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Abstract: Lipoxygenases (LOXs) are non-heme iron-containing dioxygenases involved in many
developmental and stress-responsive processes in plants. However, little is known about the radish
LOX gene family members and their functions in response to biotic and abiotic stresses. In this
study, we completed a genome-wide analysis and expression profiling of RsLOX genes under abiotic
and biotic stress conditions. We identified 11 RsLOX genes, which encoded conserved domains,
and classified them in 9-LOX and 13-LOX categories according to their phylogenetic relationships.
The characteristic structural features of 9-LOX and 13-LOX genes and the encoded protein domains
as well as their evolution are presented herein. A qRT-PCR analysis of RsLOX expression levels
in the roots under simulated drought, salinity, heat, and cold stresses, as well as in response to a
Plasmodiophora brassicae infection, revealed three tandem-clustered RsLOX genes that are involved in
responses to various environmental stresses via the jasmonic acid pathway. Our findings provide
insights into the evolution and potential biological roles of RsLOXs related to the adaptation of radish
to stress conditions.
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1. Introduction

Lipoxygenases (EC 1.13.11.12; LOXs), which are ubiquitously distributed in plants, animals,
and fungi, are important monomeric, non-heme iron-containing dioxygenases [1] that catalyze the
oxygenation of polyunsaturated fatty acids to produce fatty acid hydroperoxides [2]. A typical LOX
comprises the following two major domains: a C-terminal LOX domain and an N-terminal polycystin-1,
lipoxygenase, alpha-toxin (PLAT) domain [3]. The LOX domain contains five conserved histidine
(His) residues that form a fragment [His-(X)4-His-(X)4-His-(X)17-His-(X)8-His] involved in the binding
of an iron atom [4]. The PLAT domain, which contains an eight-stranded antiparallel β-barrel, can
bind to procolipase to mediate membrane associations [5,6]. Depending on whether the oxidation of
polyunsaturated fatty acids occurs at carbon atom 9 or at carbon atom 13, the plant LOXs are grouped
in the 9-LOX or 13-LOX categories [2]. Additionally, LOXs may also be categorized as type I or type II
based on their structural and sequence similarities. The type I LOX sequences are highly similar and
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do not encode a transit peptide, whereas the type II LOX sequences are only moderately similar and
encode an N-terminal chloroplast transit peptide [7].

A previous study revealed that 9S-hydroperoxyoctadecadienoic acid (9-HPOD) and
13S-hydroperoxyoctadecadienoic acid (13-HPOD), which are the products generated by 9-LOX and
13-LOX, respectively, can be further converted to various oxylipins by a variety of enzymes [8]. In
plants, LOXs and the derived oxylipins are reportedly involved in several biological events, including
seed germination [9]; tuber development [10]; fruit ripening [11]; sex determination [12]; and, most
importantly, immune responses [13–15].

The oxylipins derived from 13-HPOD, such as jasmonic acid (JA) and green leaf volatiles, are
important for responses to abiotic and biotic stresses [16,17]. In maize, the 9-HPOD-derived products
include death acids, such as 10-oxo-11-phytodienoic acid and 10-oxo-11-phytoenoic acid, which
accumulate to inhibit infections by fungi and herbivorous insects when plants are infected with the
pathogen responsible for southern leaf blight (Cochliobolus heterostrophus) [18,19]. Moreover, LOX
activities have been detected during responses to biotic and abiotic stresses in diverse plant species. For
example, six LOXs were identified in A. thaliana [20], with the AtLOX1 and AtLOX5 expression induced
by stress-related hormones influencing immune responses [21,22] and AtLOX2 and AtLOX6 expression
contributing to JA biosynthesis [23,24]. Among solanaceous plant species, tomato SlLOXD [15],
tobacco NaLOX3 [25,26], and potato StLOXH3 [27] are involved in JA biosynthesis, whereas NaLOX2
and StLOXH1 mediate the biosynthesis of green leaf volatiles [28,29]. Furthermore, pepper CaLOX1
contributes to the scavenging of reactive oxygen species and the activation of defense-related genes
in responses to abiotic stresses [30]. In persimmon, DkLOX3 plays a crucial role in the regulation of
senescence and the tolerance to salt stress [31].

