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Abstract: Ceramide and diacylglycerol are linked to insulin resistance in rodents, but in humans
the data are inconsistent. Insulin resistance is frequently observed with aging, but the role of
ceramide and diacylglycerol is not clarified. Training improves metabolic health and, therefore,
we aimed to elucidate the influence of age and high-intensity interval training (HIIT) on ceramide and
diacylglycerol content in muscle. Fourteen young (33 ± 1) and 22 older (63 ± 1) overweight to obese
subjects performed 6 weeks HIIT three times a week. Maximal oxygen uptake and body composition
were measured and muscle biopsies and fasting blood samples were obtained. Muscle ceramide and
diacylglycerol were measured by gas-liquid chromatography and proteins in insulin signaling, lipid
and glucose metabolism were measured by Western blotting. Content of ceramide and diacylglycerol
total, saturated, C16:0 and C18:0 fatty acids and C18:1 ceramide were higher in older compared to
young. HIIT reduced saturated and C18:0 ceramides, while the content of the proteins involved in
glucose (GLUT4, glycogen synthase, hexokinase II, AKT) and lipid metabolism (adipose triglyceride
lipase, fatty acid binding protein) were increased after HIIT. We demonstrate a higher content of
saturated ceramide and diacylglycerol fatty acids in the muscle of older subjects compared to young.
Moreover, the content of saturated ceramides was reduced and muscle glucose metabolism improved
at protein level after HIIT. This study highlights an increased content of saturated ceramides in aging
which could be speculated to influence insulin sensitivity.
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1. Introduction

Physical function and metabolic health deteriorates with aging which increase the risk of
disease [1–3]. Insulin sensitivity is frequently reduced with aging which is linked to reduced muscle
mass and increased abdominal fat mass [4–7]. The influence and role of bioactive lipids for insulin
resistance in humans are yet to be fully clarified [8,9], whereas in rodents and cell studies, the bioactive
lipids ceramide and diacylglycerol (DAG) have been shown to induce adverse effects on insulin
signaling in skeletal muscle [10–12]. In particular, ceramide and DAG subspecies containing long
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chain saturated fatty acids (FA) including C16:0 and C18:0 are indicated to be involved in insulin
resistance [13,14]. However, it remains unclear whether age influence muscle bioactive lipid content
and species composition independently [15–19]. In a cross-sectional study we observed a lower content
of muscle C16:0, C18:0, total saturated ceramide FA and total ceramide with aging in man [20], while
other studies have reported a higher content of specific saturated ceramide subspecies and total
ceramide [16,21] or no difference [15] in old compared to young.

Endurance training has numerous effects including improved insulin sensitivity, body composition
and cardiorespiratory capacity in human, but as a time consuming activity it may not fit well into a busy
schedule of everyday life [1,22–24]. High-intensity interval training (HIIT) is a time-efficient alternative
to endurance training which also improves body composition and cardiorespiratory capacity [25–27],
but the effects on insulin sensitivity and metabolic health are not fully elucidated and even less is known
about the effects of HIIT on ceramide and DAG in skeletal muscle. Richards et al. [28] and Robinson et
al. [29] reported an improvement in insulin sensitivity in response to HIIT, while Arad et al. [30] found no
effect. Considering the inconsistent data available on the role of ceramide and DAG in insulin resistance in
humans we wanted to elucidate this area further. Therefore, the aim of this study was to investigate the
influence of age and HIIT on ceramide and DAG content in skeletal muscle of overweight to obese subjects.

2. Results

2.1. Subject Characteristics

The young group had a higher body weight, body mass index (BMI), and lean body mass
compared to the older, while body fat (%), total fat and visceral fat mass did not differ (Table 1).
Glycated haemoglobin (HbA1c) and fasting glucose concentration were lower in the young group and
fasting insulin concentration was higher whereas no difference was found in a Homeostatic Model
Assessment of Insulin Resistance (HOMA-IR) when compared to the older group. Maximal oxygen
uptake (VO2max) in ml·min−1 was higher in the young than the older group; however, no difference
was seen when correcting for body weight. HIIT induced a significant reduction in body fat%, total
fat and visceral fat mass and increased lean body mass, VO2max and the activity of citrate synthase
(CS) and β-hydroxyacyl-CoA dehydrogenase (HAD) in muscle. HbA1c, fasting glucose and insulin
concentration as well as HOMA-IR were not affected by the HIIT.

Table 1. Subject characteristics.

Young (n = 14)
Pre
Post

Older (n = 22)
Pre
Post

Main Effect
(p-value)
Age Time

Interaction
(p-value)

Group x Time

Gender (F/M) 5/9 11/11
Age (yrs) 32 ± 2 63 ± 1

Height (m) 1.78 ± 0.02 1.70 ± 0.02 0.014 NS NS
Weight (kg) 110 ± 4 110 ± 4 88.7 ± 2.6 88.4 ± 2.6 <0.001 NS NS

BMI (kg·m−2) 34.8 ± 1.0 34.6 ± 1.0 30.7 ± 0.7 30.6 ± 0.7 0.003 NS NS
LBM (kg) 63.8 ± 2.1 64.7 ± 2.3 51.5 ± 2.1 51.8 ± 2.1 <0.001 <0.001 0.099

Fat mass (kg) 40.3 ± 3.1 39.3 ± 3.3 34.0 ± 1.6 33.3 ± 1.7 NS 0.016 NS
Fat % 39.2 ± 2.1 38.2 ± 2.3 39.8 ± 1.6 39.1 ± 1.6 NS <0.001 NS

Visceral fat (kg) 1.67 ± 0.25 1.56 ± 0.24 1.90 ± 0.16 1.81 ± 0.16 NS 0.024 NS
HbA1c (%) 5.3 ± 0.1 5.3 ± 0.1 5.7 ± 0.1 5.6 ± 0.1 0.002 NS NS

HOMA-IR (AU) 2.14 ± 0.24 2.31 ± 0.38 1.88 ± 0.23 1.99 ± 0.30 NS NS NS
Glucose, fasting (mmol·L−1) 4.5 ± 0.1 4.5 ± 0.1 6.1 ± 0.2 6.0 ± 0.2 <0.001 NS NS
Insulin, fasting (pmol L−1) 69.7 ± 9,5 67.2 ± 8.9 40.9 ± 4.8 42.6 ± 5.8 0.008 NS NS

IMTG (mmol·kg−1 dw) 126 ± 27 118 ± 21 156 ± 23 119 ± 12 NS NS NS
Glycogen (nmol·kg−1 dw) 236 ± 30 474 ± 46 323 ± 24 483 ± 23 NS <0.001 NS
HAD (µmol·g−1·min−1) 116 ± 7 130 ± 7 112 ± 10 141 ± 5 NS <0.001 NS

