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Abstract: The number of colorectal cancer (CRC) patients is increasing worldwide. Accumulating
evidence has shown that the tumor microenvironment (TME), including macrophages, neutrophils,
and fibroblasts, plays an important role in the development and progression of CRC. Although
targeting the TME could be a promising therapeutic approach, the mechanisms by which inflammatory
cells promote CRC tumorigenesis are not well understood. When inflammation occurs in tissues,
prostaglandin E2 (PGE2) is generated from arachidonic acid by the enzyme cyclooxygenase-2 (COX-2).
PGE2 regulates multiple functions in various immune cells by binding to the downstream receptors
EP1, EP2, EP3, and EP4, and plays an important role in the development of CRC. The current therapies
targeting PGE2 using non-steroidal anti-inflammatory drugs (NSAIDs) or COX-2 inhibitors have
failed due to the global prostanoid suppression resulting in the severe adverse effects despite the fact
they could prevent tumorigenesis. Therefore, therapies targeting the specific downstream molecules
of PGE2 signaling could be a promising approach. This review highlights the role of each EP receptor
in the TME of CRC tumorigenesis and their therapeutic potential.
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1. Introduction

Colorectal cancer (CRC) is one of the most common causes of cancer-related deaths worldwide [1,2]
and the number of CRC patients is increasing progressively [3,4]. A number of studies have revealed
the molecular mechanisms of CRC tumorigenesis, including adenoma-carcinoma sequence, de novo
carcinogenesis, and inflammation-related carcinogenesis [5]. Inflammatory bowel disease (IBD)
is defined as a chronic intestinal inflammation in susceptible individuals influenced by environmental
risk factors. Studies have revealed that IBD patients are at high risk of gaining CRC [6,7]. IBD patients
are 2–6 times more likely to develop CRC compared with the general population and the number
of IBD patients is expected to increase over time [8,9]. Therefore, it is important to understand the
mechanisms of inflammation-related carcinogenesis to overcome CRC.

The intestine covers a large part of the body surface contacting with the external environment,
and has a function as a barrier against the various harmful substances and pathogens. When the
balance between intestinal barrier function and external pathogens collapses, inflammation occurs
in the intestine. When inflammation occurs in the intestine, various inflammatory cells such as
neutrophils, macrophages and fibroblasts, are recruited by a variety of factors produced by damaged
cells. In turn, the recruited inflammatory cells can produce various cytokines and chemokines in
response to the inflammation.

When the inflammation occurs in the intestine, fibroblasts and inflammatory cells infiltrate into the
inflamed tissues and function within the tumor microenvironment (TME). These cells interact with CRC
cells through various cytokines and chemokines to promote tumor growth and progression [10–13].
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In the early stage of tumorigenesis, inflammation-related carcinogenesis, tumor initiation is induced by
the DNA damage caused by reactive oxygen species (ROS) and reactive nitrogen intermediates (RNI)
produced by the infiltrated immune cells and other mutagens. Cytokines released from infiltrated
inflammatory cells can also increase the levels of ROS and RNI in pre-malignant epithelial cells, which
changes the epigenetic modification of tumor suppressor genes (TSGs) resulting in the promotion of
tumor initiation. In the later stage of tumorigenesis, cytokines and chemokines can support tumor
growth by promoting angiogenesis and suppressing anti-tumor immune response (Figure 1). Other
factors in the intestine, such as intestinal microbiota and dietary compounds, can influence colon
cancer development. Persistent inflammation facilitates tumor promotion by activating proliferation
and antiapoptotic properties of tumor cells [14].
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example, prostaglandin E2 (PGE2), a major cyclooxygenase product in several physiological settings, 
regulates multiple functions of various immune cells [17,18]. Enzymatic degradation of PGE2 
involves the NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH). Otani et al., 
reported that the levels of 15PGDH are reduced in IBD resulting in the increased expression of PGE2 
which could worsen the chronic inflammation [19]. PGE2 is also known to promote CRC growth and 
progression [20]. Recent studies have demonstrated that decreased 15-PGDH has a profound 
relationship with carcinogenesis and cancer progression in CRCs, breast cancer, prostate cancer, lung 
cancer, gastric cancer and other cancers [21–23].  
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Although clinical trials investigated the effectiveness of NSAIDs or COX-2 inhibitors for the prevention of 
CRC, the studies failed due to severe cardiovascular toxicity [27,28]. Therefore, recent studies have been 
focusing on the more specific downstream signaling of PGE2, especially EP signaling.  