Several studies have investigated LOX genes using bioinformatic tools to clarify their functions in
various physiological and molecular events in diverse plant species, including Arabidopsis thaliana [32],
rice [20], cotton [33], maize [34], and cucumber [35]. Radish (Raphanus sativus L., 2n = 2x = 18), which
belongs to the family Brassicaceae and a relative of Brassica rapa and Brassica oleracea, is a root vegetable
cultivated worldwide. The growth and economic value of R. sativus are affected by a variety of biotic
and abiotic stresses, such as extreme weather, saline–alkaline conditions, and diseases due to insect
infestations. Because of the importance of the LOX gene family in responses to biotic and abiotic
stresses, a comprehensive investigation of the R. sativus LOX genes is needed.

The present study involved a thorough analysis of the R. sativus LOX gene family. Specifically,
11 LOX genes were identified in the R. sativus genome based on bioinformatics resources and then
characterized regarding the encoded enzyme sequences, chromosomal distribution, phylogenetic
relationships, classifications, structure, encoded conserved motifs, synteny, tandem duplications, as
well as expression patterns in various organs and in response to abiotic and biotic stresses. The results
of our study may form the basis of future investigations aimed at more thoroughly characterizing the
LOX genes in R. sativus and related species.

2. Results

2.1. Identification and Characterization of LOX Gene Family Members

We applied a bioinformatics-based approach to identify 11, 14, 11, and six LOX genes in R. sativus,
B. rapa, B. oleracea, and A. thaliana, respectively (Table S1). The A. thaliana LOX genes identified in
this study were identical to those described in a previous report [20], confirming the reliability of our
results. The RsLOX genes were distributed on only five of the nine radish chromosomes (R01, R02,
R05, R07, and R08). Additionally, R07 contained five LOX genes, which was the most of any of the
radish chromosomes, followed by R01 and R02, both of which included two LOX genes (Figure 1).

The physical and chemical properties of all 11 RsLOX genes were analyzed (Table S2). The
encoded RsLOX enzymes comprised 676 to 920 amino acids, with a predicted molecular weight of
77.01 to 103.32 kDa. Among the 11 RsLOXs, RsLOX10 was the shortest and had the lowest molecular



Int. J. Mol. Sci. 2019, 20, 6095 3 of 15

weight. The predicted aromaticity ranged from 0.092 to 0.104, whereas the isoelectric point ranged
from 5.17 to 9.11. These differences mostly result from variation in the nonconserved regions’ amino
acid sequences. A comparison of the RsLOX sequences revealed a sequence identity of 18.7–91.3% and
a sequence similarity of 27.4–95.6% at the amino acid level (Figure 2).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 3 of 16 
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2.2. Phylogenetic Relationships among LOX Family Members from Diverse Plant Species

To determine the evolutionary relationships of the R. sativus LOX family members to other known
LOX families, we constructed a phylogenetic tree based on 123 LOX amino acid sequences from
17 species (Figure 3 and Table S3). The tree categorized the LOXs as 9-LOX and 13-LOX enzymes. Of
the 11 identified R. sativus LOXs, three (RsLOX1, RsLOX2, and RsLOX5) were characterized as 9-LOX
enzymes, whereas the other eight RsLOXs were designated as 13-LOX enzymes. The RsLOXs were
grouped with the LOXs from related species (i.e., B. rapa and B. oleracea). Furthermore, the 13-LOX
enzymes were further classified as type I and II. However, the analyzed Brassica species lacked 13-LOX
type I enzymes, which is consistent with previous report [36].
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branches are presented in orange. The 13-LOX type I and type II branches are presented in blue and
red, respectively. The identified radish LOXs are highlighted with a red circle. Species abbreviations
are as provided in Table S3.

2.3. Conserved Domain and Structural Analyses of R. sativus LOXs

To further clarify the motifs and structural variations among RsLOXs, a separate phylogenetic
tree with RsLOX protein sequences was constructed. Additionally, RsLOX exon–intron organizations
and the encoded conserved motifs were compared. The phylogenetic relationships of the RsLOXs
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were identical to those of the RsLOXs in the phylogenetic tree based on sequences from 17 species
(Figure 4A).
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Figure 4. Phylogenetic, motif, structural, and conserved domain analyses of RsLOXs. (A) Phylogenetic
tree comprising RsLOX proteins. (B) Schematic representation of the conserved RsLOX motifs.
(C) Exon–intron structures in R. sativus LOX genes. (D) Sequences logo of a 38-residue RsLOX motif.
(E) Alignment of a 38-residue conserved motif. The dark color indicates the amino acids totally
matching, while the light indicates the part matching.

Most of the RsLOX genes shared similar exon–intron structures regarding the number and length
of exons. The genes encoding 9-LOX enzymes (RsLOX1, RsLOX2, and RsLOX5) comprised seven
to eight introns, whereas the genes for the 13-LOX enzymes had five to seven introns. Moreover,
RsLOX4 had the fewest introns (five), whereas RsLOX2 and RsLOX5 contained the most introns (eight)
(Figure 4C).

To gain insight into potential functions and diversifcation of the LOX genes in R. sativus, we
analyzed the predicted distinct motifs. As expected, most of closely related family members shared
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common motifs, suggesting they are functionally similar. Upon closer inspection, we determined
that RsLOX10 lacks some of the conserved motifs present in other RsLOXs. Moreover, 12 of the
15 identified motifs (motifs 1–10, 12, and 15) were present in all analyzed LOXs (Figure 4B). Motif 1,
which comprised 38 amino acid residues, was highly similar to the aforementioned LOX domain
[His-(X)4-His-(X)4-His-(X)17-His-(X)8-His]. This motif was conserved in all 11 RsLOXs identified
in this study, suggesting it may affect enzyme stability and activity (Figure 4D,E). An analysis of
subcellular localization indicated that the 13-LOX type II enzymes included a chloroplast transit
peptide, whereas RsLOX1, RsLOX2, and RsLOX5 (i.e., 9-LOX enzymes) did not (Table S4).

2.4. Tandem Duplications and Synteny of LOX Genes

Whole genome and tandem duplications (TD) provide sources of primitive genetic material
for genome complexity and evolutionary novelty [37]. We investigated the syntenic and tandem
relationship of LOX genes between A. thaliana and R. sativus to trace the evolutionary history of LOX
genes. Of the six AtLOX genes, four have a syntenic relationship with seven RsLOX genes. An analysis
with the SynOrths program suggested all of these syntenic relationships formed via whole genome
triplication (WGT) or segmental duplication (SD) events. Syntenic relationships were also detected
among the genes of the other analyzed species (Table S5). The AtLOX1 gene had a syntenic relationship
with only one B. rapa gene. Additionally, AtLOX2 lacked a syntenic gene in R. sativus, B. oleracea, and
B. rapa. In contrast, AtLOX3–6 had syntenic genes in all three of these species (Figure 5).
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Figure 5. Syntenic relationships among LOX genes of R. sativus, B. oleracea, B. rapa, and Arabidopsis
was visualized in a circos plot. The chromosomes of Arabidopsis, R. sativus, B. rapa, and B. oleracea were
shaded with black, green, orange, and blue colors, respectively.
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Interestingly, of the six AtLOX genes, AtLOX4 had the most syntenic copies in R. sativus,
B. oleracea, and B. rapa. Furthermore, the AtLOX4 syntenic genes Rsa10033815, BraA07g030990.3C,
and BolC6t38897H were tandemly duplicated. These observations implied that WGT and TD events
substantially contributed to the expansion of the LOX gene families in R. sativus, B. oleracea, and B. rapa
(Table S6).

2.5. Expression Profiles of R. sativus LOX Genes in Various Tissues

To clarify the RsLOX expression patterns, we analyzed previously reported transcriptome data for
six tissues (flowers, siliques, leaves, stems, callus, and roots) (Table S7) [38]. A heat map representing
RsLOX expression levels indicated these genes were expressed in several tissues, with some genes
expressed mainly in particular tissues. A hierarchical cluster analysis classified the RsLOX genes
into two main groups based on their expression patterns (Figure 6). However, these groups were
not consistent with the 9-LOX and 13-LOX categorizations. The RsLOX1 and RsLOX2 genes, which
encode 9-LOX enzymes, were similarly expressed and were clustered together, implying they may
have similar functions. Duplicated genes may undergo a non-functionalization, neofunctionalization,
or subfunctionalization [39]. The tandemly duplicated genes (RsLOX7, RsLOX8, and RsLOX9) were
differentially expressed, implying they are functionally diverse.
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2.6. Analysis of RsLOX Expression in Response to Abiotic and Biotic Stresses

A quantitative real-time polymerase chain reaction (qRT-PCR) assay was performed to examine
RsLOX expression levels in root tissue under high and low temperature, salinity, and simulated
drought (polyethylene glycol (PEG) treatment) conditions (Figure 7). The qRT-PCR results revealed
that the expression levels of the tandemly duplicated genes (RsLOX7, RsLOX8, and RsLOX9) were
considerably upregulated by the high and low temperatures and the PEG treatment. Additionally,
RsLOX11 expression was upregulated approximately 5-fold in response to the high-temperature and
PEG treatments.
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of the reference gene. Data are presented as the mean ± standard deviation of three independent
experiments. CK: control treatment.

Regarding the low-temperature treatment, the expression levels of all analyzed genes, except
for RsLOX7, RsLOX8, and RsLOX9, were downregulated or unchanged. Similar to the effects of the
low-temperature treatment, the exposure to NaCl increased the RsLOX7 and RsLOX8 expression
levels by 2.2-fold and 3.7-fold, respectively, but decreased or did not affect the expression levels of
the other RsLOX genes. Moreover, the expression levels of all RsLOX genes were not affected by the
Plasmodiophora brassicae infection.

3. Discussion

With the increasing availability of genomic data, the LOX gene family has been studied in several
plant species regarding their potential functions in development and stress responses. However, there
has been relatively little research into the LOX gene families of R. sativus and Brassica species. We
identified and characterized 11 R. sativus LOX genes in terms of their phylogenetic relationships, gene
and protein structures, and expression profiles. We revealed diverse gene structures, conserved motifs,
and differential expression patterns in various tissues and in response to abiotic stresses (cold, heat,
simulated drought, and salinity). Our findings suggest the RsLOX genes have similar sequences and
functions, but fulfill slightly different tissue-specific roles related to plant development and stress
responses. Thus, the data presented herein provide insights into the RsLOX family and may be useful
for functionally characterizing the RsLOX genes.

In this study, the RsLOX genes were divided into two groups (13-LOX and 9-LOX) according to
phylogenetic relationships, which was consistent with the results of many previous studies [20,32–35].
Furthermore, the 9-LOX enzymes (RsLOX1, RsLOX2, and RsLOX5) have highly similar sequences
(>75%), whereas, except for the enzymes encoded by the tandemly duplicated genes (RsLOX7, RsLOX8,
and RsLOX9), the 13-LOX type II enzyme sequences are only moderately similar (Figure 1). Additionally,
the 13-LOX type II RsLOXs contain a chloroplast transit peptide. Our findings are consistent with
the results of previous studies that indicated the type I LOX sequences are highly similar and lack a
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transit peptide, whereas the type II LOX sequences are moderately similar and include an N-terminal
chloroplast transit peptide [2,7]. Therefore, the classifications of the RsLOXs based on the phylogenetic
tree and analyzed sequence characteristics were consistent, which confirmed the validity of our
methodology and predictions. The analysis with the MEME suite and the examination of exon–intron
structures revealed the similarity in the gene structures and motif compositions of the RsLOXs within
sub-branches, suggesting these RsLOXs are functionally similar [40].

Gene duplication events (e.g., WGT, SD, and TD) have led to the expansion and increased
functional diversity of specific gene families [41,42]. Previous studies concluded that a WGT event
occurred in the common ancestor of R. sativus, B. oleracea, and B. rapa following its divergence from
A. thaliana approximately 14–20 million years ago [43,44]. In the current study, we determined that
four of the six AtLOX genes have syntenic copies in R. sativus, which is consistent with the evolution
of these species. However, differences in the number of retained syntenic genes suggest there may
have been some variability in the gene loss events during evolution. Functionally redundant genes
are always lost in the diploidization process occurring after paleopolyploidy events [45]. In contrast,
most of the AtLOX4 syntenic copies, as well as the tandemly duplicated genes, are present in R. sativus,
B. oleracea, and B. rapa, suggesting the associated tandem duplication occurred in the common ancestor
of these three species. The gene dosage effects hypothesis suggests that the increase in the AtLOX4
copy number reflects the considerable need for the encoded enzyme in multiple complex physiological
and biological processes [46]. Our findings may be useful for elucidating the expansion of the LOX
gene family.

Gene expression patterns can provide important clues regarding gene functions. Previous research
produced evidence that LOXs play fundamental roles in plant development and stress responses. In
the current study, RsLOX expression patterns were observed that reproductive organs were clustered
together. Under stress conditions, the expression levels of the 9-LOX genes (RsLOX1, RsLOX2, and
RsLOX5) were downregulated, which is similar to pepper 9-LOX gene expression patterns in response
to JA and thrips [47]. These results are consistent with the fact that 9-LOX enzymes mediate insect
resistance, protein storage, and tuber development [2,18]. The 13-LOX enzymes reportedly contribute
to abiotic stress responses [16,17]. The data presented herein indicated that the expression levels of
RsLOX7, RsLOX8, RsLOX9, and RsLOX11 (i.e., 13-LOX genes) are considerably affected by several
stresses. Moreover, RsLOX7, RsLOX8, and RsLOX9 clustered with AtLOX2 in the phylogenetic tree.
In A. thaliana, AtLOX2 is required for wound-induced JA accumulation, but whether it is involved
in responses to other stresses remains unclear [23]. JA is important for regulating plant responses to
various abiotic stresses, including cold and drought conditions [48–50]. Therefore, it is reasonable to
speculate that RsLOX7, RsLOX8, and RsLOX9 are the main RsLOXs in the JA biosynthetic pathway, and
the increased production of JA is directly involved in responses to various environmental stresses. We
also observed that the RsLOXs are unaffected by NaCl and P. brassicae treatments, possibly because of an
insufficient processing time or concentration. Alternatively, the RsLOXs may simply be unresponsive
to these two stresses. The predicted RsLOX functions will need to be experimentally verified in
future studies.

4. Materials and Methods

4.1. Sequence Acquisition and Identification of LOX Genes

The A. thaliana genome assemblies were downloaded from the TAIR10 database [51]. Genome
resources for R. sativus [52] and B. rapa [53] were downloaded from the BRAD database
(http://brassicadb.org/brad/) [54], and B. oleracea HDEM genome data [55] was download from
Genoscope database. The LOX domain model (PF00305) was downloaded from the Pfam database
32.0 [56]. Additionally, Hmmsearch, from the HMMER suite (version 3.1) [57], was used to search
for the LOX domain (PF00305) in the proteins of each species. The putative LOX proteins among the
initially screened proteins were filtered with an E-value cutoff of 1 × 10−5 and sequence coverage of the

http://brassicadb.org/brad/
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Pfam domain models of at least 60%. The detected proteins were then examined for the presence of the
LOX and PLAT domains with the InterProScan website. The Biopython module Bio.SeqUtils.ProtParam
was used to predict the molecular weight, isoelectric point, and other physical and chemical properties
of the R. sativus LOX proteins. The MG2C website was used to visualize the location of RsLOX genes
on nine pseudomolecular chromosomes [58].

4.2. Multiple Sequence Alignment and Phylogenetic Tree Construction

The global alignment tool Needle of the EMBOSS software suite [59] was used for the pairwise
alignment of RsLOX proteins to determine the sequence identity and similarity. The LOX proteins
from 17 species were included in a phylogenetic analysis. The amino acid sequences for the R. sativus,
B. oleracea, B. rapa, and A. thaliana LOX proteins were identified in this study, whereas the sequences for
the other 13 species were obtained from published articles [36,60]. The MUSCLE program [61] was
used to align the complete LOX amino acid sequences. A phylogenetic tree was constructed with the
MEGA-X program [62]. Specifically, the neighbor-joining method with the Jones–Taylor–Thornton
model was used. The phylogenetic tree was constructed with 500 bootstrap replicates used to assess
the statistical support for each tree node. Additionally, uniform rates and homogeneous lineages were
applied and a partial deletion with a site coverage cutoff of 70% was used for treating gaps. Another
phylogenetic tree comprising RsLOX proteins was constructed using the same methods.

4.3. Analyses of Conserved Motifs, Gene Structures, and Subcellular Localizations

To identify the conserved motifs encoded by LOX genes, the following parameters of the MEME
suite [63] were applied to search for motifs: the maximum number to be found was set to 15 and
the motif window length was set to 8–100 bp. The TBtools program [64] was used to analyze gene
structures and for visualizing gene structures and the encoded conserved domains. Sequence logos for
the conserved LOX domain in R. sativus proteins were generated with WebLogo 3 [65]. Additionally,
the conserved 38-amino acid sequences were aligned with the DNAMAN program (version 9) (Lynnon
Biosoft Company, Quebec, QC, Canada). The subcellular localizations of RsLOXs were predicted with
the online ChloroP 1.1 Server [66].

4.4. Analyses of Tandem Duplications and Synteny

To clarify the evolution of the LOX genes in R. sativus and related species, we analyzed the tandem
duplications and syntenic relationships of LOX genes in R. sativus, A. thaliana, B. oleracea, and B. rapa.
Tandem duplications were defined as gene copies that were separated by 10 or fewer genes and
within 200 kb. The SynOrths program was used to identify syntenic orthologs based on the sequence
similarity and the collinearity of the flanking genes [67], and the circos software was used to visualize
the syntenic relationships of LOXs among these species [68].

4.5. Transcriptional Profile Analysis

The RsLOX expression profiles were analyzed based on published RNA sequencing data for six
R. sativus tissues (flowers, siliques, leaves, stems, callus, and roots) [38]. The reads were aligned to the
R. sativus “XYB-36-2” genome [52] with TopHat2 [69]. The transcript abundance for each gene was
calculated according to the fragments per kilobase of transcript per million mapped reads (FPKM)
values with the Cufflinks program [70].

4.6. Plant Materials and Stress Treatments

Seeds of radish variety ‘BXC02′ were incubated at 25 ◦C for 2 days in darkness. Germinated seeds
were sown in plastic pots and incubated in a growth chamber with a 16-h day (24 ◦C)/8-h night (21 ◦C)
cycle. Seedlings at the six true-leaf stage were used for the subsequent experiments. For the heat and
cold stress treatments, the seedlings were incubated at 40 ◦C and 6 ◦C for 24 h, respectively. The control
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seedlings were subjected to a 24 ◦C (day)/21 ◦C (night) cycle. For the simulated drought and salinity
stress treatments, the seedlings were subjected to 20% PEG 6000 and 300 mM NaCl, respectively, for
24 h with a 24 ◦C (day)/21 ◦C (night) cycle. Regarding the P. brassicae infection, a 5-mL aliquot of a
3 × 108/mL resting spore suspension was injected in the soil near the roots of seedlings at the four-leaf
stage. The roots were harvested and analyzed 7 days after the inoculation. The control seedlings were
treated with sterile water. The taproots of five seedlings were collected as an independent biological
replicate, and each treatment was completed with three replicates. The samples were stored at −80 ◦C
prior to the subsequent RNA isolation step.

4.7. RNA Extraction and qRT-PCR Analysis

Total RNA was extracted from all samples with the Trizol reagent (Invitrogen, Carlsbad, CA,
USA). A DNase I treatment was used to eliminate any contaminating genomic DNA. The quality of
the RNA samples was checked with the NanoDrop 2000 spectrophotometer (ThermoFisher Scientific,
Beijing, China) and 1% denaturing agarose gels. The RNA was used as the template for the first-strand
cDNA synthesis with PrimeScript reverse transcriptase (TaKaRa Biotechnology, Dalian, China). The
Primer Premier 5.0 program was used to design gene-specific primers (Table S8). Additionally, the
RsGAPDH gene was used as an internal control for normalizing the gene expression data [71]. The
RsLOX expression levels were analyzed in a qRT-PCR assay, which was completed with the SYBR Green
qPCR kit (TaKaRa Biotechnology, Dalian, China) and the Stratagene Mx3000P thermocycler (Agilent,
Santa Clara, CA, USA). The PCR program was as follows: 95 ◦C for 5 min then 40 cycles of 95 ◦C
for 15 s and 60 ◦C for 30 s. The relative LOX gene expression levels were calculated with the 2−∆∆Ct

method [72]. The analysis included three biological replicates, each with three technical replicates.

5. Conclusions

In this study, we comprehensively characterized the radish LOX gene family via a systematic
approach comprising analyses of phylogeny, gene structure, motif composition, evolution, and
gene expression patterns in response to various abiotic and biotic stresses. Our results revealed
the conservation and diversity in the sequence characteristics and functions among RsLOX genes.
Moreover, a qRT-PCR analysis of RsLOX expression indicated that three tandem-clustered RsLOX
genes are involved in responses to various environmental stresses through the jasmonic acid pathway.
This comprehensive analysis provides a foundation for the functional characterization of LOX
genes under stress conditions in radish and potentially in other species, including cotton and other
Brassicaceae species.
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Abbreviations

LOXs Lipoxygenases
PLAT Polycystin-1, lipoxygenase, alpha-toxin
His Histidine
9-HPOD 9s-hydroperoxyoctadecadienoic acid
13-HPOD 13s-hydroperoxyoctadecadienoic acid
JA Jasmonic acid
WGT Genome triplication
SD Segmental duplication
TD Tandem duplication
PEG Polyethylene glycol
qRT-PCR Quantitative real-time polymerase chain reaction
FPKM Fragments per kilobase of transcript per million mapped reads
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