CS (µmol·g−1·min−1) 132 ± 7 165 ± 8 122 ± 10 169 ± 10 NS <0.001 NS
VO2max (mL·min−1) 3068 ± 131 3186 ± 118 2234 ± 106 2361 ± 134 <0.001 0.021 NS

VO2max (mL·min−1·kg−1) 28.3 ± 1.2 29.7 ± 1.5 25.2 ± 1.0 26.7 ± 1.1 NS 0.007 NS

Characteristics of young and older subjects before and after 6 weeks high-intensity interval training. IMTG analysis:
Young: n = 2F/8M. AU: Arbitrary unit, BMI: body mass index, CS: Citrate synthase, dw: dry weight, HAD:
β-hydroxyacyl-CoA dehydrogenase, HOMA-IR: homeostatic assessment model of insulin resistance, IMTG:
intramyocellular triglyceride, LBM: lean body mass. Data are means ± standard error of the mean (SEM).
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2.2. Muscle Lipids and Glycogen

The content of intramyocellular triglyceride (IMTG) and glycogen did not differ between the
young and older subjects. The muscle glycogen content increased in response to HIIT, while IMTG
content was unaffected (Table 1).

There was an age effect on ceramide content in muscle with total ceramide (p < 0.001), saturated
(p < 0.001), C16:0 (p < 0.001), C18:0 (p < 0.001) and C18:1 (p < 0.05) ceramide FA being higher in the older
compared to the young subjects (Figure 1). Saturated ceramide FA (p < 0.05) and C18:0 (p < 0.01) were
both reduced (main effect) in response to HIIT.The standard error mean of C16:1 and C24:0 ceramide,
respectively, were relatively high which may be explained by individual differences between the
subjects, and therefore, these data should be interpreted with caution (Figure 1b).
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Figure 1. Ceramide content. The bar charts show the content of total and specific ceramide fatty acids 
in muscle of young and older subjects before and after 6 weeks’ high-intensity interval training. (a) 
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Figure 1. Ceramide content. The bar charts show the content of total and specific ceramide fatty
acids in muscle of young and older subjects before and after 6 weeks’ high-intensity interval training.
(a) Ceramide fatty acids of high abundance and (b) ceramide fatty acids of low abundance. Age and
training effects: * p < 0.05, † p < 0.01, ‡ p < 0.001. Young: n = 12, older: n = 20. Data are means ± SEM.

The older subjects had a higher content of total DAG FA (p < 0.05), saturated DAG FA (p < 0.05)
and the saturated DAG FA C16:0 (p < 0.05), C18:0 (p < 0.05) and C20:0 (p < 0.05) in muscle compared to
the young (Figure 2). The content of C20:4n6 DAG FA (p < 0.001) was higher in the young subjects,
however the standard error mean is relatively high and the difference should be interpreted with
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caution (Figure 2b). A borderline significant (p = 0.055) interaction between age and training in
C18:0 DAG FA showed a reduction (p = 0.023) in the older subjects in response to HIIT. Finally, HIIT
training induced an increase in the content of C20:4n6 DAG FA (p = 0.05) whereas the C24:0 (p < 0.01)
content was decreased.
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Figure 2. Diacylglycerol content. Bar charts illustrating the content of total and specific diacylglycerol
fatty acids measured in muscle of young and older subjects before and after 6 weeks high-intensity
interval training. (a) diacylglycerol fatty acids of high abundance and (b) diacylglycerol fatty acids
of low abundance. Age and training effects: * p < 0.05, † p < 0.01, ‡ p < 0.001. Borderline significance:
(*) p < 0.1. Young: n = 12, older: n = 21. Data are means ± SEM.

Collectively, there was an effect of age and HIIT on the content of saturated DAG FA species
measured and total DAG while several unsaturated species were not affected.

2.3. Protein Expression

There was a higher expression of sphingosine kinase 1 (SphK1) (p < 0.01), AKT (p = 0.001), protein
phosphatase 2A (PP2A) (p < 0.01) and cluster of differentiation 36 (CD36) (p < 0.01) and a borderline
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higher content of GLUT4 (p = 0.088), protein kinase Cθ (PKCθ) (p = 0.078) and synaptosome-associated
protein 23 (SNAP23) (p = 0.071) in muscle of the older subjects compared to the young (Figure 3).
HIIT induced an overall increase in protein expression of GLUT4 (p < 0.05), glycogen synthase (GS)
(p < 0.001), hexokinase II (HK II) (p < 0.01), SNAP23 (p < 0.05), AKT (p < 0.001), fatty acid binding
protein plasma membrane (FABPpm) (p < 0.001) and adipose triglyceride lipase (ATGL) (p = 0.001)
and a trend towards an increase in fatty acid transporter protein 4 (FATP4) (p = 0.076) and PKCθser676

(p = 0.056) content. The content of glycogen phosphorylase (GP) was not influenced by either age or
HIIT (Figure 3).
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Figure 3. Protein expression in muscle of young and older subjects measured before and after
6 weeks high-intensity interval training. Expression of proteins involved in (a) glucose transport
and metabolism, (b) insulin signalling and (c) ceramide and diacylglycerol (DAG) metabolism and
lipid transport. Age and training effects: * p < 0.05, † p < 0.01, ‡ p < 0.001. Borderline significance:
(*) p < 0.1. Young: n = 13, older: n = 21. Data are means ± SEM. AKTser473: AKT phosphorylated
at ser473, ATGL: Adipose triglyceride lipase, CD36: Cluster of differentiation 36, FABPpm: Fatty
acid binding protein plasma membrane, FATP4: Fatty acid transport protein, GS: Glycogen synthase,
GP: Glycogen phosphorylase, HKII: Hexokinase II, PKCθ: Protein kinase Cθ, PKCθser676: PKCθ

phosphorylated at ser676, PP2A: Protein phosphatase 2A, SMS2: Sphingomyelin synthase 2, SphK1:
Sphingosine kinase 1, SPT: Serine palmitoyl transferase, SNAP23: Synaptosome associated protein 23.

3. Discussion

In this study, an important observation was the higher content of total, saturated and C16:0 and
C18:0 ceramide and DAG FA in muscle in older compared to young overweight to obese subjects.
Whether the potentially more adverse composition of ceramide and DAG FA in the older subjects can
be explained solely by aging or whether excess lipid availability in obesity interacts with aging is yet
to be elucidated. Interestingly, HIIT induced an improvement in glucose metabolism, a reduction in
total saturated ceramide FA, C18:0 ceramide FA and a trend towards a reduction in C18:0 DAG FA in
muscle of the older subjects. Saturated ceramides are speculated to have adverse effects on insulin
sensitivity; however, HOMA-IR, a surrogate measure of insulin resistance, remained unchanged after
HIIT despite the reduced content of saturated ceramides.