Figure 1. Inflammation-related carcinogenesis. Environmental mutagens, ROS, and RNI produced
by recruited immune cells can cause DNA damage, resulting in the initiation of inflammation-related
carcinogenesis. Cytokines or growth factors produced by immune cells can induce epigenetic changes
in tumor suppressor genes (TSGs) and promote tumor initiation. Cytokines or chemokines from
immune cells also promote tumor growth and progression.

Prostaglandins are inflammatory mediators which are generated from arachidonic acids by
the enzyme cyclooxygenase-2 (COX-2) and also play pleiotropic roles at inflammatory sites [15,16].
For example, prostaglandin E2 (PGE2), a major cyclooxygenase product in several physiological
settings, regulates multiple functions of various immune cells [17,18]. Enzymatic degradation of PGE2
involves the NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH). Otani et al.,
reported that the levels of 15PGDH are reduced in IBD resulting in the increased expression of PGE2
which could worsen the chronic inflammation [19]. PGE2 is also known to promote CRC growth
and progression [20]. Recent studies have demonstrated that decreased 15-PGDH has a profound
relationship with carcinogenesis and cancer progression in CRCs, breast cancer, prostate cancer, lung
cancer, gastric cancer and other cancers [21–23].

PGE2 transduces its signals by binding to the four PGE2-sensitive (EP) receptors, EP1 to EP4 [24].
The final output of PGE2 signaling depends on the expression of each EP receptor and on the strength
of each EP signal. It is known that PGE2 affects not only CRC cells but also inflammatory cells and
fibroblasts, because these cells express EP receptors.

Previous studies have reported that the inhibition of PGE2 by non-steroidal anti-inflammatory
drugs (NSAIDs) or COX-2 selective inhibitors could suppress CRC development and progression [25,26].
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Although clinical trials investigated the effectiveness of NSAIDs or COX-2 inhibitors for the prevention
of CRC, the studies failed due to severe cardiovascular toxicity [27,28]. Therefore, recent studies have
been focusing on the more specific downstream signaling of PGE2, especially EP signaling.

Although accumulating evidence has shown the role of PGE2/EP signaling in CRC tumorigenesis,
PGE2/EP signaling in the TME is not fully understood despite the abundant expression of EP receptors
in fibroblasts and inflammatory cells. Therefore, in this review, we highlight the role of PGE2/EP
signaling in the TME of CRC tumorigenesis.

2. PGE2/EP Signaling in CRC Cells

Prostaglandins at the inflammatory sites play pleiotropic roles in inflammation [15,16]. In particular,
PGE2, a major cyclooxygenase product in various several physiological settings, regulates multiple
functions of immune cells [17,18]. PGE2 signals through four pharmacologically distinct membrane
receptors, EP1, EP2, EP3, and EP4, which belong to the G protein-coupled receptor (GPCR) family.
Each receptor is coupled to different intracellular signaling pathways, and has distinct biochemical
properties and tissue localization [29]. The main signal transduction of PGE2 consists of a rise
in intracellular free calcium ion concentration via EP1, a decrease in intracellular cyclic adenosine
monophosphate (cAMP) concentration and extracellular signal-regulated kinase (ERK) activation via
the inhibitory subunit Gi in EP3, and a rise in intracellular cAMP concentration and subsequent protein
kinase A (PKA) activation via the stimulatory subunit Gs in EP2 and EP4 [24].

PGE2 signaling affects the biology of intestinal epithelial cells in the physiological condition.
Its cellular targets and the resulting physiological changes are predominantly determined by the
distribution of EP receptors. Takafuji et al., assessed the distribution of each EP receptor in the
normal and inflamed human colon, and found that EP2 and EP3 were expressed on epithelial cells
at the apex of crypts, while EP4 was expressed on surface and lateral crypt epithelial cells in normal
mucosa. On the other hand, in inflamed intestine, lateral epithelial cells expressed EP2 and EP3 [30].
Other studies using rodents showed that EP1 receptors were expressed in goblet cells in small intestine
and in other epithelial cell types in colon [31]. Houchen et al., reported that the expression of EP2
receptors depended on the differentiation state of the epithelial cells. In small intestine, undifferentiated
crypt epithelial cells predominantly expressed EP2 receptors on their nuclear membranes, whereas
highly differentiated epithelial cells at the apex of the villi expressed these receptors on their plasma
membrane [32].

A number of studies have revealed that the PGE2/EP signaling in the tumor cells contributes
to the CRC tumorigenesis. Watanabe et al. reported that EP1 deficiency decreased the formation of
aberrant crypt foci (ACF) which are putative pre-neoplastic lesions in the azoxymethane (AOM)-treated
colonic tumorigenesis mouse model, and that the treatment with an EP1 antagonist decreased ACF
formation [33]. Schumacher et al. demonstrated that PGE2 exposure to human CRC cell lines promoted
the dephosphorylation of cAMP response element-binding protein-regulated transcription co-activator
1 (CRTC1) to enhance CRTC1 transcriptional activity through EP1 and EP2 receptors signaling, resulting
in the promotion of sporadic or colitis-associated colon cancer [34]. Sonoshita et al. reported that
the important role of EP2 receptor by showing that homozygous deletion of the gene encoding EP2
reduced intestinal adenoma size and number in Apc∆716 mice [35].

In addition, EP3 has been shown to stimulate angiogenesis and tumor growth arising from
implanted sarcoma cells in mice [36]. Fujino et al. reported that EP3 receptors could contribute to
tumor cell metastasis by increasing cellular migration through the up-regulation of vascular endothelial
growth factor receptor-1 (VEGFR-1) signaling [37]. However, other studies reported that EP3 was
down-regulated in colorectal neoplasia and that AOM-induced tumorigenesis was accelerated in
EP3-null mice, suggesting a tumor-suppressive role for EP3 in the intestine [38]. Macias-Perez et al.
also reported that selective activation of EP3 could suppress tumor cell function of CRC cells in vitro
and in vivo by activating a G12-RhoA pathway [39]. Therefore, the role of EP3 in colonic tumorigenesis
might be controversial and further investigation is required.
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Chell et al. reported that EP4 was up-regulated during human CRC tumorigenesis in vivo [40].
Mutoh et al. reported that genetic or pharmacological inactivation of EP4 inhibited tumor growth
in a mouse model of intestinal neoplasia [41]. Hsu et al. revealed that EP2 and EP4 were the
major PGE2 receptors expressed on LoVo colon cancer cells and promoted cellular migration via the
phosphoinositide 3-kinase (PI3K)/Akt pathway [42]. Wang et al. reported that PGE2 induced the
expansion of cancer stem cells by activating nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-κB), via EP4-PI3K and EP4-mitogen-activated protein kinase (MAPK) signaling, which
resulted in promotion of liver metastases in mice [43].

Taken together, most studies investigating the downstream signaling of PGE2 have shown that
PGE2/EP signaling promotes the growth of CRC cells, although some reports showed data suggesting
a tumor suppressive role of EP3 signaling in CRC. Further investigation is necessary for the complete
understanding of PGE2/EP signaling in tumor cells.

3. PGE2/EP Signaling in TME

A number of studies have revealed the role of TME components such as macrophages, fibroblast,
myeloid-derived suppressor cells (MDSCs), and neutrophils in the CRC tumorigenesis which promote
the tumor growth by infiltrating into the tumor tissue and adjacent tissue [10–12]. Here, we highlight
the role of PGE2/EP signaling of each component of the TME (Figure 2, Table 1).

Table 1. The role of PGE2/EP signaling in TME component.

TME Component Signaling Effect Reference

Macrophages

PGE2 Enhance M2 polarization [44–46]
Induce VEGF production from M2 macrophages [47]

EP4 Stimulate lymphatic endothelial sprouting through the
Increase of VEGF-C/D [48]

Promote the migration of macrophages via ERK1/2 [49]
Enhance M2 polarization [50–54]

M1 polarization during gram-negative bacteria infection [55]

Fibroblasts

PGE2 Suppress NF cell function [56]
Promote VEGF-A production [57]

EP2 Induce EP2, COX-2, IL-6 and Wnt genes expression [58]
EP3/EP4 Promote stromal formation via CXCL12/CXCR4 [59]

EP4 Promote VEGF-A production [60]
Upregulate IDO expression [61]

Promote migration [62]

Neutrophils PGE2 Enhance N2 polarization [63]
EP4 Promote migration via PKA/ERK signaling [64]

MDSCs

PGE2 Induce the differentiation of MDSCs [65]
EP2 Induce MDSCs [66]
EP4 Induce MDSCs [67]

Induce Arginase I expression which is critical for immune
suppression of T cells [68]

Endothelial cells
PGE2 Promote angiogenesis through the EP4/PKA signaling [69]

EP2/EP4 Promote angiogenesis through CXCR4 [70]
EP3 Promote angiogenesis through the upregulation of Src [71]

Lymphocytes EP2/EP4 Incduce immune tolerance by increasing PD-1 expression in
infiltrating CD8+ cells [72]

NK cells EP4 Suppress NK cell functions [73]

DC cells PGE2 Inhibit the accumulation and the activation of DC cells [74,75]
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3.1. Macrophages

Macrophages play pivotal roles in the host innate immune response against any pathogenic
infections [76], and are one of the most dominant leukocyte residents found in the TME [77,78]. There
are two types of macrophages: M1 macrophages and M2 macrophages. M1 macrophages act in the
innate immune response against pathogenic infection, while M2 macrophages act in tissue repair and
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tumor progression [79]. In the context of TME, macrophages found in the TME are often referred to as
tumor-associated macrophages (TAMs) which primarily belong to M2 phenotype. TAMs are one of the
most abundant component of TME which represent up to 50% of the tumor cell mass [80–82]. TAMs
promote tumor progression in the TME by directly accelerating tumor cell growth and angiogenesis,
or by indirectly inducing the dysfunction of anti-tumor immune response [76,79,83,84]. The increased
ratio of pro-tumor macrophages against anti-tumor macrophages is associated with decreased overall
survival in Stage III CRC patients [85].

Inada et al., demonstrated that macrophages generate PGE2 via the upregulation of COX-2 by the
mucins secreted from a colon cancer cell line LS180. They immunohistochemically analyzed the human
colorectal cancer tissues and demonstrated that the localization of COX-2 expressing macrophages
were located around the region in which mucins were detectable [86].

PGE2 signaling is known to play an important role in the polarization of the macrophages.
PGE2 switches the phenotype of macrophages from anti-tumor M1 macrophages to pro-tumor M2
macrophages [44,45]. Eruslanov et al., reported that the overexpression of 15-PGDH in a mouse colon
cancer cell line, CT26, switched the phenotype of intratumoral CD11b cells from M2-oriented TAMs to
M1-oriented macrophages, suggesting that PGE2 can induce the differentiation of monocytes toward
M2-type TAMs [46].

Wu et al. demonstrated that PGE2 could be a potent inducer of VEGF in M2 TAMs under hypoxic
conditions [47]. Ratcliffe et al. examined the EP receptors expressed on macrophages and found
that EP2 and EP4 were mainly expressed on macrophages [87]. Other groups also revealed that EP2
and EP4 receptors were expressed in cultured murine macrophage-like cell lines such as J774.1 and
RAW264.7 [88,89].

Despite the fact that EP2 is expressed on macrophages, few studies have reported that EP2
signaling plays an important role in the functions of TAMs. Wu et al. assessed whether macrophage
polarity was altered with loss of EP2, and revealed that the ratio of M1/M2 macrophage subtypes was
not significantly changed with loss of EP2 expression [90].

On the other hand, the EP4 signaling has been reported to play a pivotal role in TAMs.
Lala et al. showed that EP4 activation on macrophages upregulated VEGF-C/D production to
stimulate lymphatic endothelial cells sprouting [48]. Digiacomo et al. reported that PGE2-EP4 signaling
and colony-stimulating factor-1 signaling synergistically promoted the migration of macrophages via
ERK1/2 phosphorylation [49]. PGE2/EP4 signaling could regulate the plasticity of the macrophages.
Yasui et al. showed that treatment with EP4 agonist enhanced M2 polarization in wild-type peritoneal
macrophages, whereas EP4-deficient macrophages were less susceptible to M2 polarization [50].
Chang et al. showed that the deletion of myeloid EP4 receptors led to the decreased expression of the
M2 macrophage markers, arginase-1 and IL-4Rα in APCMin/+ intestinal adenoma macrophages [51].
Zhang et al. also demonstrated that the expression of the M2 phenotype marker, Ym1, was decreased
in the myeloid-specific EP4 knockout mice [52]. Albu et al. reported that the EP4 antagonist, E7046,
reduced M2-like macrophages [53]. Barminko et al. also reported that EP4 signaling could induce the
transition from M1 to M2 phenotype [54]. Collectively, these data suggest that EP4 rather than EP2
plays an important role in regulating the phenotype of macrophages in the downstream of PGE2.

On the contrary, another study has reported that PGE2/EP4 signaling activated inflammasome
and induced M1 polarization of macrophages during the gram-negative bacteria infection [55]. It is
reported that the role of PGE2 signaling is context dependent [90], and this is the result obtained from
the setting of infection, which might affect the opposite results.

3.2. Fibroblasts

Fibroblasts found in the TME are called as cancer-associated fibroblasts (CAFs) or tumor-associated
fibroblasts (TAFs). CAFs are reported to account for a high proportion of tumor stroma (30–60%) [91].
They locate in the intratumoral stroma and the tumor-surrounding stroma.
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There is considerable interest in understanding the biology of CAFs as they are recognized
as a central element in the TME, with known roles in inflammation, tumor survival, metabolic
reprogramming, and angiogenesis [92–94]. CAFs have been reported to accelerate tumor progression
by secreting the extracellular matrix, remodeling their pro-inflammatory gene signature, and guiding
cancer cells during invasion [95]. In stage II colorectal cancer, CAF-specific endoglin expression at
invasive borders was associated with poor metastasis-free survival [96].

Although less is known about the role of PGE2/EP signaling in the activation or induction of
CAFs, it is known that CAFs generate PGE2 [97]. Li et al. reported that CAFs suppressed natural killer
(NK) cell functions through the production of PGE2 in vitro [56]. n stromal fibroblasts derived from
mouse gastric cancer, PGE2 induced VEGF-A secretion, although the involvement of the downstream
EP receptors was not analyzed [57]. Less is known about the role of EP receptor in CAFs, although
Odaka et al. identified that EP2 and EP4 were expressed in lung fibroblasts [98].

Katoh et al. assessed the stromal formation of xenografts of Lewis lung carcinoma cells using
knockout mice for each EP receptor, and found that the stromal formation was significantly suppressed
in either EP3 or EP4 knockout mice, whereas neither EP1 nor EP2 knockout did affect stromal
formation [59]. They demonstrated that PGE2 regulated stromal formation through EP3/EP4 receptor
signaling to promote fibroblast recruitment via CXCL12/CXCR4 chemokine axis, and that EP3- or
EP4-specific agonists stimulated CXCL12 expression from fibroblasts, while neither EP1 nor EP2
stimulation did, indicating that both EP3 and EP4 receptors on fibroblasts mediate CXCL12 induction
elicited by endogenous PGE2.

Inada et al. reported that the VEGF-A secretion from the CAFs within melanoma xenografts was
enhanced by PGE2 and this enhancement was significantly suppressed by an EP4 antagonist, which
suggest that PGE2-EP4 signaling plays an important role in the secretion of VEGF-A from CAFs [60].

EP4 signaling and STAT3-dependent pathway in fibroblasts were reported to be involved in the
upregulation of indoleamine 2,3-dioxygenase (IDO) expression in response to PGE2 released from
human breast cancer cells [61]. In addition, Kock et al. showed that the inhibition of PGE2 production
or EP4 antagonist treatment suppressed the migration of IL-1-stimulated dermal fibroblasts towards
human neuroblastoma cells, which suggests PGE2 /EP4 signaling may promote the migration of
fibroblast [62].

Although various mechanisms by which PGE2/EPs signaling regulates CAFs have been reported,
it is necessary to keep in mind that all the findings shown here cannot be applied to the CAFs in CRC
owing to the tissue-specific nature of EP expression. In the context of CRC, Ma et al. revealed that
CAFs within CRC expressed EP2 to promote colon tumorigenesis by regulating the expression of
inflammation- and growth-related genes in a self-amplification manner [58]. They showed that EP2
stimulation in cultured fibroblasts induced expression of EP2 itself, COX-2, IL6, and Wnt genes. As
CAFs comprise the predominant stromal cell type, further work is necessary to elucidate the role of
PGE2/EP signaling in the CAFs within CRC.

3.3. Neutrophils

Recent accumulating evidence has shown that some populations of neutrophils, known
as tumor-associated neutrophils (TANs), could function as supporting tumor growth, invasion,
and angiogenesis, although they have been classically considered to exhibit a defensive response
against tumor cells [13]. Neutrophils have been originally viewed as the first-responders of the innate
immune system against extracellular pathogens. However, recent evidence has added a new aspect on
the function of neutrophils. Neutrophils are involved in the regulation of innate and adaptive immune
systems, and can be polarized towards distinct phenotypes in response to environmental signals [99].
As with TAMs, recent studies have suggested that TANs also exhibit considerable plasticity and are
capable of polarization into either an anti-tumorigenic “N1” phenotype or a pro-tumorigenic “N2”
phenotype [99–101].
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Although the effect of intratumoral neutrophils on the survival of CRC patients is still unclear,
the increase of neutrophil count in peripheral blood (i.e., neutrophil-to-lymphocyte ratio (NLR)) has
been shown to be related to poor clinical outcomes in CRC patients in several cohort studies including
Stage I-III cancer, resectable or unresectable liver metastasis of CRC [13].

The phenotype of TANs depends on the signals encountered in the TME; TGF-β and interferon-β
could regulate the plasticity of TANs [65,100]. Shaul et al. showed that PGE2 signaling functioned as a
regulator between “N1” and “N2” phenotypes [63]. However, few studies have demonstrated which
EP receptor can transduce the PGE2 signaling in TANs.

Ma et al. demonstrated that EP2 deficiency in mice significantly decreased the size and number of
intestinal tumors induced by AOM/DSS and that the number of infiltrating neutrophils in the colon was
also decreased, although no significant changes in the number or size of intestinal tumors was observed
in EP1 or EP3 knockout mice. They showed that PGE2/EP2 expression in infiltrating neutrophils was
associated with ulcerative colitis, which suggest the role of EP2 signaling in the neutrophil-mediated
inflammatory responses in the colon [58]. They also demonstrated the self-amplification loop consisting
of COX-2/PGE2/EP2/NF-κB/COX2 in neutrophils.

It was reported that TANs with the N2 phenotype are less migratory than those with the N1
phenotype. We previously demonstrated that PGE2/EP4 signaling plays a pivotal role in the migration
of neutrophils [64]. PGE2/EP4 signaling in neutrophils activates PKA, which inhibits ERK to result in
the suppression of the neutrophil migration. Therefore, PGE2/EP4 signaling might be involved in the
induction of N2 neutrophils.

Taken together, little is known about the downstream signaling of PGE2 in the regulation of
CRC-related TANs and further investigation is needed.

3.4. Myeloid-Derived Suppressor Cells (MDSCs)

MDSCs are defined as a heterogenous population of immature myeloid cells that have
potent immunosuppressive properties against T cells and NK cells. Although they are classically
defined as myeloid cells expressing the markers CD11b and Gr-1, the cellular nature of
MDSCs is now better defined and includes two major subsets based on their phenotypic
and morphological features: polymorphonuclear (PMN)-MDSC and monocytic (M)-MDSC.
PMN-MDSC are defined as CD11b+CD14−CD15+ or CD11b+CD14−CD66b+ and M-MDSC as
CD11b+CD14+HLA-DR−/lowCD15− [102].

The levels of MDSCs in the blood are positively correlated with clinical cancer stage and metastatic
tumor burden in mice and patients [77,103]. Yang et al. demonstrated that MDSCs comprise
approximately 5% of tumor volume in mice bearing MC-26 CRC cells, suggesting that MDSCs play an
important role in the TME of CRC [104]. Veltman et al. showed that the treatment of tumor-bearing mice
with a COX-2 selective inhibitor prevented the local and systemic expansion of MDSCs in vivo [105].
It is widely accepted that MDSCs contribute to cancer immune evasion by suppressing the functions
of T and NK cells [106]. In mice injected with MC-26 CRC cell lines, Huang et al. demonstrated that
MDSCs could mediate the development of regulatory T cells (Tregs), thereby suppressing anti-tumor
immune function [107].

PGE2 has been reported to promote tumor progression by inducing the differentiation of MDSCs
and enhancing MDSC-mediated immune suppression [65]. Sinha et al. found that all four EPs
were expressed on MDSCs in BALB/c mice, and that EP2 was critical for MDSCs induction and
immunosuppressive function [66]. Other work indicated that both EP2 and EP4 signaling might be
involved in MDSCs induction [67]. In vitro studies showed that PGE2 induced arginase I expression
via EP4 in MDSCs, which was involved in MDSC-mediated immune suppression by blocking effector
T cell function [68]. Obermajer et al. demonstrated the EP2- and EP4-mediated positive feedback loops
between COX-2 and PGE2 enhanced multiple aspects of MDSC function [108]. In comparison, there is
little evidence to indicate the importance of EP1 and EP3 expression on MDSCs.
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3.5. Other Types of Cells in the TME

Endothelial cells are also one component of the TME. Although PGE2 is known to regulate
angiogenesis, the direct effect of PGE2 on endothelial cells is cell type- and context-dependent.
Zhang et al. revealed that PGE2 promoted angiogenesis through the EP4/PKA signaling pathway in
human lung microvascular endothelial cells (HMVECs) [69]. Another group reported that the PGE2
facilitate angiogenesis by increasing CXCR4 expression via EP2 and EP4 [70]. PGE2/EP3 signaling
activated the non-receptor tyrosine kinase c-Src to activate matrix metalloproteases, which lead to
the transactivation of fibroblast growth factor (FGF) receptors resulting in the angiogenic response in
postcapillary venular endothelial cells [71].

Wang et al. reported that the expression level of programmed death-1 (PD-1) in infiltrating
CD4+ and CD8+ T cells within lung cancer tissues was closely related to the PGE2/EP2 and PGE2/EP4
signaling pathways. They suggested that the activation of PGE2/EP2 and PGE2/EP4 signaling may
positively regulate the expression level of PD-1 in infiltrating CD8+ T cells to result in the immune
tolerance in the TME of lung cancer [72]. Holt et al. reported that PGE2 suppressed the cytotoxicity
and cytokine production of NK cells via EP4 signaling in breast cancer-bearing mice [73].

PGE2 was also reported to promote tumor growth by inhibiting the accumulation and activation
of conventional dendritic cells (DC) [74]. Indeed, PGE2 can alter the differentiation, maturation,
and capacity of cytokine secretion of DCs, which results in the immune tolerance [75].

As discussed here, evidence about the roles of PGE2/EP signaling in the TME of various types of
cancers has been accumulated. However, the evidence in the CRC settings remains insufficient. As the
role of each TME component is context-dependent, it is necessary to accumulate more information
about the PGE2/EP signaling in the CRC-specific TME.

4. The Possibility of PGE2/EP Signaling in the TME as a Potential Therapeutic Target

As the TME plays an important role in the development and progression of cancer cells, a big
effort has been made to develop new therapeutic strategies targeting the TME. Various trials targeting
the TME components including extracellular matrix (ECM), hypoxia and acidosis, neovascularization,
immune system, CAFs, and exosomes have been attempted [109].

Previous studies demonstrated that therapies targeting PGE2 by NSAIDs or COX-2 selective
inhibitors were able to prevent CRC tumorigenesis, although severe cardiovascular side effects
were observed in some patients [27,28]. Therefore, targeting the downstream PGE2/EP signaling
could be a potential therapeutic strategy. In fact, phase 1 clinical study of E7046, an EP4 inhibitor
that targets immunosuppressive myeloid cells in the TME, has already been started (NCT02540291:
https://clinicaltrials.gov/ct2/show/study/NCT02540291).

The limitation of the strategy targeting PGE2/EP signaling in the TME is that the EP agonists or
antagonists would be administered systemically and these drugs affect not only the components in
the TME but also other types of cells, including both cancer cells andt7878t normal cells. Therefore,
it is necessary to assess the effect of drugs on other types of cells and to investigate the drug delivery
system specifically to the TME components to avoid the undesired side effects.

5. Conclusions

Accumulating evidence has shown that TME components, including macrophages, MDSCs,
neutrophils, and fibroblasts, play an important role in the development and progression of CRC. PGE2
is important in the development and progression of CRC and affects not only cancer cells but also
cells in the TME. The current therapies targeting PGE2 using NSAIDs or COX-2 inhibitors have failed
due to the global prostanoid suppression resulting in the severe adverse effects despite their effects
to prevent tumorigenesis. Therefore, therapies targeting the specific downstream molecules of PGE2
signaling could be a promising approach. This review highlighted the role of each EP receptor in the
TME of CRC tumorigenesis and their therapeutic potential against CRC.

https://clinicaltrials.gov/ct2/show/study/NCT02540291
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ACF Aberrant crypt foci
cAMP Cyclic adenosine monophosphate
AOM Azoxymethane
CAFs Cancer-associated fibroblasts
COX-2 Cyclooxygenase-2
CRC Colorectal cancer
CRTC1 Camp response element-binding protein-regulated transcription co-activator 1
DSS Dextran sulfate sodium
ERK Extracellular signal-regulated kinase
GPCR G protein-coupled receptor
IBD Inflammatory bowel disease
IDO Indoleamine 2,3-dioxygenase
MDSCs Myeloid-derived suppressor cells
NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells
NK cells Natural killer cells
NSAIDs Non-steroidal anti-inflammatory drugs
PI3K Phosphoinositide 3-kinase
PKA Protein kinase A
RNI Reactive nitrogen intermediates
ROS Reactive oxygen species
TAFs Tumor associated fibroblasts
TAM Tumor-associated macrophages
TAN Tumor associated neutrophils
TME Tumor microenvironment
VEGF Vascular endothelial growth factor
VEGFR Vascular endothelial growth factor receptor
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