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Abstract: The zinc metallopeptidase Pseudomonas elastase (LasB) is a virulence factor of Pseudomonas
aeruginosa (P. aeruginosa), a pathogenic bacterium that can cause nosocomial infections. The present
study relates the structural analysis of 118 N-alpha-mercaptoacetyl dipeptides (NAMdPs) as LasB
inhibitors. Field-based 3D-QSAR and molecular docking methods were employed to describe the
essential interactions between NAMdPs and LasB binding sites, and the chemical features that
determine their differential activities. We report a predictive 3D-QSAR model that was developed
according to the internal and external validation tests. The best model, including steric, electrostatic,
hydrogen bond donor, hydrogen bond acceptor, and hydrophobic fields, was found to depict a
three-dimensional map with the local positive and negative effects of these chemotypes on the LasB
inhibitory activities. Furthermore, molecular docking experiments yielded bioactive conformations
of NAMdPs inside the LasB binding site. The series of NAMdPs adopted a similar orientation
with respect to phosphoramidon within the LasB binding site (crystallographic reference), where
the backbone atoms of NAMdPs are hydrogen-bonded to the LasB residues N112, A113, and R198,
similarly to phosphoramidon. Our study also included a deep description of the residues involved in
the protein–ligand interaction patterns for the whole set of NAMdPs, through the use of interaction
fingerprints (IFPs).

Keywords: Pseudomonas aeruginosa elastase; N-alpha-mercaptoacetyl dipeptides; 3D-QSAR; docking;
interaction fingerprints

1. Introduction

Nosocomial infections—also known as hospital acquired infections—are general or localized
infectious processes in organs or anatomical regions, acquired by patients during hospitalization or
through visits to other local health care centers. These undesired infections are considered to be a big
global problem due to their social and economic impact [1]. The ongoing abuse of antibiotics to treat
nosocomial infections has led to the problem of multidrug resistance [1], which is one of the major
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challenges of antimicrobial discovery [2–5]. In the past, the assembly required for antibiotic drugs
development [6,7] was aimed to obtain compounds that inactivate bacterial targets through specific
mechanisms (i.e., inhibition of cell growth or causing cell death) [8]. As is known, pathogenic bacteria
can produce a wide range of virulence factors that specifically participate in host functions, in order to
allow colonization. Research is currently directed to seek specific antimicrobial agents focused on the
action mechanisms of virulence factors [9].

Pseudomonas aeruginosa (P. aeruginosa) is a Gram–negative opportunistic pathogenic bacterium
that is responsible for many nosocomial infections [10,11]. It has multiple virulence factors, such
as the toxin metalloprotease Pseudomonas elastase (LasB), which is responsible for lung hemorrhages
and corneal tissue destruction. Additionally, LasB can inactivate the alpha 1 proteinase inhibitor that
controls tissue destruction through the degradation of a series of proteins, including elastin, collagen,
and fibrin [12]. The idea that decreasing the function of virulence factors leads to less resistance of P.
aeruginosa to antibiotics is still valid and was previously afforded [5,9]. In this context, some scientific
endeavors have focused on developing new molecules that contain specific functional groups capable
of interacting with the zinc ion of LasB metalloprotease [13–15], and additional chemical groups that
are optimized to form specific interactions with the residues in the binding site of this target protein.

To support these tasks, theoretical studies oriented to characterize inhibitor interactions with the
LasB crystal enzyme [16] could help with the development of new specific drugs to avoid antibiotic
resistance in P. aeruginosa. Despite the widespread use of computational methods for drug design,
there are a few studies related to the LasB inhibitors [17–19]. Fortunately, LasB–ligand complexes have
been reported by X–ray crystallography [19]. Notwithstanding of several biological evaluations of sets
of LasB inhibitors [13–15,17,18,20,21], a quantitative structure–activity relationship (QSAR) to predict
and correlate the efficiency of the molecules reported is not present in the literature; neither is a deep
description of the LasB binding site.

Inspired by the low number of theoretical studies dedicated to LasB inhibitors, we carried
out QSAR and docking studies of the congeneric family of 118 N-alpha-mercaptoacetyl dipeptides
(NAMdPs) reported by Cathcart et al. [17,20], providing interesting information about their binding
poses and the causes of their differential activities. We assumed that this information could be useful
for the design of new potential LasB inhibitors.

2. Results and Discussion

2.1. Results of the QSAR Models

First, the 118 NAMdPs structures were aligned (Figure 1). In order to better understand and
visualize the structure–activity relationship (SAR), the amino acid residues (AA) of NAMdPs were
denoted as AA-1 and AA-2, as shown in Figure 1. The alignment was done manually by using the
Maestro program. In this way, we set the HSCH2–substituent and the amide groups as the backbone
of the skeleton of peptides, and the substituents as AA-1 and AA-2, which were all different. When
the AA-1 was proline, the HSCH2–groups were not typical because of the steric restrictions of the
proline ring.

The field-based 3D-QSAR models were constructed by including the five available field descriptors
in Phase (Phase, Schrodinger, LLC, New York, NY, USA, 2016) and by exploring the different number of
principal components (PCs) through the partial least square (PLS) method. The best model, including
two PCs, was statistically adequate: R2 = 0.617, standard deviation (SD) of 0.6, Q2 > 0.5 (Q2 = 0.529),
and the stability was close to 1 (stability = 0.985). This model was also predictive, where R2

test > 0.6
(R2

test = 0.615) and standard deviation of the test set predictions (SDtest) was 0.532. The predictions of
the pKi values for the 95 compounds from the training set and the 23 compounds from the test set
were reported in Table 1. The values of the predicted pKi values were plotted against the experimental
values (Figure 2) for the training set, and the cross–validated model was plotted over the training set
and the test set. As can be seen in Figure 2, the plotted predictions were well-distributed across the
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activity domain; although, the selected model seemed to have some problems in describing the SAR of
the most active NAMdPs.
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of the model to describe the differential activity in the dataset, following the idea of Doweyko, which 
suggested the use of 3D-QSAR models as a retrospective analytical tool, instead a predictive tool [25]. 
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Figure 1. Structural alignment representation of the 118 LasB inhibitors; (left) backbone carbon atoms
in gray and side chain carbon atoms in green, and (right) schematic structure of the NAMdPs.

Although within the limit, our model complied with QSAR statistics defined by Golbraikh and
Tropsha (Q2 > 0.5, R2

test > 0.6) [22]. We also performed further tests on the external validation,
according to the Roy and Roy criteria [23]. This test was based on the following criteria for a QSAR
model to have predictive power—(i) at least one of the correlation coefficients for regressions through
the origin (predicted versus observed activities, or observed versus predicted activities), specifically:
[(R2

test − R0
2)/R2

test] or [(R2
test − R′02)/R2

test] < 0.1; (ii) at least one slope (k or k′) of the regression
lines through the origin should be close to 1, i.e., k or k′ should satisfy: 0.85 ≤ k ≤ 1.15, or 0.85 ≤ k′ ≤
1.15; (iii) a high value of R2

m (R2
m > 0:5) was required, where R2

m = R2
test ×(1 − (R2

test − R0
2)1/2. Our

model complied with these criteria since [(R2
test − R0

2)/R2
test] = 0.03, k = 0.987, and R2

m = 0.530.
Despite the calculated statistic being adequate, the R2 and Q2 values did not represent the

high-fitted rates, which was commonly associated to a lower QSAR predictive ability. However, this
asseveration is a point of discussion in the literature [22,24,25]. For instance, in the paper ‘3D-QSAR
illusions’ Doweyko [25] considered that a higher Q2 reflects that the model identified the redundancy
in the training set and this has nothing to do with its predictability. Under this criterion, a low Q2

reflects that each member of the training set is important for the model. In any case, our purpose in this
work was the interpretation of the model to describe the differential activity in the dataset, following
the idea of Doweyko, which suggested the use of 3D-QSAR models as a retrospective analytical tool,
instead a predictive tool [25].

In the constructed 3D-QSAR model, the steric component had a 34.0% contribution, electrostatic
had only 4.0%, hydrogen bond (HB)–donor had 13.4%, HB–acceptor had 21.9%, and hydrophobic
had 26.7%. We utilized the contour isopleths projected in the most active NAMdP compound 103
(HSCH2CO–Trp–Tyr–NH2) to mechanistically interpret the best 3D-QSAR model and to predict the
most favorable AA residues in each position AA-1 and AA-2. The five 3D-QSAR field contour plots
are shown in Figure 3, labeled as (A) steric, (B) electrostatic, (C) hydrophobic, (D) hydrogen bond
(HB)–acceptor, and (E) HB–donor.
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Table 1. List of NAMdPs used in this study, their experimental and predicted pKi values using the best QSAR model, their role in the QSAR construction (training or
test set). Glide scores of their selected docking poses, and root mean square deviation (RMSD) values with respect to phosphoramidon in Protein Data Bank (PDB)
structure 3DBK.

NAMdP Experimental pKi Predicted pKi QSAR Set Glide Score (kcal/mol) RMSD (Å) %RefMatch %MolMatch

1 HSCH2CO–Ala–Arg–NH2 −2.0607 −2.3215 Training −7.652 0.95 38 67

2 HSCH2CO–Ala–Asp–NH2 −2.4997 −2.1689 Training −5.239 0.95 38 78

3 HSCH2CO–Ala–Leu–NH2 −1.3222 −2.1287 Training −5.067 0.96 38 78

4 HSCH2CO–Ala–Lys–NH2 −2.1847 −2.3482 Training −5.975 0.94 38 74

5 HSCH2CO–Ala–Trp–NH2 −2.5966 −2.3854 Training −5.161 3.09 62 96

6 HSCH2CO–Ala–Val–NH2 −1.7076 −2.1121 Test −4.774 0.95 38 82

7 HSCH2CO–Arg–Asp–NH2 −2.8129 −2.3112 Test −5.663 0.94 43 67

8 HSCH2CO–Arg–Lys–NH2 −2.1303 −2.4909 Training −7.267 0.91 43 64

9 HSCH2CO–Arg–Phe–NH2 −2.3502 −2.2621 Training −6.318 1.05 46 63

10 HSCH2CO–Arg–Trp–NH2 −2.0969 −2.5236 Training −6.212 3.01 68 83

11 HSCH2CO–Asn–Arg–NH2 −2.4472 −2.4689 Training −8.582 0.98 46 71

12 HSCH2CO–Asn–Leu–NH2 −2.7059 −2.2637 Training −5.526 0.97 46 81

13 HSCH2CO–Asn–Lys–NH2 −2.4609 −2.4835 Test −6.439 0.97 46 77

14 HSCH2CO–Asn–Phe–NH2 −1.5682 −2.2525 Training −6.015 1.00 49 75

15 HSCH2CO–Asn–Trp–NH2 −1.8451 −2.5190 Training −5.518 2.87 70 96

16 HSCH2CO–Asn–Val–NH2 −2.2553 −2.2475 Training −5.682 0.99 46 85

17 HSCH2CO–Asp–Arg–NH2 −2.7412 −2.5774 Training −8.351 0.98 46 71

18 HSCH2CO–Asp–Leu–NH2 −2.0719 −2.3721 Test −5.413 0.95 46 81

19 HSCH2CO–Asp–Lys–NH2 −2.6911 −2.5914 Training −5.397 0.96 46 77

20 HSCH2CO–Asp–Trp–NH2 −2.3160 −2.6275 Training −4.564 2.86 70 96

21 HSCH2CO–Cys–Arg–NH2 −2.8102 −2.4454 Training −5.857 1.18 41 68

22 HSCH2CO–Cys–Lys–NH2 −2.4378 −2.4601 Training −3.691 1.18 41 75

23 HSCH2CO–Cys–Phe–NH2 −2.1173 −2.2302 Test −3.155 0.97 43 73

24 HSCH2CO–Cys–Trp–NH2 −2.0334 −2.4966 Test −3.091 3.05 65 96
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Table 1. Cont.

NAMdP Experimental pKi Predicted pKi QSAR Set Glide Score (kcal/mol) RMSD (Å) %RefMatch %MolMatch

25 HSCH2CO–Cys–Val–NH2 −2.2068 −2.2235 Training −2.802 0.95 41 83

26 HSCH2CO–Gln–Arg–NH2 −2.3365 −2.4675 Test −8.794 0.97 43 64

27 HSCH2CO–Gln–Leu–NH2 −2.7324 −2.2627 Test −6.350 0.95 43 73

28 HSCH2CO–Gln–Lys–NH2 −2.5798 −2.4815 Test −6.717 0.94 43 70

29 HSCH2CO–Gln–Trp–NH2 −1.9590 −2.5192 Training −6.093 2.93 68 89

30 HSCH2CO–Gln–Val–NH2 −2.9717 −2.2451 Training −6.254 0.93 43 76

31 HSCH2CO–Glu–Lys–NH2 −2.7427 −2.6041 Training −5.895 0.93 43 70

32 HSCH2CO–Glu–Phe–NH2 −2.1644 −2.3753 Training −4.813 1.15 46 68

33 HSCH2CO–Glu–Trp–NH2 −2.8476 −2.6418 Training −5.828 2.97 68 89

34 HSCH2CO–Glu–Val–NH2 −2.8633 −2.3677 Training −6.019 0.96 43 76

35 HSCH2CO–Gly–Arg–NH2 −2.8069 −2.5394 Training −8.393 0.94 35 65

36 HSCH2CO–Gly–Leu–NH2 −2.1399 −2.3336 Training −5.225 0.94 35 76

37 HSCH2CO–Gly–Lys–NH2 −2.6542 −2.5543 Training −6.274 0.94 35 72

38 HSCH2CO–Gly–Phe–NH2 −1.7076 −2.3247 Training −5.604 0.97 38 70

39 HSCH2CO–Gly–Trp–NH2 −2.0864 −2.5911 Training −5.584 3.16 59 96

40 HSCH2CO–Gly–Val–NH2 −2.6599 −2.3163 Training −5.022 0.94 35 81

41 HSCH2CO–His–Ala–NH2 −0.5587 −1.6658 Training −3.155 0.93 38 70

42 HSCH2CO–His–Leu–NH2 −2.4857 −1.68 Training −3.252 0.92 38 61

43 HSCH2CO–His–Lys–NH2 −2.5211 −1.8976 Training −3.563 0.96 38 58

44 HSCH2CO–His–Phe–NH2 −1.3222 −1.6688 Training −3.128 0.95 41 58

45 HSCH2CO–His–Trp–NH2 −1.2553 −1.9353 Training −3.052 3.10 62 79

46 HSCH2CO–His–Val–NH2 −1.6721 −1.6632 Training −2.932 0.94 38 64

47 HSCH2CO–Ile–Asp–NH2 −2.1523 −1.5871 Training −4.167 1.00 43 76

48 HSCH2CO–Ile–Gln–NH2 −0.5717 −0.5951 Training −6.036 0.92 43 73

49 HSCH2CO–Ile–Leu–NH2 −0.1004 −1.5472 Training −4.684 0.94 43 76

50 HSCH2CO–Ile–Lys–NH2 −2.2788 −1.7662 Training −5.633 0.95 43 73
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Table 1. Cont.

NAMdP Experimental pKi Predicted pKi QSAR Set Glide Score (kcal/mol) RMSD (Å) %RefMatch %MolMatch

51 HSCH2CO–Ile–Thr–NH2 −0.5328 −1.3756 Test −6.040 0.93 43 80

52 HSCH2CO–Ile–Trp–NH2 −2.5635 −1.8041 Training −5.822 2.92 68 93

53 HSCH2CO–Ile–Tyr–NH2 −0.3139 0.226 Training −5.897 0.94 46 68

54 HSCH2CO–Ile–Val–NH2 −0.2625 −1.5298 Training −4.851 0.93 43 80

55 HSCH2CO–Leu–Arg–NH2 −2.7945 −2.013 Test −7.750 1.16 46 71

56 HSCH2CO–Leu–Asp–NH2 −2.7686 −1.8479 Training −4.075 1.10 46 81

57 HSCH2CO–Leu–Leu–NH2 −1.7243 −1.8061 Training −5.417 1.23 46 81

58 HSCH2CO–Leu–Lys–NH2 −1.1461 −2.0253 Test −5.291 1.10 46 77

59 HSCH2CO–Leu–Phe–NH2 −2.0531 −1.7966 Training −3.977 1.26 49 75

60 HSCH2CO–Leu–Trp–NH2 −2.4771 −2.0634 Training −4.790 2.98 70 96

61 HSCH2CO–Lys–Asp–NH2 −2.9872 −2.4763 Test −6.095 0.97 43 73

62 HSCH2CO–Lys–Leu–NH2 −2.0899 −2.4284 Training −6.349 0.96 43 73

63 HSCH2CO–Lys–Lys–NH2 −2.6365 −2.6554 Training −7.149 0.96 43 70

64 HSCH2CO–Lys–Phe–NH2 −2.1004 −2.4267 Training −6.502 0.97 46 68

65 HSCH2CO–Lys–Val–NH2 −2.7443 −2.4166 Training −6.072 0.96 43 76

66 HSCH2CO–Met–Arg–NH2 −0.8195 −1.8487 Training −7.798 1.00 43 67

67 HSCH2CO–Met–Asp–NH2 −0.8451 −1.6836 Training −4.891 0.99 43 76

68 HSCH2CO–Met–Lys–NH2 −0.5866 −1.8627 Training −6.684 0.97 43 73

69 HSCH2CO–Met–Phe–NH2 −2.9380 −1.6339 Training −5.564 1.19 46 71

70 HSCH2CO–Met–Trp–NH2 −2.3096 −1.9004 Training −4.916 2.89 68 93

71 HSCH2CO–Met–Tyr–NH2 −0.5623 0.1316 Training −5.955 1.26 46 68

72 HSCH2CO–Met–Val–NH2 −1.9912 −1.6213 Training −5.815 0.97 43 80

73 HSCH2CO–Phe–Gln–NH2 0.1226 −0.2028 Training −6.245 0.96 38 56

74 HSCH2CO–Phe–Ile–NH2 −0.6503 −1.1362 Training −5.120 0.93 38 58

75 HSCH2CO–Phe–Leu–NH2 −2.8096 −1.146 Training −4.450 0.95 38 58

76 HSCH2CO–Phe–Lys–NH2 −1.8808 −1.3642 Test −5.413 0.95 38 56
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Table 1. Cont.

NAMdP Experimental pKi Predicted pKi QSAR Set Glide Score (kcal/mol) RMSD (Å) %RefMatch %MolMatch

77 HSCH2CO–Phe–Met–NH2 −0.4502 −0.7559 Training −6.914 0.91 38 58

78 HSCH2CO–Phe–Phe–NH2 −2.1644 −1.1354 Training −5.606 1.23 41 56

79 HSCH2CO–Phe–Trp–NH2 −2.3139 −1.4029 Training −7.568 1.76 62 77

80 HSCH2CO–Phe–Tyr–NH2 1.3872 0.6276 Training −6.918 0.95 41 54

81 HSCH2CO–Phe–Val–NH2 −1.0414 −1.1315 Training −4.537 0.96 38 61

82 HSCH2CO–Pro–Arg–NH2 −1.7482 −2.2055 Training −7.338 1.53 38 73

83 HSCH2CO–Pro–Leu–NH2 −2.3909 −2.0021 Training −7.612 1.40 38 85

84 HSCH2CO–Pro–Lys–NH2 −2.8842 −2.2260 Training −8.277 1.75 38 81

85 HSCH2CO–Pro–Trp–NH2 −2.7497 −2.2623 Training −5.630 2.96 62 96

86 HSCH2CO–Pro–Val–NH2 −2.1959 −1.9837 Test −7.628 1.48 38 92

87 HSCH2CO–Ser–Arg–NH2 −2.6474 −2.4949 Test −8.952 0.94 41 68

88 HSCH2CO–Ser–Leu–NH2 −2.7076 −2.2896 Training −6.262 1.14 41 79

89 HSCH2CO–Ser–Phe–NH2 −1.8751 −2.2801 Training −6.316 1.15 43 73

90 HSCH2CO–Ser–Val–NH2 −2.3598 −2.2737 Training −5.362 1.12 41 83

91 HSCH2CO–Thr–Arg–NH2 −2.7896 −2.2227 Training −9.096 1.07 41 65

92 HSCH2CO–Thr–Phe–NH2 −2.3522 −2.0078 Test −5.473 1.13 43 70

93 HSCH2CO–Thr–Trp–NH2 −1.8129 −2.2743 Training −6.166 2.99 65 92

94 HSCH2CO–Thr–Val–NH2 −2.5763 −2.0035 Training −5.808 1.06 41 79

95 HSCH2CO–Trp–Arg–NH2 −1.3979 −1.1114 Test −8.417 0.94 38 47

96 HSCH2CO–Trp–Asp–NH2 −1.5798 −0.9463 Training −6.044 0.96 38 52

97 HSCH2CO–Trp–Glu–NH2 −1.9590 −0.9930 Training −6.483 0.99 38 50

98 HSCH2CO–Trp–Ile–NH2 −0.0128 −0.8916 Training −7.636 0.51 38 52

99 HSCH2CO–Trp–Leu–NH2 −0.5635 −0.9039 Training −5.190 0.95 38 52

100 HSCH2CO–Trp–Lys–NH2 −1.0000 −1.1254 Training −8.613 0.66 38 50

101 HSCH2CO–Trp–Phe–NH2 −0.0414 −0.8966 Test −6.127 1.04 41 50

102 HSCH2CO–Trp–Trp–NH2 −1.6902 −1.1641 Training −5.961 3.04 62 70

103 HSCH2CO–Trp–Tyr–NH2 1.3925 0.8661 Training −5.518 0.98 41 48
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Table 1. Cont.

NAMdP Experimental pKi Predicted pKi QSAR Set Glide Score (kcal/mol) RMSD (Å) %RefMatch %MolMatch

104 HSCH2CO–Trp–Val–NH2 −0.6096 −0.8870 Training −5.893 0.98 38 54

105 HSCH2CO–Tyr–Arg–NH2 −0.4698 −1.0968 Training −10.083 0.59 38 50

106 HSCH2CO–Tyr–Asp–NH2 −0.7404 −0.9317 Training −6.700 0.43 38 56

107 HSCH2CO–Tyr–Glu–NH2 −1.4314 −0.9771 Training −7.712 0.47 38 54

108 HSCH2CO–Tyr–Leu–NH2 −1.5185 −0.8919 Training −7.353 0.43 38 56

109 HSCH2CO–Tyr–Lys–NH2 −0.9294 −1.1111 Training −8.097 0.52 38 54

110 HSCH2CO–Tyr–Phe–NH2 −0.8129 −0.8823 Test −7.380 0.50 41 54

111 HSCH2CO–Tyr–Trp–NH2 −1.1461 −1.1498 Training −7.392 2.81 62 74

112 HSCH2CO–Tyr–Tyr–NH2 −0.3181 0.8790 Test −7.686 0.87 41 52

113 HSCH2CO–Tyr–Val–NH2 0.1146 −0.8746 Training −7.274 0.46 38 58

114 HSCH2CO–Val–Arg–NH2 −1.8388 −1.8918 Training −8.183 1.00 41 65

115 HSCH2CO–Val–Leu–NH2 −1.8388 −1.6874 Test −5.767 0.94 41 75

116 HSCH2CO–Val–Lys–NH2 −1.3424 −1.9057 Training −5.501 0.95 41 71

117 HSCH2CO–Val–Phe–NH2 −1.8573 −1.6755 Training −5.001 0.95 43 70

118 HSCH2CO–Val–Val–NH2 −1.0000 −1.6676 Test −5.225 0.95 41 79
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Figure 2. Scatter plots of the predicted versus experimental pKi values for the training set (N), the
cross-validated models over the training set (#), and the test set (×).

The green (G1 and G2) and yellow (Y1) isopleths represent favorable and unfavorable components
of the steric field (Figure 3A). Bulky groups were tolerated as AA-1 residue (green isopleths G1 and
G2) to increase the inhibitory activity. Thus, NAMdPs with Trp, Phe, His, and Tyr in the side chain of
AA-1 (isopleth G1) were among the most potent inhibitors in the dataset (considering pKi > −1.5 as a
threshold, a deeper analysis revealed that 8 of 10 compounds with Trp as AA-1, 5 of 9 compounds
with Phe as AA-1, 3 of 6 compounds with His as AA-1, and 8 of 9 compounds with Tyr as AA-1, were
among the most potent LasB inhibitors). Additionally, the presence of alkyl substituents at the Cβ

of AA-1 (isopleth G2), also increased the LasB inhibitory activity. In fact, the majority of NAMdPs
increase their activities when Ala in AA-1 was replaced by Ile or Val residues. For instance, the pKi
values increased when compounds 2, 3, and 6 (with AA-1 = Ala) were compared with 47, 49, and 54
(with AA-1 = Ile), respectively, and the same happened when compounds 1, 4, and 6 (with AA-1 =

Ala) were compared with 114, 116, and 118 (with AA-1 = Val), respectively. Bulky substituents at the
position AA-2 (yellow isopleth Y1) considerably decreased the biological activity. Thus, NAMdPs with
Phe and Trp in the side chain of AA-2 (isopleth Y1) were among the less potent inhibitors in the dataset
(considering pKi < −1.5 to be a threshold, a deeper analysis revealed that 11 of 15 compounds with
Phe as AA-2 and 15 of 17 compounds with Trp as AA-2, were among the less potent LasB inhibitors).

Blue (B1 and B2) and red (R1 and R2) isopleths represent the favorable and unfavorable components
of the electrostatic field. Blue isopleths were in the regions where the positive charges were favorable
(or negative charges are unfavorable) for activity, and the red isopleths were in regions where more
negative charges were favorable (or positive charges were unfavorable) for activity. Positively charged
residues with a long side chain (e.g., Arg, Lys) as AA-1 and AA-2, had negative effects in the potency
of the LasB inhibition (red isopleths R1 and R2 in Figure 3B). All compounds with Arg and Lys in
AA-1 (isopleth R1) had pKi < −2.0 (Table 1). Meanwhile, NAMdPs with Arg and Lys in AA-2 (isopleth
R2) were among the less potent inhibitors in the dataset (considering pKi < −1.5 as a threshold, a



Int. J. Mol. Sci. 2019, 20, 6133 10 of 18

deeper analysis revealed that 11 of the 14 compounds with Arg as AA-2 and 13 of 18 compounds with
Lys as AA-2, were among the less potent LasB inhibitors). On the other hand, negatively charged
residues (e.g., Asp, Glu) as AA-1 and AA-2, had negative effects on the potency of LasB inhibition
(blue isopleths B1 and B2 in Figure 3B). All compounds with Asp and Glu in AA-1 (isopleth B1) had
pKi < −2.0 (Table 1). Meanwhile, NAMdPs with Asp in AA-2 (isopleth B2) were among the less potent
inhibitors in the dataset (considering pKi < −1.5 as a threshold, a deeper analysis revealed that 6 of 8
compounds with Asp as AA-2 were among the less potent LasB inhibitors).

White (W1 and W2) and cyan (C1) isopleths represent the favorable and unfavorable components
of the HB–donor field (Figure 3C). The white isopleth W1 indicates that Trp and His residues in AA-1
favor the inhibitory activity (considering pKi > −1.5 as the threshold, it is possible to see that 3 of 6
compounds with His as AA-1 and 7 of 10 compounds with Trp as AA-1, were among the more potent
LasB inhibitors). Meanwhile, isopleth W2 indicated that Tyr and Gln residues in AA-2 were essential
for increasing the inhibitory activity (all compounds with Tyr and Gln in AA-2 had pKi > −0.6). On
the other hand, the cyan isopleth C1 indicated that the HB–donor groups in this region (provided by
residues Arg, Lys, and Gln in AA-1) were unfavorable to perform a good inhibitory activity.

Maroon isopleths (M1, M2, and M3) represent the favorable components of the HB–acceptor field
(Figure 3D). Isopleths M1 and M3 indicate that Tyr residue in AA-1 and AA-2, respectively, favor the
LasB inhibitory activity (it is possible to see in Table 1 that the vast majority of compounds that contain
tyrosine are potent inhibitors). On the other hand, isopleth M2 indicate that Gln residue in AA-2 favors
the inhibitory activity (all compounds with Gln in AA-2 had pKi > −0.6).
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report of Cathcart et al. [17]. These interactions keep the ligands fixed, allowing for better orientations of 
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Figure 3. 3D-QSAR model contour maps obtained with the five force fields and represented around
the most active inhibitor in the dataset (compound 103, HSCH2CO–Trp–Tyr–NH2). (A) Steric—the
favorable and unfavorable components are in green (G1 and G2) and in yellow (Y1), respectively. (B)
Electrostatic—the favorable and unfavorable components are in blue (B1 and B2) and in red (R1 and
R2), respectively. (C) Hydrogen bond (HB)–donor—the favorable and unfavorable components are in
white (W1 and W2) and in cyan (C1), respectively, and (D) HB–acceptor—the favorable components are
in maroon (M1, M2, and M3). (E) Hydrophobic—the favorable components are in pink (P1, P2, and P3).
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Pink isopleths (P1, P2, and P3) represent the favorable components of the hydrophobic field
(Figure 3E). These isopleths reflect that the presence of hydrophobic amino acids in AA-1 and AA-2
positions increases the LasB inhibition potency of NAMdPs. It is possible to see in Figure 3E that P1
encompasses the hydrophobic part of Trp in AA-1, and the side chain groups of Phe, Ile, Val, and Leu
were also in this region. As mentioned above, there were instances of potent NAMdPs with these
residues in AA-1. On the other hand, isopleths P2 and P3 indicate that the hydrophobic residues could
increase the LasB inhibition potency. In fact, compounds with the residues Ile and Met had pKi > −0.7.

Thus, the 3D-QSAR let us conclude that the rational design of novel potential inhibitors should be
directed to compounds that might have at least an aromatic and bulky group at the AA-1 position and
a middle size with HB interactions at the AA-2 position. However, it is well-known that the 3D-QSAR
models had limitations, since they did not consider protein–ligand interactions. To complement the
3D-QSAR results, in silico molecular docking experiments of all 118 NAMdPs were performed.

2.2. Molecular Docking Results

The docking method allows to create a protein–ligand interaction model for LasB inhibitors.
The docking Glide scores of the selected poses per 118 ligands are reported in Table 1. These poses
were first compared to the phosphoramidon inhibitor that was taken as a reference (Protein Data
Bank (PDB) code 3DBK), since it was the only crystallized compound with a structure similar to that
of NAMdPs. To get a better insight on the chemical environment surrounding the ligands, ligand
interaction diagrams were sketched for phosphoramidon in the 3DBK crystal and the docking pose of
the most active compound 103 (Figure 4).

The phosphate group of phosphoramidon in the crystallographic structure shows electrostatic
interactions with the Zinc ion and the residue His223 of the LasB active site. The mercaptoacetyl
group in all docked NAMdP poses was oriented to the same ion and histidine, in agreement with the
previous report of Cathcart et al. [17]. These interactions keep the ligands fixed, allowing for better
orientations of the whole structures to occupy the complete binding site. The backbone NH and CO
groups of the AA-1 residue (Leu) in phosphoramidon and the AA-1 residues in 100% of the docked
structures formed HB interactions with the residues A113 and R198. On the other hand, the backbone
groups of the AA-2 residue (Trp) in phosphoramidon and the AA-2 residues of the docked structures
formed HB interactions with the residues N112.

The docking poses of the entire set of 118 NAMdPs were compared with the conformation
of phosphoramidon in the X-ray crystallographic structure (PDB: 3DBK). Figure 4c,d show that
the docked structures fitted in an acceptable way with phosphoramidon. For a better insight, the
above mentioned comparison was performed with an in-house script (named ligRMSD) [26], which
identified the common graphs between molecules and calculated the root mean square deviation
(RMSD) between the equivalent atoms of the common graphs. Since the NAMdPs were different from
the reference compound (phosphoramidon), RMSD values were calculated by considering only the
common graphs between molecules. In this context, %RefMatch and %MolMatch values were defined,
where %RefMatch referred to the percent of common graphs between the docked compound and
phosphoramidon, with respect to the total number of atoms of phosphoramidon; whereas, %MolMatch
refers to the percent of common graphs between the docked compound, and phosphoramidon, with
respect to the total number of atoms of the docked compound. These values allowed for identifying
the maximal similitude between the docked compound and phosphoramidon; therefore, an RMSD
value with high %RefMatch and %MolMatch values reflected that the compound under analysis bore
a major resemblance with phosphoramidon.
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Figure 4. The docking results for NAMdPs and comparison with phosphoramidon in X-ray
crystallographic structure 3DBK. Diagram for phosphoramidon (A), and the most active compound 103
(B) inside LasB binding site. (C) The docking pose obtained for compound 103 (green) and comparison
with the crystallographic structures of phosphoramidon (purple). (D) The binding modes of the
118 compounds.

The calculated RMSD values, reported in Table 1, were in the range of 0.4–3.1 Å. It is accepted in
literature that RMSD = 2.0 Å could be considered to be the threshold value that discriminates between
the right and wrong docking solutions for identical compounds [27,28] (this threshold could be higher
for non-identical compounds).

Among the structures with lower RMSD values, a match that included just the peptide
backbone was found, which is why the match percentage exhibited small values for
that set. On the contrary, the NAMdPs with higher %MolMatch values (96%) included
the entire set of HSCH2CO–(AA-1)–Trp–NH2 inhibitors, of which HSCH2CO–Leu–Trp–NH2,
HSCH2CO–Asp–Trp–NH2, and HSCH2CO–Asn–Trp–NH2 showed better match values but were
associated with high RMSD values (2.86–2.98 Å). These values reflected that the backbone atoms of
the NAMdPs matched with the ones of phosphoramidon, but the side chain groups were differently
oriented (Figure 4c,d). The NAMdP residues AA-2 contributed the most to increase the RMSD values.
For instance, the side chain groups of the tryptophan residues for these inhibitors were rotated by
some degrees with respect to this residue in phosphoramidon, due to the wide cavity of the binding
pocket S2′. This higher flexibility led to higher RMSD values. The visual analysis of the structures
(Figure 4d) indicated a similar orientation with respect to the reference phosphoramidon, which was
reflected in the match between the backbone groups of both structures.
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A systematic and detailed analysis of all possible interactions between LasB and the docked
NAMdP could be performed by using Interaction Fingerprints (IFPs). Previous studies have
demonstrated that IFP analysis is a valuable tool that allowed for a better schematization of
protein–ligand interactions [26,29,30].

For a better comprehension of the interactions between the docked ligands and LasB, IFP analysis
was performed. This analysis was a robust way of understanding the possible interactions between
the receptor (enzyme) and the docked ligands. Then, the identification of those chemical interactions
and the residues involved in them, could lead to a more detailed description of the LasB binding site
available to the series of 118 NAMdP conformations, according to the docking results. This information
could be considered for the design of novel potent inhibitors.

Plots of the chemical interactions types occurrence per residue are depicted in Figure 5. Residues
with interactions and their position in the LasB sequence are depicted in Figure 5a. IFP analysis applied
to the 118 LasB–NAMdP complexes is shown in Figure 5b,c. At first sight, there is a clear distinction
between the residues belonging to both binding pockets previously described by Cathcart [17], called
as S1′ (where AA-1 was placed) and S2′ (where AA-2 was placed). Topologically, the S1′ pocket was
more internal and the S2′ pocket was formed by more superficial residues. Percent of occurrence plots
showed that 23 residues of LasB were involved in the binding of NAMdPs.
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Figure 5. Occurrence of interaction types at the LasB–NAMdP binding interfaces. (A) Residues with
observed interactions, their position in the LasB sequence, and their position in the binding site (with
compound 103 as reference)—residues in pocket S1′ are in pink, residues in pocket S2′ are in orange,
residues in the interface between the two pockets are in violet, residues coordinated to Zn2+ are in
green, residues hydrogen-bonded to the backbone residues of the ligands are in blue. (B) Percentages
of occurrence of contacts C, interactions with the backbone of the residue B, and interactions with the
side chain of the residue S. (C) Percentages of occurrence of chemical interactions—contacts C, polar P,
hydrophobic H, and HBs where the residue is acceptor A, HBs where the residue is donor D, aromatic
Ar, and the electrostatic charged groups, Ch. The LasB–NAMdP structures obtained by docking were
used for calculations of the percentages of occurrence represented here.
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IFPs reflected that 100% of the docked structures formed the above mentioned HB interactions
with the residues A113 and R198 that anchored the backbone of the AA-1 ligand residues to the pocket
S1′ and the HB interactions with the residue N112 that anchored the backbone of the AA-2 ligand
residues to the pocket S2′. In this context, the plots in Figure 5c showed that A113 acted as the HB
acceptor in more than 95% of the total structures, R198 acted as the HB donor and formed electrostatic
interactions in 100% of the total structures, and N112 acted as the HB acceptor and HB donor in more
than 50% and 98%, respectively, of the total structures. IFPs also showed that the residues H144 and
E164, which were coordinated to Zn2+ and are close to the thiol groups of the docked NAMdPs, had
polar contributions in 100% of the docked structures. E164 also had electrostatic contributions in 100%
of them.

IFPs also reflected that the majority of the residues inside the pocket S1′ were mainly hydrophobic
(Figure 5); in fact, the residues L132, V137, I186, I190, and L197 provide hydrophobic contributions
to this pocket. L197 (also with some contacts in pocket S2′) showed these contributions in 100% of
the docked poses. Additionally, L132 and V137 showed these contributions in more than 65% of the
structures, and I186 and I190 showed them in more than 40% and 20% of the structures, respectively. It
was noteworthy that I186 and I190 showed interactions with compounds that contained bulky AA-1
ligand residues such as Phe and Trp, and these residues were present in the AA-1 group of several of
the most active NAMdPs. The residue E141, also in pocket S1′ and close to the mercaptoacetyl group,
showed polar and electrostatic contributions in 100% of the docked structures, and the residue H140,
which was also in pocket S1′ and was coordinated to Zn2+, showed polar contributions in 100% of the
docked structures. Finally, the residue G187, also in pocket S1′, had contacts in around 30% of the
docked structures.

Unlike pocket S1′, IFPs reflected that the pocket S2′ was more hydrophilic (Figure 5). The residues
D206, S209, D221, H223, and H224 provided polar contributions to this pocket. The residue H223 had
polar contributions in 100% of the docked poses. It also acted as the HB donor and the HB acceptor in
more than 97% and 13% of them, respectively. The residue D206 had polar contributions and acted
as the HB acceptor in more than 25% of the docked structures. The residues S209, D221, and H224
had polar contributions in 11.0%, 15.2%, and 44.0% of the docked structures. On the other hand, the
residues M128 and F129, also in pocket S2′, provided hydrophobic contributions in 13.5% and 33.0%
of the docked structures, respectively. F129, which also had some contacts in pocket S1′, showed
aromatic contributions.

3. Materials and Methods

3.1. Dataset Collection and Pre-Processing

A dataset of 118 LasB inhibitors was collected from the two series reported by Cathcart et al. in
publications [17,20]. Compounds with unknown activity values were excluded, and those with values
reported in both papers kept the activity value with more precision (in all cases the pKi values were
virtually identical). Ki values were in the range of 4.05 × 10−2 µM–971 µM, and they were scaled
using logarithmic scale as log (1/Ki) (as pKi units). The structures were pre-processed in Maestro
using LigPrep (Maestro, Schrodinger LLC, New York, NY, USA, 2016), and the protonation states of
titratable groups were predicted using Epik [31,32], at a pH value of 7.2. As the last preparation step,
the molecular representations were visually inspected. The naming scheme of the ligands in terms of
their two AA residues (i.e., AA-1 and AA-2 components) is represented in Table 1. The names are
related to the position as well, such as a ligand with arginine as AA-1 and aspartic acid as AA-2 are
represented as “HSCH2CO–Arg–Asp–NH2”.

3.2. QSAR Methodology

The 118 structures in the data set were aligned by hand in Maestro’s Molecular Editor (Maestro,
Schrodinger LLC, New York, NY, USA). Moreover, the field-based 3D-QSAR models were trained in
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Phase (Phase, Schrodinger LLC, New York, NY, USA, 2016) by the random splitting implemented in
this tool, getting a relation training/test sets of approximately 80/20 (95 and 23 compounds in training
and test sets, respectively). The training process of 3D-QSAR models was carried out over the available
descriptors, using the OPLS_2005 force field [33,34]. The fields were calculated on an orthohedral grid
that enclosed the training set molecules, with a spacing of 1 Å and extended 3 Å beyond the limits of
this set. The threshold for van der Waals and electrostatic interactions was set to 30 Kcal/mol, removing
points closer than 2 Å to any of the training set atoms. During the PLS procedure, all variables (points
in the grid) with a standard deviation of less than 0.01 were removed. Additionally, the variables whose
regression coefficients were overly sensitive to small changes in the training set composition were
removed using a |t–value| < 2.00 filter, as implemented in the Phase interface. Finally, the maximum
number of PLS factors was set to 10.

3.3. Molecular Docking

Molecular docking calculations were performed using Glide [35] from the Schrodinger Suite. The
coordinates of LasB were extracted from the PDB crystal with code 3DBK. This crystal is a complex
between LasB and the ligand phosphoramidon. This ligand was similar in dimensions with the studied
ligands; which is why it was used as a reference for the box generation. The downloaded crystal was
pre-processed using the Protein Preparation Wizard (Protein Preparation Wizard, Schrodinger LLC,
New York, NY, USA, 2016) protocol. The set of previously pre-processed ligands were docked in a 30
Å × 30 Å × 30 Å box, centered on the center of mass of phosphoramidon, covering the entire active
site of the receptor. Standard (SP) and extra-precision (XP) modes were run in Glide [35], but only
the XP mode was used to find adequate poses for all ligands [36]. The Glide protocol and parameters
were the same as reported in previous reports [37–39]. The selection of poses was based on looking
for the observed protein–ligand interactions patterns in the reported PDB crystals of LasB, and in the
selection of the lowest scoring energy from among the adequate poses. Protein–ligand interaction
patterns were identified and defined as essential chemical interactions described for analogue ligands
(ECIDALs) [27,40] with LasB inhibitory activities. Finally, one pose per ligand was chosen.

3.4. IFP Calculations

IFPs defined in Singh reports [41,42] were calculated in Maestro (Maestro, Schrodinger LLC, New
York, NY, USA, 2016) over the poses of ligands selected in docking experiments. The method identifies
the presence of different chemotypes, such as polar (P), hydrophobic (H), HBs with an acceptor (A) as
a residue group, HBs with a donor (D) as a residue group, aromatic (Ar), and electrostatic interactions
with charged groups (Ch). These chemotypes were accounted as interactions between the ligands and
the binding site residues of the target receptor. An interaction (under the chemotype definition) was
accounted when a residue contained atoms within a specified cut-off distance from the ligand atoms.

4. Conclusions

Summing up, a set of 118 NAMdP inhibitors was studied by using 3D-QSAR modeling and
molecular docking. QSAR analysis reflected that the side chain of the residue AA-1, at the NAMdP
skeleton, should be mainly hydrophobic with bulky aromatic substituents (e.g., Phe, Trp, and Tyr).
Furthermore, polar residues with large side chains (Lys, Arg, Glu, Gln, Asp) were not tolerated as
AA-1. Meanwhile, non–bulky aromatic groups with functional groups were able to act, as HB donors
are preferred as AA-2 (e.g., Gln and Tyr). The best compound in the studied set (compound 103) had
these preferred structural requirements to assure a good LasB inhibition—AA-1 was Trp, a bulky
hydrophobic residue, and AA-2 was Tyr, which contained the hydroxyl group as an HB donor.

In addition, this work studied in detail the ligand–enzyme interactions of the whole set of
compounds, and compared them with the ligand phosphoramidon (which is a crystal forming a
complex with LasB). NAMdPs, according to the docking experiments, were oriented inside the LasB
binding site by forming interactions with the Zn2+ ion, pocket S1′, and pocket S2′, as expected. The
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poses obtained by docking were used to carry out an IFP analysis, leading to a complete map of the
LasB residues that interacted with NAMdPs.

The information provided here, through a combination of 3D-QSAR and docking experiments,
might be taken into account by medicinal chemists interested in the synthesis and design of
antimicrobials, specifically LasB inhibitors, with the goal of improving future rational drug design of
specific potent therapeutics.
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3D three-dimensional
AA amino acid
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IFPs interaction fingerprints analysis
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PDB Protein Data Bank
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