A major finding of the present study was the higher content of total ceramide and DAG FA and
several saturated species in muscle of older subjects compared to the young. Fat mass and IMTG
measured in the young and older subjects were similar and can thus not explain this difference.
Furthermore, the CS and HAD activities were similar between the young and older subjects indicating
that the difference cannot be explained by a local muscle oxidative capacity difference. Bonen et al. [31]
reported a higher content of CD36 in the muscle plasma membrane from both obese and subjects
with type 2 diabetes compared to controls as well as a higher rate of transport of long chain FA into
the muscle. In the present study the older subjects had a higher protein content of CD36 in muscle,
and assuming this will lead to increased uptake of FA and thus higher intracellular long chain acyl
CoA content, as demonstrated by Bonen et al. [31], this could favour ceramide and DAG accumulation.

Interestingly, we observed a higher protein content of SphK1 in the older compared to the
young subjects, which may be stimulated through the higher total ceramide content, given that
SphK1 contributes to removal of excess ceramide in muscle through the sphingosine pathway [32].
We did also measure SPT and SMS2 protein content, but observed no difference with age and, therefore,
this does not provide an explanation for the mechanism leading to increased muscle ceramide content
with age.
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In the present study we found a higher content of saturated and C16:0 ceramide FA in the
older subjects, which is concordant with previous findings in middle-aged and old subjects [16,21].
One study found that C18:0 ceramide was higher in 40- to 70-year-old obese insulin resistant subjects
versus lean and obese insulin sensitive subjects [33] and combined with the presence of a negative
association between insulin sensitivity and ceramide C16:0 and C18:0 content this indicates that
long chain saturated ceramides may play a role in insulin resistance [13,14]. In support of this,
the content of saturated and C18:0 ceramide FA was reduced in response to HIIT, and this supports
a previous finding showing a reduced content of C18:0 ceramide in muscle of endurance trained
athletes compared to patients with type 2 diabetes [14]. However, HOMA-IR was similar between
the young and older groups, and although insulin sensitivity measured by HOMA-IR compared to
the hyperinsulinemic-euglycemic clamp is less coupled to muscle insulin sensitivity, it is not possible
to link the age induced higher saturated ceramide FA content to insulin sensitivity in this study.
Furthermore, we did not observe an effect of HIIT on SphK1, SPT and SMS2 content, suggesting that
the changes in ceramide content induced by HIIT, was not mediated by a HIIT induced change in
these key regulatory proteins.

Bergman et al. [34] have reported significant inverse correlations between insulin sensitivity and
total DAG, as well as C18:0/C18:0 DAG content [34]. In addition, Bergman and colleagues showed
that C16:0/C16:0, C18:0/C18:0 and total DAG content were higher in the membrane in muscle of
patients with type 2 diabetes when comparing to obese subjects and endurance trained athletes, which
indicates a role for DAG in insulin resistance. Interestingly, we observed a higher content of total,
saturated DAG FA and C16:0, C18:0 and C20:0 DAG FA in muscle of older compared to young subjects.
Two studies found that PKCθ muscle protein content was increased in patients with type 2 diabetes and
this implies that insulin signalling could be attenuated through activation by DAG [10,35]. The muscle
protein content of PKCθ was higher in the older than the young subjects and this supports a possible
link between long chain-saturated DAG species and attenuation of insulin signalling through PKCθ.

The present study demonstrates an effect of age with a higher total content of DAG FA and
more of the distinct saturated species in the older group. The literature on age-induced alterations in
DAG content is limited and characterized by inconsistency. Chee et al. [15] found a higher content
of C18:1 DAG in obese old subjects versus old and young lean subjects, which is supported by Moro
et al. [16] reporting that C18:1 DAG was higher in obese subjects compared to lean regardless of age.
These data imply an effect of obesity rather than age on the DAG content and the specific content of
C18:1 DAG. In contrast, Bergman et al. [34] found a higher muscle content of C18:1 DAG in athletes
compared to controls. Moreover, Coen et al. [36] found no difference in DAG content in the muscle
of obese elderly women whether insulin-sensitive or resistant. Albeit the effect of age on DAG FA in
this study are interesting, there is a marked lack of consistency in the literature and further studies
possibly studying specific subcellular locations are required to understand the possible coupling to
insulin resistance.

Overall HIIT only significantly induced an increase in the content of C20:4n6 DAG FA. The content
of C18:0/C18:0 and C16:0/C18:0 DAG subspecies have previously been found to be higher in
endurance trained athletes compared to sedentary lean and obese subjects while moderate exercise
was reported to reduce the total DAG and C16:0 DAG content [24,37–39]. Several studies observed no
changes in DAG content in endurance trained versus untrained subjects or in response to moderate
exercise and this further illustrate the discrepancy on the influence of training on DAG content [40–42].

The protein expression in muscle indicate that the capacity for glucose uptake were higher in
the older subjects compared to young represented by a higher protein content of AKT and a trend
towards higher GLUT4 content. However, no difference in content of activated AKTser473 between
groups was found which may be explained by the higher PP2A content in the older subjects which
is a ceramide-activated protein suggested to dephosphorylate and hence inactivate AKT at residue
ser473 [11]. This is in line with the higher content of ceramide and saturated species measured in the
older subjects.
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HIIT improved glucose metabolism in muscle reflected by increased AKT, GLUT4, HK II,
SNAP23 and GS protein content as well as glycogen content, which imply an increased capacity
for glucose uptake and storage in response to HIIT. The HIIT induced increase in GLUT4 content
is strongly supported by previous studies [43–45]. HIIT however, did not induce any alterations in
fasting plasma glucose concentrations, which is in line with other studies [46,47].

The observation of increased CS and HAD activity after HIIT are consistent with an improved
oxidative capacity in muscle and increased utilization of lipid as preferable substrate [43,44].
Increased delivery of FA for lipid oxidation was reflected by an increased protein content of FABPpm
and borderline FATP4. FABPpm and CD36 protein content has previously been shown to increase in
response to HIIT [44] while another study showed no change in FABPpm or CD36 [45].

Limitations

The comparison of young and older subjects in the present study has some limitations.
Fewer subjects were included in the young group and the percentage of males was higher in young
group compared to the older group. Male characteristics may therefore dominate in the young group
within body composition, VO2max and metabolic parameters, and therefore a cautious comparison
with the older group is required. The two groups were not BMI-matched which may also have
influenced the results, but as the older group had a lower BMI, this should if anything rather attenuate
a difference in bioactive lipid content and thus mask an age difference. The two studies in the young
and older group were carried out in the same laboratory but separately, but the muscle analysis was
performed together in randomized order eliminating day-to-day variation.

The lipid analysis detected the presence of ceramide and DAG FA and not the specific subspecies.
Since ceramide only contain one FA, the data represent the presence of the ceramide subspecies but
the combination of the two FA in DAG comprising the different subspecies was masked. The content
of DAG FA was though measured indicating the availability for distinct DAG subspecies.

4. Methods and Materials

4.1. Subjects

Young (33 ± 1 years) and older (63 ± 1 years) subjects were recruited through advertisements
in local newspapers. The inclusion criteria were age 20–40 or 55–75 years, Caucasian origin, BMI
>27 kg/m2, sedentary (defined as <600 MET min/week using the International Physical Activity
Questionnaire (IPAQ)). Only non-smokers were recruited and subjects with type 1 or 2 diabetes
or metabolic or heart disease were excluded. All subjects had an electrocardiogram performed at
the screening visit. All subjects gave informed written consent prior to their participation in the
study. The study was approved by the Ethical Committee of Copenhagen (journal no. H-3-2012-024,
permission date 4 February 2014) and complied with the guidelines of the Helsinki Declaration.

4.2. Study Design

In this longitudinal study, the subjects performed 6 weeks’ HIIT on a bicycle ergometer.
During the first two weeks, prior to the HIIT intervention, different tests were carried out as described
previously [48]. The hyperinsulinemic-euglycemic clamp was not performed in the young subjects and
therefore these data measured in the older group will not be discussed here. On the first test day, body
composition was determined by a dual energy X-ray absorptiometry scan (DXA) (Lunar iDXA, GE
Healthcare, Madison, WI, USA) followed by an incremental maximal oxygen uptake (VO2max) test on
a bicycle ergometer. On a second test day a muscle biopsy was obtained, fasting blood samples were
collected and a second VO2max test performed. The tests were repeated after the HIIT intervention
where the DXA scan was relocated to the first test day, which was placed 72 h after the last HIIT session.
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Test days were separated by at least 48 h; 24 h prior to a test day, the subjects were asked not to
perform vigorous exercise and to fast overnight. During their participation in the study, the subjects
were informed to remain weight stable and not to change their physical activity level or diet.

4.3. High-Intensity Interval Training (HIIT) Protocol

The subjects performed 6 weeks supervised HIIT three times a week on a bicycle ergometer.
The training load was determined during session 1, which consisted of up to 9 intervals where the load
was increased with 10% at each interval starting at 85% of their maximal load measured at the VO2max
test. The load at session 2–6 was equal to the load of the final interval completed at session 1 and it was
increased by 10 % for the remaining sessions. A HIIT session consisted of 2 min warm up at 50 Watts
followed by 5 intervals of 1 min HIIT with a cadence above 50 rounds per minute. The intervals were
interrupted by 90 sec cycling at 25 Watts or just resting on the bike. Oxygen uptake was measured
at session 6, 12 and 18 during the session and heart rate was monitored by a Polar T31 Transmitter,
Finland, during each HIIT session.

4.4. Maximal Oxygen Uptake

An incremental test on a bicycle ergometer was performed to determine VO2max. The cycle was
connected to a LODE Ergometry Manager computer program while a Cosmed online gas connecting
system (Quark PFT Ergo, Cosmed, Rome, Italy) collected the data. Initially the subjects warmed up
for 5 min at a 50 Watt load followed by 1 Watt increase in load every third sec until VO2max was
achieved with the presence of a plateau in oxygen consumption and respiratory exchange ratio ≥1.15.
Two VO2max tests were performed on two separate test days before the HIIT intervention to avoid
that potential learning effects affected the data.

4.5. Blood Analyses

HbA1c was measured in a blood sample by a DCA Vantage Analyser (Tarrytown NY, USA).
Fasting blood samples were obtained from a catheter placed in the dorsal vein of the hand. The drawn
blood samples for analysis of plasma glucose were transferred to fluoride vacutainers (Cat. 368520, BD
Albertslund, Denmark) and centrifuged at 1200× g for 1 min at room temperature. Blood samples for
insulin analysis were transferred to pre cooled heparin vacutainers (Cat.367374) and centrifuged for
10 min at 2000× g and 4 ◦C. Plasma was transferred to eppendorf tubes after centrifugation and stored
at −80 ◦C until analysed. Plasma glucose concentration was measured on a Hitachi Cobas 6000 (Roche
A/S, Hvidovre, Denmark). Insulin concentration was assessed by commercial ELISA kits (ALPCO
Diagnostics, Salem, HN, USA, cat. No. 80-INSHU-E01.1) and analysed on a Multiskan FC Microplate
Photometer (Termo Fisher Scientific, Slangerup, Denmark).

4.6. Muscle Biopsies

Muscle biopsies were obtained in muscle vastus lateralis. The skin was sterilized and Lidocaine
5 mg/mL was injected to anesthetize the skin and the muscle fascia. The Bergstroem needle
technique [49] was used to obtain the muscle biopsies. The biopsies were instantly divided, snap
frozen in liquid nitrogen and transferred to eppendorf tubes. The muscle samples were stored at
−80 ◦C for subsequent analyses.

Prior to analyses the muscle samples were cut and freeze dried for minimum 48 h at 0.5 mBar at
−40 ◦C. Before dissection, the samples equilibrated to room temperature for one hour under controlled
pressure and humidity and this was followed by dissection where visible fat, blood and connective
tissue were removed.
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4.7. Lipid Analyses

Ceramide and DAG total content and ceramide and DAG FA were measured in muscle.
Approximately 20 mg muscle (wet weight) was dissected and lipids were extracted according
to Folch [50] in the presence of internal standards (1,2-diheptadecanoyl-sn-glycerol and
N-pentadecanoyl-D-erythro-sphingosine, Sigma). Ceramide and DAG were separated by thin-layer
chromatography [51] by a resolving solution of diethyl ether: hexane: acetic acid (90:10:1; v:v:v).
Lipid class standards were marked outside the chromatography plates and the corresponding gel
bands were transferred to tubes and transmethylated in 14% methanolic boron trifluoride at 100 ◦C
for 10 (DAG) or 90 (ceramide) minutes, respectively. The content of fatty acid methyl esthers was
subsequently assessed by gas-liquid chromatography (Hewlett-Packard 5890 Series II with Varian
CP-SIL 50 m × 0.25mm capillary column) [52].

4.8. Intramyocellular Triglyceride and Glycogen

IMTG was determined by lipid extraction, as previously described [50,53]. Glycogen content was
measured by 2 h hydrolysis at 100 ◦C in 1 M HCL followed by determination of glycogen as glucose
residues in a hexokinase based procedure [54].

4.9. Citrate Synthase and β-Hydroxyacyl-CoA Dehydrogenase

The activity of CS and HAD was measured in muscle by spectrophotometry (COBAS 6000, C 501,
Roche Diagnostics, Mannheim Germany), as previously described [55].

4.10. Western Blot

To gain an understanding of the potential role of muscle ceramide and DAG in insulin resistance,
expression of key proteins involved in ceramide and DAG metabolism and insulin signalling were
measured. Western blotting was performed to measure protein expression in skeletal muscle
as previously described [56] with modifications. In short, the dissected muscle samples were
homogenized and protein concentration measured. Dilutions of the homogenate were made adding
Laemmli buffer and MilliQ water to yield 10 µg protein per 10 µl homogenate; 5–10 µL of each
sample were loaded on a 26 well 12% Criterion TGX Stain-Free polyacrylamide sodium dodecyl
sulphate (SDS) gels and the proteins separated at 100–250 volt. The gels were activated with LAS
4000 image analyzer (GE Healthcare, Little Chalfont, UK) and 1 sec image was taken. The proteins
were transferred to ethanol activated polyvinylidene fluoride (PVDF) membranes (0.2 µm pores,
Bio-Rad, Copenhagen, Denmark) by 7 min semidry blotting at 25 V and a 1 sec ultraviolet (UV)
light image taken of the membrane with the transferred proteins. The membranes were blocked in
2.5–5% skimmed milk or bovine serum albumin (BSA) diluted in Tris-buffered saline (TBS) or PBS
and incubated with primary antibody at 4 ◦C over night. Primary antibodies: anti-GLUT4 1:12000
(PA1-1065, Fischer Scientific, Roskilde, Denmark), anti-glycogen synthase 1:4000 (#3893, Cell Signaling,
Danvers, MA, USA), anti-glycogen phosphorylase (GP) 1:12000 (As09 455, Agrisera, Vännäs, Sweden),
anti-hexokinase II (HKII) 1:1000 (ab104836, Abcam, Cambridge, UK) and anti-synaptosome associated
protein (SNAP23) 1:3000 (ab3340, Abcam), anti-serine palmitoyl transferase (SPT) 1:4000 in 5% milk
in TBS (ab23696, Abcam), anti-sphingomyelin synthase 2 (SMS2) 1:2000 in 5% milk in TBS (ab103060,
Abcam), anti-sphingosine kinase 1 (SphK1) 1:1000 in 5% milk in TBS (ab37980, Abcam), anti-protein
phosphatase 2A (PP2A) 1:1000 in 5% milk in TBS (ab32141, Abcam), anti-protein kinase C θ (PKCθ)
1:500 in 5% BSA in TBS (ab110728, Abcam), anti-protein kinase C θ p-ser676 (PKCθser676) 1:500 in
5% BSA in TBS (ab131479, Abcam), anti-fatty acid transport protein 4 (FATP4) 1:500 in 2.5% BSA in
PBS (ab200353, Abcam), anti-fatty acid binding protein (FABPpm) 1:1000 in 5% milk in TBS (ab93928
[3E9], Abcam), anti-AKTpan (AKT) 1:1000 in 5% milk in TBS (#4691, Cell Signaling), anti-AKT p-ser473
(AKTser473) 1:500 in 5% BSA in TBS (#4060, Cell Signaling), anti-CD36 1:3000 in 2.5% milk in TBS
(AF1955, R&D Systems, Minneapolis, MN, USA), anti-adipose triglyceride lipase (ATGL) 1:500 in



Int. J. Mol. Sci. 2019, 20, 1240 11 of 14

2.5% milk in TBS (10006409, Cayman Chemical, Ann Arbor, MI, USA). Polyclonal goat anti-rabbit
horseradish peroxidase (HRP) conjugated (7074S, Cell Signaling) was used as secondary antibody
for GLUT4, GS, GP, HKII, SNAP23, PP2A, SphK1, SMS2, FATP4, FABPpm, AKT, AKTser473, PKCθ,
PKCθser676, ATGL (1:2000) and SPT (1:4000) while CD36 (1:3000) was incubated with polyclonal rabbit
anti-goat HRP conjugated (P0449, DAKO, Santa Clara, CA, USA). The proteins were visualized
and quantified as previously described [56] by normalizing the intensity of each band to total
protein content measured by stain free fluorescence and samples on different gels were compared by
quantification to a calibrator.

4.11. Statistical Analyses

Analysis of variance (ANOVA) with repeated measurements was used to analyse differences
between the young and older subjects, and their response to 6 weeks HIIT. Holm–Sidak was used as
the post hoc test. Data without normal distribution or equal variance were log transformed before
performing the analysis. Sigmaplot 13.0 was used to perform the statistical analyses. Data are presented
as means ± standard error of the mean (SEM).

5. Conclusions

This study demonstrates a higher content of ceramide and DAG, saturated FA and C16:0 and
C18:0 ceramide and DAG FA in muscle in older overweight to obese compared to young subjects.
The HOMA-IR was similar between groups despite the higher presence of these ceramide and DAG
FA species that are coupled to insulin resistance. Whether the potentially more adverse composition
of ceramide and DAG in the older subjects can be explained solely by aging or whether excess
lipid availability in obesity interacts with aging is yet to be elucidated. Overall HIIT induced an
improvement in glucose metabolism, a reduction in C18:0 ceramide FA, and a trend towards a
reduction in C18:0 DAG FA in the muscle of the older subjects, but this did not lead to an improved
HOMA-IR. However, despite these positive metabolic effects of HIIT, the key ceramide regulatory
proteins remained unchanged and, therefore, this study failed to find a coupling to the muscle ceramide
content. Further studies of longer duration are needed to clarify the potential influence of training on
ceramide and DAG metabolism.

Author Contributions: M.T.L., C.M.S., C.V.A., S.G.D. and F.D. participated in data collection and reviewed
the manuscript. M.B., S.L. and J.W.H. designed experiments, participated in data collection and reviewed
the manuscript. D.S. participated in data collection, performed statistical analyses, and wrote and edited
the manuscript.

Funding: The research leading to these results has received funding from [European Union’s] [European Atomic
Energy Community’s] Seventh Framework Programme ([FP7/2007-2013] [FP7/2007-2011]) under grant agreement
n [HEALTH-F2-2012-277936] (see Article II.30. of the Grant Agreement). The study was further supported by Oda
and Hans Svenningsens Foundation.

Acknowledgments: This work was supported by a research grant from the Danish Diabetes Academy funded by
the Novo Nordisk Foundation.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dela, F.; Mikines, K.J.; Larsen, J.J.; Glabo, H. Training-induced enhancement of insulin action in human
skeletal muscle: The influence of aging. J. Gerontol. A Biol. Sci. Med. Sci. 1996, 51, B247–B252. [CrossRef]

2. Goodpaster, B.H.; Park, S.W.; Harris, T.B.; Kritschevsky, S.B.; Nevitt, M.; Schwarts, A.V.; Simonsick, E.M.;
Tylavsky, A.V.; Visser, M.; Newman, A.B. The loss of skeletal muscle strength, mass, and quality in older
adults: The health, aging and body composition study. J. Gerontol. A Biol. Sci. Med. Sci. 2006, 61, 1059–1064.
[CrossRef] [PubMed]

http://dx.doi.org/10.1093/gerona/51A.4.B247
http://dx.doi.org/10.1093/gerona/61.10.1059
http://www.ncbi.nlm.nih.gov/pubmed/17077199


Int. J. Mol. Sci. 2019, 20, 1240 12 of 14

3. Bunprajun, T.; Henriksen, T.I.; Scheele, C.; Pedersen, B.K.; Green, C.J. Lifelong Physical Activity Prevents
Aging-Associated Insulin Resistance in Human Skeletal Muscle Myotubes via Increased Glucose Transporter
Expression. PLoS ONE 2013, 8, e66628. [CrossRef] [PubMed]

4. Lee, C.C.; Glickman, S.G.; Dengel, D.R.; Brown, M.D.; Supiano, M.A. Abdominal adiposity assessed by dual
energy X-ray absorptiometry provides a sex-independent predictor of insulin sensitivity in older adults.
J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 872–877. [CrossRef] [PubMed]

5. Hughes, V.A.; Roubenoff, R.; Wood, M.; Frontera, W.R.; Evans, W.J.; Fiatarone Singh, M.A.
Anthropometric assessment of 10-y changes in body composition in the elderly. Am. J. Clin. Nutr. 2004, 80,
475–482. [CrossRef] [PubMed]

6. Kohrt, W.M.; Kirwan, J.P.; Staten, M.A.; Bourey, R.E.; Kings, D.S.; Holloszy, J.S. Insulin resistance in aging is
related to abdominal obesity. Diabetes 1993, 42, 273–281. [CrossRef]

7. Lalia, A.Z.; Dazari, S.; Johnson, M.L.; Robinson, M.M.; Konopka, A.R.; Distelmaier, K.; Port, J.D.; Glavin, M.T.;
Esponda, R.R.; Nair, K.S.; et al. Predictors of Whole-Body Insulin Sensitivity Across Ages and Adiposity in
Adult Humans. J. Clin. Endocrinol. Metab. 2016, 101, 626–634. [CrossRef]

8. Petersen, M.C.; Jurczak, M.J. CrossTalk opposing view: Intramyocellular ceramide accumulation does not
modulate insulin resistance. J. Physiol. 2016, 594, 3171–3174. [CrossRef]

9. Summers, S.A.; Goodpaster, B.H. CrossTalk proposal: Intramyocellular ceramide accumulation does
modulate insulin resistance. J. Physiol. 2016, 594, 3167–3170. [CrossRef] [PubMed]

10. Montell, E.; Turini, M.; Marotta, M.; Roberts, M.; Noe, V.; Ciudad, C.J.; Mace, K.; Gomez-Foix, A.M.
DAG accumulation from saturated fatty acids desensitizes insulin stimulation of glucose uptake in muscle
cells. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E229–E237. [CrossRef] [PubMed]

11. Stratford, S.; Hoehn, K.L.; Lui, F.; Summers, S.A. Regulation of insulin action by ceramide: Dual mechanisms
linking ceramide accumulation to the inhibition of Akt/protein kinase B. J. Biol. Chem. 2004, 279, 36608–36615.
[CrossRef]

12. Griffin, M.E.; Marcucci, M.J.; Cline, G.W.; Bell, K.; Barruci, N.; Lee, D.; Goodyear, L.J.; Kraegen, E.W.; White, M.F.;
Shulman, G.I. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta
and alterations in the insulin signaling cascade. Diabetes 1999, 48, 1270–1274. [CrossRef] [PubMed]

13. Straczkowski, M.; Kowalska, I.; Nikolajuk, A.; Dzienis-Straczkowska, S.; Kinalska, I.; Baranowski, M.;
Zendzian-Piotrowska, M.; Brzezinska, Z.; Gorski, J. Relationship between insulin sensitivity and sphingomyelin
signaling pathway in human skeletal muscle. Diabetes 2004, 53, 1215–1221. [CrossRef] [PubMed]

14. Bergman, B.C.; Brozinick, J.T.; Strauss, A.; Bacon, S.; Kerege, A.; Bui, H.H.; Sanders, P.; Sidall, P.; Wei, T.;
Thomas, M.K.; et al. Muscle sphingolipids during rest and exercise: A C18:0 signature for insulin resistance
in humans. Diabetologia 2016, 59, 785–798. [CrossRef] [PubMed]

15. Chee, C.; Shannon, C.E.; Burns, A.; Selby, A.L.; Wilkinson, D.; Smith, K.; Greenhaff, P.L.; Stephens, F.B.
Relative Contribution of Intramyocellular Lipid to Whole-Body Fat Oxidation Is Reduced With Age
but Subsarcolemmal Lipid Accumulation and Insulin Resistance Are Only Associated With Overweight
Individuals. Diabetes 2016, 65, 840–850. [CrossRef]

16. Moro, C.; Galgani, J.E.; Luu, L.; Pasarica, M.; Mairal, M.; Bajpeyi, S.; Schmitz, G.; Langin, D.; Liebisch, G.;
Smith, S.R. Influence of gender, obesity, and muscle lipase activity on intramyocellular lipids in sedentary
individuals. J. Clin. Endocrinol. Metab. 2009, 94, 3440–3447. [CrossRef]

17. Skovbro, M.; Baranowski, M.; Skov-Jensen, C.; Flint, A.; Dela, F.; Gorski, J.; Helge, J.W. Human skeletal muscle
ceramide content is not a major factor in muscle insulin sensitivity. Diabetologia 2008, 51, 1253–1260. [CrossRef]

18. Coen, P.M.; Hames, K.C.; Leachman, E.M.; DeLany, J.P.; Ritov, V.B.; Menshikova, E.V.; Dube, J.J.;
Stefanovic-Racic, M.; Toledo, F.G.; Goodpaster, B.H. Reduced skeletal muscle oxidative capacity and elevated
ceramide but not diacylglycerol content in severe obesity. Obesity 2013, 21, 2362–2371. [CrossRef]

19. Straczkowski, M.; Kowalska, I.; Baranowski, M.; Nikolajuk, A.; Otziomek, E.; Zabielski, P.; Adamska, A.;
Blachnio, A.; Gorski, J.; Gorska, M. Increased skeletal muscle ceramide level in men at risk of developing
type 2 diabetes. Diabetologia 2007, 50, 2366–2373. [CrossRef]

20. Sogaard, D.; Baranowski, M.; Dela, F.; Helge, J.W. The influence of age and cardiorespiratory fitness on
bioactive lipids in muscle. J. Gerontol. A Biol. Sci. Med. Sci. 2018. [CrossRef]

21. Rivas, D.A.; Morris, E.P.; Harran, P.H.; Pasha, E.P.; Morais Mda, S.; Dolnikowski, G.G.; Philips, E.M.; Fielding, R.A.
Increased ceramide content and NFkappaB signaling may contribute to the attenuation of anabolic signaling
after resistance exercise in aged males. J. Appl. Physiol. 2012, 113, 1727–1736. [CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pone.0066628
http://www.ncbi.nlm.nih.gov/pubmed/23805253
http://dx.doi.org/10.1093/gerona/60.7.872
http://www.ncbi.nlm.nih.gov/pubmed/16079210
http://dx.doi.org/10.1093/ajcn/80.2.475
http://www.ncbi.nlm.nih.gov/pubmed/15277173
http://dx.doi.org/10.2337/diab.42.2.273
http://dx.doi.org/10.1210/jc.2015-2892
http://dx.doi.org/10.1113/JP271677
http://dx.doi.org/10.1113/JP271676
http://www.ncbi.nlm.nih.gov/pubmed/26996141
http://dx.doi.org/10.1152/ajpendo.2001.280.2.E229
http://www.ncbi.nlm.nih.gov/pubmed/11158925
http://dx.doi.org/10.1074/jbc.M406499200
http://dx.doi.org/10.2337/diabetes.48.6.1270
http://www.ncbi.nlm.nih.gov/pubmed/10342815
http://dx.doi.org/10.2337/diabetes.53.5.1215
http://www.ncbi.nlm.nih.gov/pubmed/15111489
http://dx.doi.org/10.1007/s00125-015-3850-y
http://www.ncbi.nlm.nih.gov/pubmed/26739815
http://dx.doi.org/10.2337/db15-1383
http://dx.doi.org/10.1210/jc.2009-0053
http://dx.doi.org/10.1007/s00125-008-1014-z
http://dx.doi.org/10.1002/oby.20381
http://dx.doi.org/10.1007/s00125-007-0781-2
http://dx.doi.org/10.1093/gerona/gly214
http://dx.doi.org/10.1152/japplphysiol.00412.2012
http://www.ncbi.nlm.nih.gov/pubmed/23042913


Int. J. Mol. Sci. 2019, 20, 1240 13 of 14

22. Dela, F.; Mikines, K.J.; Sonne, B.; Galbo, H. Effect of training on interaction between insulin and exercise in
human muscle. J. Appl. Physiol. 1994, 76, 2386–2393. [CrossRef]

23. Gan, S.K.; Kriketos, A.D.; Ellis, B.A.; Thompson, C.H.; Kraegen, E.W.; Chisholm, D.J. Changes in aerobic
capacity and visceral fat but not myocyte lipid levels predict increased insulin action after exercise in
overweight and obese men. Diabetes Care 2003, 26, 1706–1713. [CrossRef] [PubMed]

24. Bruce, C.R.; Thrush, A.B.; Mertz, V.A.; Bezaire, V.; Chabowski, A.; Heigenhauser, G.J.; Dyck, D.J.
Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and
alters muscle lipid content. Am. J. Physiol. Endocrinol. Metab. 2006, 291, E99–E107. [CrossRef] [PubMed]

25. Fisher, G.; Brown, A.W.; Bohan Brown, M.M.; Alcorn, A.; Noles, C.; Winwood, L.; Resuehr, H.; George, B.;
Jeansonne, M.M.; Allison, D.B. High Intensity Interval- vs Moderate Intensity- Training for Improving
Cardiometabolic Health in Overweight or Obese Males: A Randomized Controlled Trial. PLoS ONE 2015, 10,
e0138853. [CrossRef] [PubMed]

26. Terada, T.; Friesen, A.; Chahal, B.S.; Bell, G.J.; McCargar, L.J.; Boule, N.G. Feasibility and preliminary efficacy
of high intensity interval training in type 2 diabetes. Diabetes Res. Clin. Pract. 2013, 99, 120–129. [CrossRef]

27. Martins, C.; Kasakova, I.; Ludviksen, M.; Mehus, I.; Wisloff, U.; Kulseng, B.; Morgan, L.; King, B.
High-Intensity Interval Training and Isocaloric Moderate-Intensity Continuous Training Result in Similar
Improvements in Body Composition and Fitness in Obese Individuals. Int. J. Sport Nutr. Exerc. Metab. 2015,
26, 197–204. [CrossRef] [PubMed]

28. Richards, J.C.; Johnson, T.K.; Kuzma, J.N.; Lonac, M.C.; Schweder, M.M.; Voyles, W.F.; Bell, C.
Short-term sprint interval training increases insulin sensitivity in healthy adults but does not affect the
thermogenic response to beta-adrenergic stimulation. J. Physiol. 2010, 588, 2961–2972. [CrossRef]

29. Robinson, M.M.; Dasari, S.; Konopka, A.R.; Johnson, M.L.; Manjunatha, S.; Esponda, R.R.; Carter, R.E.;
Lanza, I.R.; Nair, K.S. Enhanced Protein Translation Underlies Improved Metabolic and Physical Adaptations
to Different Exercise Training Modes in Young and Old Humans. Cell Metab. 2017, 25, 581–592. [CrossRef]

30. Arad, A.D.; DiMenna, F.J.; Thomas, N.; Tamis-Holland, J.; Weil, R.; Geliebter, A.; Albu, J.B. High-intensity
interval training without weight loss improves exercise but not basal or insulin-induced metabolism in
overweight/obese African American women. J. Appl. Physiol. 2015, 119, 352–362. [CrossRef]

31. Bonen, A.; Parolin, M.L.; Steinberg, G.R.; Calles-Escandon, J.; Tandon, N.N.; Glatz, J.F.; Luiken, J.J.;
Heigenhauser, G.J.; Dyck, D.J. Triacylglycerol accumulation in human obesity and type 2 diabetes is
associated with increased rates of skeletal muscle fatty acid transport and increased sarcolemmal FAT/CD36.
FASEB J. 2004, 18, 1144–1146. [CrossRef]

32. Bruce, C.R.; Risis, S.; Babb, J.R.; Yang, C.; Kowalski, G.M.; Selathurai, A.; Lee-Young, R.S.; Weir, J.R.;
Yoshioka, K.; Takuwa, Y.; et al. Overexpression of sphingosine kinase 1 prevents ceramide accumulation and
ameliorates muscle insulin resistance in high-fat diet-fed mice. Diabetes 2012, 61, 3148–3155. [CrossRef]

33. Tonks, K.T.; Coster, A.C.; Christopher, M.J.; Chaudhuri, R.; Xu, A.; Gagnon-Bartsch, J.; Chisholm, D.J.;
James, D.E.; Meikle, P.J.; Greenfield, J.R.; et al. Skeletal muscle and plasma lipidomic signatures of insulin
resistance and overweight/obesity in humans. Obesity 2016, 24, 908–916. [CrossRef]

34. Bergman, B.C.; Hunerdosse, D.M.; Kerege, A.; Playdon, M.C.; Perreault, L. Localisation and composition of
skeletal muscle diacylglycerol predicts insulin resistance in humans. Diabetologia 2012, 55, 1140–1150. [CrossRef]

35. Itani, S.I.; Pories, W.J.; MacDonald, K.G.; Dohm, G.L. Increased protein kinase C theta in skeletal muscle of
diabetic patients. Metabolism 2001, 50, 553–557. [CrossRef]

36. Coen, P.M.; Dube, J.J.; Amati, F.; Stefanovic-Racic, M.; Ferrell, R.E.; Toledo, F.G.; Goodpaster, G.H.
Insulin resistance is associated with higher intramyocellular triglycerides in type I but not type II myocytes
concomitant with higher ceramide content. Diabetes 2010, 59, 80–88. [CrossRef]

37. Amati, F.; Dube, J.J.; Alvarez-Carnero, E.; Edreira, M.M.; Chomentowski, P.; Coen, P.M.; Switzer, G.E.;
Bickel, P.E.; Stefanovic-Racic, M.; Toledo, F.G.; et al. Skeletal muscle triglycerides, diacylglycerols,
and ceramides in insulin resistance: Another paradox in endurance-trained athletes? Diabetes 2011, 60,
2588–2597. [CrossRef]

38. Dube, J.J.; Amati, F.; Toledo, F.G.; Stefanovic-Racic, M.; Rossi, A.; Coen, P.; Goodpaster, B.H. Effects of weight
loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide.
Diabetologia 2011, 54, 1147–1156. [CrossRef]

http://dx.doi.org/10.1152/jappl.1994.76.6.2386
http://dx.doi.org/10.2337/diacare.26.6.1706
http://www.ncbi.nlm.nih.gov/pubmed/12766098
http://dx.doi.org/10.1152/ajpendo.00587.2005
http://www.ncbi.nlm.nih.gov/pubmed/16464906
http://dx.doi.org/10.1371/journal.pone.0138853
http://www.ncbi.nlm.nih.gov/pubmed/26489022
http://dx.doi.org/10.1016/j.diabres.2012.10.019
http://dx.doi.org/10.1123/ijsnem.2015-0078
http://www.ncbi.nlm.nih.gov/pubmed/26479856
http://dx.doi.org/10.1113/jphysiol.2010.189886
http://dx.doi.org/10.1016/j.cmet.2017.02.009
http://dx.doi.org/10.1152/japplphysiol.00306.2015
http://dx.doi.org/10.1096/fj.03-1065fje
http://dx.doi.org/10.2337/db12-0029
http://dx.doi.org/10.1002/oby.21448
http://dx.doi.org/10.1007/s00125-011-2419-7
http://dx.doi.org/10.1053/meta.2001.22512
http://dx.doi.org/10.2337/db09-0988
http://dx.doi.org/10.2337/db10-1221
http://dx.doi.org/10.1007/s00125-011-2065-0


Int. J. Mol. Sci. 2019, 20, 1240 14 of 14

39. Dube, J.J.; Amati, F.; Stefanovic-Racic, M.; Toledo, F.G.; Sauers, S.E.; Goodpaster, B.H. Exercise-induced
alterations in intramyocellular lipids and insulin resistance: The athlete’s paradox revisited. Am. J. Physiol.
Endocrinol. Metab. 2008, 294, E882–E888. [CrossRef]

40. Louche, K.; Badin, P.M.; Montastier, E.; Laurens, C.; Bourlier, V.; de Glisezinski, I.; Thalamas, C.; Viguerie, N.;
Langin, D.; Moro, C. Endurance exercise training up-regulates lipolytic proteins and reduces triglyceride
content in skeletal muscle of obese subjects. J. Clin. Endocrinol. Metab. 2013, 98, 4863–4871. [CrossRef]

41. Devries, M.C.; Samjoo, I.A.; Hamadeh, M.J.; McCready, C.; Raha, S.; Watt, M.J.; Steinberg, G.R.;
Tarnapolsky, M.A. Endurance training modulates intramyocellular lipid compartmentalization and
morphology in skeletal muscle of lean and obese women. J. Clin. Endocrinol. Metab. 2013, 98, 4852–4862.
[CrossRef] [PubMed]

42. Coen, P.M.; Menshikova, E.V.; Distefano, G.; Zheng, D.; Tanner, C.J.; Standley, R.A.; Helbling, N.L.;
Dubis, G.S.; Ritov, V.B.; Xie, H.; et al. Exercise and Weight Loss Improve Muscle Mitochondrial Respiration,
Lipid Partitioning, and Insulin Sensitivity After Gastric Bypass Surgery. Diabetes 2015, 64, 3737–3750.
[CrossRef] [PubMed]

43. Hood, M.S.; Little, J.P.; Tarnapolsky, M.A.; Myslik, F.; Gibala, M.J. Low-volume interval training improves muscle
oxidative capacity in sedentary adults. Med. Sci. Sports Exerc. 2011, 43, 1849–1856. [CrossRef] [PubMed]

44. Perry, C.G.; Heigenhauser, G.J.; Bonen, A.; Spriet, L.L. High-intensity aerobic interval training increases
fat and carbohydrate metabolic capacities in human skeletal muscle. Appl. Physiol. Nutr. Metab. 2008, 33,
1112–1123. [CrossRef] [PubMed]

45. Burgomaster, K.A.; Cermak, N.M.; Philips, S.M.; Benton, C.R.; Bonen, A.; Gibala, M.J. Divergent response of
metabolite transport proteins in human skeletal muscle after sprint interval training and detraining. Am. J.
Physiol. Regul. Integr. