2] that cannot be effectively
treated by conventional methods. The stem cell based therapies include embryonic (ESC) [3] and
adult stem cells (adult SC) with the latter group composed of endothelial progenitor cells (EPC) [4],
cardiac-derived progenitor cells (CDP) [5], cardiac stem cells (CSC) [6], and genetically reprogrammed,
induced pluripotent stem cells (iPSC) [7]. Nonetheless, mesenchymal stem cells (MSCs) seem to be the
most frequently used for this type of therapy. MSCs are relatively easy to isolate and expand in vitro.
Moreover, they secrete cytokines and growth factors and have the ability to migrate to the site of an
injury where they exert immunomodulatory and regenerative effects [8].
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Among various sources of MSCs, perinatal tissues are of special interest in terms of their use in
allogeneic transplantation. Birth-associated tissues including placenta, umbilical cord blood, amniotic
fluid and amnion are widely available and can be used for therapeutic purposes [9–14]. Additionally,
the acquisition of the birth-associated tissues does not require invasive surgery procedures, which
becomes an advantage over other tissue sources such as bone marrow or adipose tissue. Although,
bone marrow still remains the main source of MSCs for most preclinical and clinical studies [15–20],
there has been a noticeable shift of interest towards other sources of these cells [21,22].

Numerous studies confirm that MSCs show a tremendous potential in the treatment of many
diseases, including immune and non-immune ones. The results of hitherto studies have demonstrated
several properties of MSCs that promote their beneficial effects, including, (i) ability to migrate to the
site of injury, (ii) secretion of soluble factors, (iii) modulation of immune response, and (iv) ability to
differentiate and transdifferentiate into various cell types. In vivo studies have revealed that MSCs
promote angiogenesis, proliferation, and differentiation of progenitor cells. They also prevent fibrosis
and apoptosis, and modulate immune responses [23–26]. Since tissue injury is always associated
with an immune response, MSCs are recruited to a damaged tissue where they secrete a variety of
factors including growth factors, cytokines, and chemokines [23]. Paracrine effect is now recognized
as the primary mechanism by which MSCs promote tissue regeneration [24,27,28]. Other data also
suggest that direct cell-to-cell contact and communication through gap junctions may be important in
regenerative activity of MSCs [29].

It is fair to assume that immunological barriers accompanying allogeneic MSCs applications
are similar to those governing solid organ and tissue transplantation. This review focuses on recent
discoveries in the field of autologous and allogeneic stem cell transplants with special emphasis
on MSCs-based clinical trials not only in the context of therapeutic properties of MSCs, but also of
immunological hurdles in allogeneic cell therapies. We discuss immunomodulatory properties of
MSCs and outline the importance of human leukocyte antigen-matching (HLA-matching) in MSCs
transplantation. A better understanding of immunological interactions between the donor cells
and the recipient will enable development of safe, effective, and personalized cell therapy based on
allogenic MSCs.

2. Therapeutic Properties of MSCs

2.1. Immunomodulation—A Key Process in Tissue Regeneration

MSCs are considered to be hypoimmunogenic due to the lack of class II HLA expression. However,
as previously described, class II HLA can be re-expressed under inflammatory circumstances [30].
The immunomodulatory activity of MSCs is demonstrated by their impact on T cells, natural killer
T cells (NKT), B cells, dendritic cells (DCs), neutrophils, and M1/M2 macrophages [31,32]. In vitro
and in vivo experiments and clinical trials showed that MSCs are able to modulate the immune
system by suppressing immune responses (inhibiting proliferation and maturation of the immune
cells) [30,32–34]. This mechanism has been described for both autologous and allogeneic MSCs [31–34].
The immunomodulatory effect of MSCs on the immune system can be mediated both through soluble
factors and cell–cell interactions [35–38], however, the paracrine signaling pathways are considered as
the key mechanisms by which MSCs influence other cells. The MSCs exhibit their immunosuppressive
properties by secreting transforming growth factor-β1 (TGF-β1), prostaglandin E2 (PGE2), hepatocyte
growth factor (HGF), indoleamine-pyrrole 2,3-dioxygenase (IDO), nitric oxide (NO), and interleukin-10
(IL-10) [38–42]. In fact, the immunomodulatory properties of MSCs are the sum of microenvironmental
conditions of the tissue source that they have been isolated from [43–45].

Since MSCs express class I HLA and do not express class II HLA, they remain unnoticeable to the
effector CD4+ T cells [31,46–48]. Interestingly, Yan et al. reported that Treg cells in MSCs co-culture
showed higher immunosuppressive properties than in the absence of MSCs [30,49]. The studies
have shown that MSCs are able to maintain T cells in a dormant state through the mechanism of Fas
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ligand/Fas receptor down-regulation at the cell surface [50,51]. Moreover, the transplanted MSCs have
the ability to transform macrophages from pro-inflammatory M1 to anti-inflammatory M2 phenotype
probably via IL-10 [43,52]. Recent studies have shown that macrophages in co-culture with MSCs
increased phagocytic activity while the level of secreted inflammatory cytokines was decreased [53–59].

Nasef et al. reported the association between human leukocyte antigen-G (HLA-G), which is a
non-classical human molecule class I protein, and the immunoregulatory function of MSCs [60]. HLA-G
is an important factor that prevents rejection of the fetus by the mother’s immune system [57,61,62].
Secreted by MSCs, HLA-G mediates the induction of Treg lymphocyte proliferation [63,64], and may
also exert a suppressive effect on allogeneic T cells proliferation. Secreted G-5 and G-7 isoforms have
been shown to have a substantial impact on the allograft acceptance through the MSCs ability to keep
the immune tolerance in check [65–69].

2.2. Secretory Activity of MSCs—Growth Factors and Extracellular Vesicles (EVs)

Mesenchymal stem cells represent a promising treatment approach not only because of their
anti-inflammatory and immunomodulatory properties, but also because of their paracrine activity
and the secretion of many factors [70]. The number of factors released by MSCs is remarkable.
For example, secretion of proangiogenic factors such as vascular endothelial growth factor (VEGF),
hepatocyte growth factor (HGF), and transforming growth factor-β1 (TGF-β1) is able to enhance
in vivo angiogenesis through the increase of microvascular density thus promoting blood flow recovery
in the ischemic tissue [27,71,72].

Different types of cells release small membrane vesicles, which are referred to as extracellular
vesicles (EVs) [73]. They represent a modern therapeutic modality, where the cells themselves are not
being used directly [74]. EVs may be carriers of therapeutic properties of MSCs. EVs were shown
to transport DNAs, RNAs, miRNAs, proteins, and other important factors to target cells, acting as
messengers in intercellular communication [75]. The interest in EVs is on the rise, especially because of
their possible use in clinical settings [76]. Due to their immunomodulatory, regenerative or anti-cancer
properties, EVs represent an intriguing approach in the treatment of cardiovascular, nervous, and
immune system diseases. Certainly, the use of EVs might be an alternative to cell-based MSCs therapies,
however, more data regarding their safety and therapeutic abilities in various disorders is needed to
fully understand their potential [74–76].

3. The Essence of an Autologous and Allogeneic Stem Cells Therapies

Autologous transplantation involves isolation of own stem cells, which, after proper preparation,
are transplanted back into the same patient. In an allogeneic transplantation, stem cells are collected
from related or unrelated donors and transplanted into a selected recipient (Figure 1). Mismatches
in HLA antigens between the donor and recipient are the most formidable immunological barrier to
transplantation and result in serious complications such as engraftment failure, late rejection or graft
versus host disease (GVHD).

Importantly, using cell therapy as a standard clinical treatment requires a safe and efficacious
administration of the product at the optimal dosage. In the case of autologous therapy, the cells are
derived from the patients that are usually burdened with comorbidities. Furthermore, the preparation
of the autologous product usually requires more time to reach sufficient cell number, since the cells must
be first of all isolated and then expanded before the actual administration. Moreover, the proliferation
capacity of patient’s cells could be low due to an existing disease, premedication and age [17,18].
These pitfalls and the need for an immediate product availability prompted researchers to lean towards
allogeneic stem cells to resolve these issues.
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Figure 1. The advantages and disadvantages of allogeneic and autologous mesenchymal stem cells
(MSCs)-based therapy. (A) Pros and cons of allogeneic cell therapy; (B) Pros and cons of autologous
cell therapy; (C) Flow chart of MSCs-based therapy.

Stem cells isolated from allogeneic sources allow to acquire ready-to-use product in a relatively
short time. The allogeneic stem cells are obtained from young, healthy donors and subjected to
multiple quality control steps before their actual administration to the patient. In some diseases, time
of transplantation is critical, thus, previously cryopreserved, readily available allogenic stem cells can
be quickly expanded in sufficient quantities for administration. For these reasons, these cells have
become very attractive as an ‘off-the-shelf’ therapeutic product.

Another issue that should be considered with regard to allogeneic therapy is the recipient’s
immune response after transplantation. This response has been recognized in organ and hematopoietic
transplants, which resulted in the use of immunosuppression to protect allograft from rejection [77].
MSCs are immune-privileged, have the ability to evade [78], and/or suppress [79] the immune
system, therefore, non-matched MSCs are much better tolerated than other types of cells, which
creates the opportunity of using them as an allograft without the need of concomitant to
immunosuppression [80,81]. In fact, there are no reports of rejection or serious side effects after
allogeneic MSCs therapies, which strongly supports the use of allogeneic MSCs as readily achievable
(off-the-shelf), efficient, and safe treatment modality.

Although using allogeneic stem cells has obvious advantages there are reports suggesting that
despite the immuno-privileged status of MSCs the immune response against these cells can still be
initiated by the donor’s immune system [19,82–89].
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4. Allogeneic and Autologous Stem Cell Transplant—Clinical Trials

In 1995, Lazarus et al. conducted the first clinical trials using bone marrow MSCs in non-Hodgkin’s
lymphoma patients [90]. Since then, numerous clinical trials have been conducted involving both
allogeneic and autologous MSCs sources (Figure 2A). According to the official database of the US
National Institutes of Health, there are currently 750 clinical trials with MSCs at various clinical stages
(www.clinicaltrials.gov; Figure 2A,B), out of which 203 studies have been completed. Out of 750 clinical
trials, 315 (42%) constitute allogeneic and 435 (58%) autologous MSCs-based clinical trials. Over the
last nineteen years, the number of clinical trials has increased significantly with a very sharp increase
in the last ten years (Figure 2C). In 2009, there were approximately 66 registered clinical trials whereas
in 2019, this number reached approximately 304, which constitutes approximately a 460% increase in
the span of a decade. The MSCs are currently being investigated to evaluate their biomedical potential
in treating numerous diseases (Figure 3). These include diseases associate with organs (bone, brain,
heart, liver, and lung), immunity (autoimmunity, immune system diseases, and arthritis), digestive
system (metabolic, digestive, and gastrointestinal diseases), and many more (Figure 3). Altogether
these data show the versatility of MSCs-based therapy, a medical discipline that is currently on the rise.
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Published results have shown that allogeneic MSCs can be safely administrated to humans without
any relevant immune reactions [16,20,80,91,92]. In the first clinical study published by Hare et al. in
2009 [80], allogenic bone marrow-derived human MSCs (Prochymal) were tested in patients with
myocardial infraction (MI). The trial provided evidence that this therapy was both effective and safe
and resulted in significantly better ejection fraction in human MSCs-treated MI patients versus placebo.
Another clinical study based on autologous and allogeneic bone marrow-derived MSCs involved
patients with chronic ischemic cardiomyopathy (ICM) [16]. Both allogeneic and autogenic cells showed
regenerative effects, and more importantly, patients who received allogeneic MSCs did not develop
significant donor-specific alloimmune reactions in response to cell administration.

There are numerous examples of clinical trials in which excellent tolerance to allogeneic MSCs
has been reported [16–19,78,92–95]. One of such clinical trials concerns a large group of patients with
osteoarthritis where meta-analysis of 844 allogeneic MSCs transplantations concluded that this therapy
is safe after a 21-month follow-up [96]. Similarly, no transplantation-related adverse events occurred
in MSCs-treated patients with degenerative disc disease (DDD) [15,17–19]. The positive effects of
allogeneic MSCs transplantations have been also reported in many randomized clinical trials, involving
patients with lupus erythematosus [97], left ventricular dysfunction [16], ankylosing spondylitis [98],
graft versus host disease, and other autoimmune diseases [99], such as Crohn’s disease [92]. Vega et
al. [17] have performed a randomized multicenter study to assess the feasibility and safety of using
allogeneic MSCs to treat chronic knee osteoarthritis. Their results strongly suggest that injection of
allogeneic MSCs has a therapeutic effect and may be a valid treatment alternative for this disease.
Other results suggest that MSCs due to their immunosuppressive properties and paracrine activity
can facilitate a HSCs (hematopoietic stem cells) engraftment and lessen GVHD severity [100–102].
The MSCs administrations to patients with hematological diseases and GVHD provided a remarkable
clinical response. Zhao et al. have monitored 47 patients with refractory acute GVHD out of which
28 patients, who received allogeneic, bone marrow derived MSCs, exhibited a reduced incidence and
severity of GVHD [49].

It has been reported that other stem cell types may have similar properties to MSCs. It should be
noted that cardiac-derived stem cells have immunomodulatory properties in vitro resembling those
described for MSCs [103]. The ALLSTAR clinical trial concerning myocardial regeneration with the
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application of allogeneic heart stem cells (cardiospheres) showed that these cells expressed CD73,
CD90, and CD105-classical markers characteristic for MSCs [104,105]. The use of cardiac stem cells as
an allograft suggests that allogeneic cell therapy may be widely applicable.

Jansen et al. [106] performed a meta-analysis of preclinical data of stem cell therapy in ischemic
heart disease. They reviewed data from 82 studies and concluded that MSCs were used in most
of them. The analysis showed that: (1) both autologous and allogeneic cell therapy exhibit similar
effects—similar improvement in left ventricular ejection fraction, and most importantly (2) there were
no serious immune reactions reported in any of the studies, which suggested that this cell therapy
was safe.

In general stem cells-based therapy is used in patients who do not respond to conventional and
biological treatments [92]. Recent publications (2015–2019) have shown that bone marrow, adipose
tissue, and umbilical cord are the most frequent sources of allogeneic MSCs used in clinical studies
(PubMed, https://www.ncbi.nlm.nih.gov/pubmed). A large group of patients enrolled in MSCs-based
clinical trials (about 20%) suffers from cardiovascular diseases—cardiomyopathy, myocardial infarction,
heart failure (acute and chronic), or limbs ischemia (www.clinicaltrials.gov). Despite prevention and
advanced treatment methods, morbidity and mortality are still very high. Numerous studies have
confirmed that MSCs administrations to damaged myocardium resulted in significant improvement of
myocardial contractility [2,16,20,79,95,107,108].

The MSCs based therapies also represent a new frontier in neurological disease treatments. The
use of these cells in patients with neurological problems such as spinal cord injury (SCI), multiple
sclerosis (MS), amyotrophic lateral sclerosis (ALS), or epilepsy turned out to be very beneficial. MSCs
promote neurological improvement through the release of neuroprotective and neurotrophic factors
and anti-inflammatory properties [109–112]. The positive outcomes of MSCs-based studies have
translated, over the last few years, in a remarkable increase in the number of clinical trials where MSCs
are being used in the treatment of neurological diseases (www.clinicaltrials.gov).

At our facility, an attempt to produce the “CardioCell” product from MSCs isolated
from Wharton’s jelly (WJ-MSCs) has been implemented under the CIRCULATE project
(Strategmed2/265761/10/NCBR/2015). The “CardioCell” is being administered to patients in three
clinical trials: Acute Myocardial Infarction (AMI-Study, EudraCT Number: 2016-004662-25), Chronic
Ischemic Heart Failure (CIHF-Study, EudraCT Number: 2016-004683-19), and Non-Option Critical
Limb Ischemia (N-O CLI-Study, EudraCT Number: 2016-004684-40). Although, the project is still in
progress, the results seem to point out to the “CardioCell” as a possible alternative in the treatment of
cardiovascular diseases. Our in vitro and in vivo studies have shown so far, that WJ-MSCs possess high
regenerative potential and most importantly they are safe for recipients [72,113]. Our initial clinical
results suggest that the level of donor specific antibodies (DSAs) in patients does not change even after
multiple administrations, which might indicate that immunization does not occur (unpublished data).

5. HLA Matching—Old and New Application Challenges

A Brief Story about Human Leukocyte Antigens (HLA)

The antigen responsible for the rejection of allotransplant (mouse tumor grafting model) was
described, for the first time, by Peter Gorer in 1936 [114]. Gorer’s work was further expanded by
George Snell, who established H-2 locus encoding strong or major histocompatibility antigens capable
of inducing quick graft rejection. Next, in 1958, Jean Dausset, Jon van Rod, and Rose Payne described
antibodies in human sera that reacted with alloantigens on leukocytes, which were termed as the HLA
(human leukocyte antigen) complex [115].

By the early 1980s, it became known that HLA genes are located on the short arm of chromosome
number 6, and that they encode six different, very polymorphic series of determinants (A, B, C, DR,
DQ, and DP) (Figure 4).

https://www.ncbi.nlm.nih.gov/pubmed
www.clinicaltrials.gov
www.clinicaltrials.gov
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6. Genes and Proteins—a Blessing or a Curse

HLA are divided into three HLA classes: class I, II, and III. The first two are important for
induction of adaptive immune response, [116,117]. Class I HLA proteins are divided into classical
(HLA-A, -B, and -C) and non-classical (HLA-E, -F, and -G) molecules [118,119]. Classical class I HLA
molecules are ubiquitous glycoproteins found on almost all nucleated cells [120–122] and platelets
(limited expression possible) [123].

Expression of class II HLA molecules is limited to “professional antigen presenting” cells, such
as dendritic cells, B lymphocytes, monocytes, and macrophages [116]. Activated T lymphocytes and
renal microvascular endothelial cells may also express class II HLA [124,125]. The presence of a great
number of allelic versions of the HLA gene is manifested by enormous HLA polymorphism (Figure 4),
which plays a crucial role in antigen recognition.

Three mechanisms of allorecognition have been described so far: direct, indirect and
semi-direct [126]. The direct pathway involves a mechanism by which the recipient T cells (CD8+)
recognize donor’s HLA molecules and peptides presented by them without antigen processing by
recipient cells. The direct T-cell allorecognition plays an important role in acute rejection [116]. The
indirect pathway allows to recognize processed peptides of allogeneic histocompatibility antigens
presented by self HLA molecules. Indirect response is dominated by CD4+ T cells and plays a role in
chronic rejection [116]. Semi-direct recognition represents a cross-talk between the direct and indirect
pathways observed in the context of transplantation, e.g., CD4+ T cells with indirect allospecificity can
amplify or regulate direct allospecific CD8+ T cells [126].

Heterogeneity/diversity of HLA molecules and presented peptides enable an effective defense
against a wide spectrum of intruders. This evolution strategy is guaranteed by a wide spectrum of
different rows created by distal domains of HLA molecules as a consequence of high polymorphism
of HLA genes (the most polymorphic in humans) [116]. On the other hand, alloantigens of grafted
tissue are recognized by the same mechanism. If the HLA antigens differ between donor and recipient
(and present different spectrum of peptides), the recipient’s immune system may recognize the graft as
foreign and initiate an immune response resulting in graft damage. The level of HLA mismatches
correlates with the strength of the immune system response. Based on this knowledge, HLA typing
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is used not only for matching a donor and a recipient but also to estimate the immunological risk of
donor recognition.

7. Organ Transplantation—Focus on DSA

The overwhelming majority of literature indicates that HLA matching between the donor and
the recipient is critical for graft (e.g., kidney, pancreas, skin, or heart) function and survival [127–130].
Since complete HLA match is usually very rare other strategies such as matching in HLA-A, -B,
and -DR antigens only [131], matching in CREG (cross reactive groups) [132], acceptable mismatches
program (defined by the lack of antibodies against donor’s HLA in the recipient serum), recipients
desensitization, and finally, immunosuppression are being introduced [133]. HLA antigens have
multiple epitopes, which can be recognized by specific antibodies (antigenicity) and can induce
specific antibody response (immunogenicity). The epitopes are determined by polymorphic amino
acid residues on the HLA molecule surface. Patches of closely located polymorphic residues (app. 3
angstroms radius) are called eplets [134] or functional epitopes [134]. Eplets are essential components
of HLA molecules recognized by antibodies, which are major risk factors for graft failure.

Antibodies against HLA antigens may occur naturally or may develop as a result of previous
grafting, blood transfusion, pregnancy, or common viral infection [135]. Antibodies specific for donors’
antigens (donor specific antibodies, DSA) may cause graft rejection. The presence of DSA before
transplantation or DSA created de novo is an unfavorable indicator for graft survival especially if it
leads to complement activation. The activation of complement cascade results in cell lysis/destruction.
Even low titers of DSA may be associated with antibody-mediated graft rejection. Higher titers of DSA
may pose an immediate risk, which may serve as the basis for the application of aggressive therapies
allowing transplant survival. Therefore, it is necessary to identify anti-HLA antibody specificities as
well as their biological activity for establishing acceptable mismatches.

8. Hematopoietic Transplantation; from a Perfect Match to Haplocompatibility

Transplantation of hematopoietic cells is a standard procedure for many hematologic and genetic
diseases (congenital immunodeficiency and inherited metabolic disorders) [116]. The highest probability
of finding a well-matched donor is mostly possible between the members of the recipient’s family.

If a perfectly matched family donor is unavailable, a search for unrelated or related, mismatched
donors is a procedure of choice. Unfavorable scenarios, which may occur after hematopoietic stem cell
transplantations, include graft rejection (rare) and a graft-versus-host disease (GvHD).

DSA have been implicated in graft rejection in solid organ transplantation, but their role in
hematopoietic transplantation seems to be also important [136–138]. Preformed DSA were associated
with a high rate of graft rejection in patients undergoing haploidentical transplantation (match in one
HLA haplotype), even if their level was low [139]. It was also observed that recipients of haploidentical
grafts developed DSA de novo [140]. The mechanism of how DSA influence hematopoietic stem cell
transplantation is still unclear.

Current knowledge about HLA strongly supports the fact that by overcoming the HLA barrier
it is possible to increase the number of successful transplants and to prioritize acceptable, specific
mismatches with a potentially lower immunogenicity.

9. Immuno-Privileged Status of MSCs

Determination of HLA is a necessity for organ, tissue, and hematopoietic stem cell transplantation.
Donor-recipient HLA-mismatches can result in transplant rejection and GVHD [141]. The underlying
reason for solid organ damage/rejection is the initiation of an adaptive response by the graft recipient’s
immune system resulting in an allograft rejection [142]. A solid organ allograft is a vascularized
structure composed of a great number of cells, which constitute a potential source of multiple
alloantigens. These alloantigens can be utilized by the allograft recipient’s antigen presenting cells,
mainly dendritic cells, to initiate the three allorecognition pathways (direct, indirect, and semi-direct)
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described above [143–145]. MSCs represent a different form of an allograft than solid organs. Although
the comparison of these two forms of allografts poses many problems, it is, however, reasonable to
assume that MSCs are not as structurally advanced as solid organs. They constitute a homogeneous
population of cells with no vascularization, which together with the absence of class II HLA expression
diminishes the allorecognition pathways activation in the allograft recipient. It should be also noted
that the immunosuppressive properties of MSCs (release of TGF-β1, PGE2, IL-10, etc.) even further
promote graft survival [38–42]. These and other facts clearly support the need of exploiting MSCs as
an alternative to allograft transplantation.

The fact that most stem cells express low levels of class I HLA and lack class II HLA molecules has
generated the presumption that stem cells are immune-privileged and do not cause an immunological
conflict between the host and transplanted cells. In fact, most studies do not characterize allogeneic
MSCs and their potential recipients in terms of HLA compatibility. The few published studies have
demonstrated that adult HLA-mismatched MSCs and ESCs are not immune-privileged. In vivo studies
with animal models have shown that allogeneic MHC-mismatched bone marrow MSCs may induce
an immune response and subsequently become rejected. Intracardiac injection of allogenic MSCs
in pigs has induced an immunological reaction [82]. The immune response has been reported at
both cellular and humoral levels [82–89]. An immunological reaction was also observed in ESCs
transplantation models. Allogeneic ESCs transplantation into injured myocardium in mice triggered
cellular infiltration [146,147]. In general, human ESCs and MSCs do not express class II HLA, however,
the expression of these molecules may significantly be upregulated during cell expansion in vitro, which
may result in an immunological reaction after in vivo applications [148,149]. There are few factors that
may stimulate MHC/HLA molecule expression on stem cells in vitro and in vivo: culture medium
supplemented with growth factors (i.e., FGF) [149], oxygen conditions, or epigenetic modification
in vivo [150]. These findings should alarm researchers to reevaluate the possibility of class II HLA
upregulation during stem cell expansion designed for therapeutic purposes. Additionally, class II HLA
can also appear after MSCs encounter the proinflammatory microenvironment of an injured tissue.
It should be emphasized that in vitro conditions are different from those present in the source tissues
where the stem cells interact with other cells, growth factors, cytokines, and/or extracellular matrix
proteins. All of these factors can affect the HLA expression on these cells.

Data concerning patients’ sensitization after allogeneic MSCs transplantation are very limited.
Current knowledge is mainly based on the results of four different clinical trials in which, in total,
90 patients have been studied [16,19,91,95]. These trials include the treatment of non-ischemic dilated
cardiomyopathy—37 patients (POSIEDON-DCM trial) [95], advanced heart failure—30 patients [91],
osteoarthritis—14 patients, and DDD—9 patients [19]). The level of sensitization in all of these
patients was very low and was noticed only in a few percent of the studied patients after allogeneic
MSCs injections. Since HLA typing of MSCs has not been determined before administration, it is
possible that the level of detected antibodies correlated with HLA mismatches between the donor
and recipient [95,151]. Negligibly low immunogenicity was also noted in other clinical studies. In
the osteoarthritis and DDD clinical trials, the immune response was weak and transient. The donor
specific anti-HLA antibodies (DSA) were detected in only two out of 13 patients included in the trial
(knee osteoarthritis trial). It should be pointed out that in these studies, the recipients received only a
single injection of MSCs, which may explain why only a few of them developed DSA [19]. There is a
strong possibility that DSA levels may prove to be much higher in recipients who receive multiple
allogenic MSCs injections, which only confirms the necessity of anti-HLA antibody monitoring in such
therapies. Thus, donor/recipient HLA typing together with the assessment of DSA levels should be
implemented for a better monitoring of the immune responses to MSCs.

10. Safety of MSCs-Based Therapy

The basic rule in clinical trials is to minimize side effects and maximize safety and efficiency
of a therapy. The tissue source, multistage cell culture process involving isolation, expansion,
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cryopreservation, and culture conditions all introduce many variables, therefore standardization of
all procedures and protocols is extremely important. The minimal criteria outlined by International
Society for Cellular Therapy ISCT allow to obtain homogeneous MSCs populations [152]. In vitro
expansion, conducted under controlled and previously validated conditions guarantees to obtain the
required cell number of the highest quality. Heterogeneity of cell population accompanied with cellular
senescence leads to unreliable clinical outcomes. It has been shown that senescent cells possess altered
secretome profile and surface molecule expression, which handicaps their functionality [153,154].
The correct in vitro characterization of cells and reduction of manufacturing diversity are the most
important challenges of MSCs-based therapies.

As shown in Figure 2A, allogeneic MSCs-based clinical trials constitute about 40% of MSCs
transplantations. The vast majority of these studies do not include HLA matching and DSA monitoring.
In these trials the enrolled patients are analyzed for the presence of IgG HLA class I antibodies before
transplantation and a few months after transplantation without previously typing the HLA of MSCs
donors [92]. In these cases, it is difficult to clearly state that MSCs do not cause immune response
in patients. Nevertheless, as available data have shown, mesenchymal stem-cells treatment is well
tolerated regardless of the source of the original cells [17,20,80,92].

Patient monitoring after cell administration is an indispensable part of any clinical trial. Long-term
follow up allows the assessment of therapy’s safety. It should be noted that biological properties of
mesenchymal stem cells derived from different sources are not the same [155]. The different type
of MSCs used in the treatment of different diseases may generate different results, thus, the results
obtained from one study cannot be extrapolated to another. Although the safety of MSCs therapy
is generally accepted, treatment related adverse events cannot be excluded. A follow-up period in
MSCs-based clinical trials has not been established so far, but usually is not shorter that a few months.
For better safety assessment, in particular with regards to MSCs tumorigenic potential exclusion, some
clinical trials are conducted with a two-year follow-up period [17,80,92,95,112].

11. Regulatory Issues for Clinical Trials in Humans

It is highly important to conduct clinical trials under unified regulations. Regardless of specificity
of the study, clinical trials should comply with the guidelines of a good clinical practice, which are
obligatory for advanced therapy medicinal products. The use of the advanced therapy investigational
product (ATIMP) requires approval from competent authorities and ethic committees. The trials
conducted in all EU countries are registered in the EudraCT database. Indisputable is the fact that
informed consents must be obtained from every subject enrolled in the clinical trial. While planning
clinical trials, the study risks are identified and minimized and potential benefits for patients are
estimated. To maximize safety of the therapy, the occurrence of all adverse events should be reported
and assessed by investigators [156].

Manufacturing of ATIMP should be carried out in accordance with good manufacturing practice
(GMP). At the beginning of the manufacturing process a sponsor/manufacturer needs to receive a
confirmation that a treatment based on biological materials (i.e., genetic material, cells, or tissues)
meets all criteria for an ATMP set by EMA’s Committee for Advanced Therapies (CAT). Sponsors
and manufacturers ensure the quality of the product by complying standard operating procedures
and quality control system [157]. Donors should be previously screened for infectious diseases and
other risk factors. In case of an ATIMP that contains human cells or tissues, the sponsor, manufacturer,
investigator, and institution where the product is administrated should ensure that there is a traceability
system to identify the donor/source of donation, to easily link the donation to the product and then to
link the product to the subject [158].

The details about the manufacturing process and the reagents used are described in Investigational
Medicinal Product Dossier (IMPD)—the main document assessed during clinical trial approval. All
changes in ATIMP development should be clearly described and evaluated in terms of safety and
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efficacy of therapy. Duration of the follow-up period is determined by the sponsor depending on the
type of ATIMP [159].

12. Conclusions—Future Issues for Consideration

Stem cell based therapies have provided a new therapeutic approach in the treatment of chronic
diseases. The available data suggest that allogeneic MSCs therapy is safe mainly because it does
not generate an immune response in the recipient after transplantation. These findings strongly
support the need for the development of allogeneic MSCs-based therapies. Despite the presence of
considerable evidence supporting the therapeutic potential of MSCs, the clinical implications in the
case of HLA-mismatched MSCs are still unknown. In the light of a growing interest in allogeneic MSCs
transplantations, a long term monitoring of the enrolled patients with regards to their immunological
profiles are recommended. The analysis of recipients’ immunization status prior and after MSCs
injection will provide the necessary evidence to solve debatable issues, and as a result transform MSCs
therapy into an “off-the-shelf” treatment of many diseases.
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