Supplementary Figure Legends

Figure S1. In Vitro translation analysis of wild-type (WT) and c.354G>A variant ADAMTS13 transcripts. Representative autoradiogram of WT and p.P118P (c.354G>A) variant in vitro translation products. ADAMTS13 protein is indicated by an arrow. Significantly higher translation of c.354G $>\mathrm{A}$ variant relative to WT transcript was observed. In vitro translation products of ADAMTS13 variants not included in current study are indicated.

Figure S2. Cumulative sum of (a) \log (Ribosome Protected Fragment) ADAMTS13 values. Cumulative sum of the normalized log (Ribosome Protected Fragments) of WT and c.354G>A (p.P118P) transcripts is shown. Data series for each construct represents two biological replicates of three technical replicates each.

Figure S3. Average normalized reads by codon number for ADAMTS13 (WT and c.354G>A (p.P118P)), ACTB and GAPDH. Panels A and B respectively show ribosome profiles for $A D A M T S 13$ variants along the entire gene and focused around codon 118. Largely similar profiles were observed in both the plots. Panels C and D show ribosome profiles for control genes $A C T B$ and GAPDH respectively. Data series for each construct represents two biological replicates of three technical replicates each.

Figure S4. Circular dichroism (CD) analysis of wild-type (WT) and p.P118P variants. CD spectra of WT and p.P118P variant proteins from three independent runs were displayed.

Supplementary Figure Legends (continued)

Figure S5. Glycosylation of W-387 in ADAMTS13. The MS/MS spectrum of $m / z 519.2^{2+}$ showing the b and $y^{\prime \prime}$ ions used to assign the sequence within wild-type ADAMTS13 as WSSWGPR. The quasimolecular ion is 162 Da , a Hexose unit, higher in mass than the theoretical peptide mass, and the position of substitution of the Hexose is on the first Tryptophan, W387, as proven by the interpretation of the fragment ions observed, shown in schematic with suggested mechanisms. There is no evidence of $\mathrm{W}-390$ being Hexosylated. The principal fragment ions observed correspond to the novel formation of a 2-Ethynyl-Indole (Acetylenic substituent) on the side chain of W-387 resulting from loss of 138 Da due to water loss and partial cleavage of the Hexose ring, in preference to the normal β-elimination (162 Da) seen in O-linked glycosylation chemistry.

Figure S6. Glycosylation of S-1170 in ADAMTS13. The partial Mass Spectrum ($\mathrm{m} / \mathrm{z} 550-1200$) at the corresponding LC-MS elution time where the MS/MS of a signal at 1065.5^{2+} gave b and $y^{\prime \prime}$ signals attributable to the sequence GLLFSPAPQPR in ADAMTS13. The spectrum shows an ion at 1065.5^{2+} and a corresponding quasimolecular ion for the peptide component of $1182.6\left(591.8^{2+}\right)$ which calculates for a NeuAc ${ }_{2} \mathrm{HexHexNAc}$ unit attached to S1170 of the peptide sequence assigned. From a knowledge of mammalian biosynthetic pathways this likely corresponds to a DiSialyl Core-1 structure, and the sequential losses of individual sugar units observed (and annotated in the Figure) suggests the basic structure illustrated.

Figure S7. Rosetta Interface Score vs RMSD for the modelled metalloprotease docked on to the DTCS (Crystal structure of Disintegrin (D), TSR Repeat1 (T), Cysteine-rich (C) and Spacer (S) domains of ADAMTS13) run. Each point represents a structure created by the ROSIE server with the top scoring structures shown in bold. The vertical axis gives the interface score (total score of the protein complex minus the total score of each partner in isolation, as described in the ROSIE documentation), while the horizontal axis gives the root-mean-square deviation (RMSD), a measure of distance from the starting position

Figure S1

ADAMTS13 variants not
included in the
ADAMTS13 \longrightarrow 而

Figure S2

Figure S3

Figure S4

Figure S5

Figure S6

Figure S7

Interface score I_sc / RMSD and Top-10 "I_sc score models"

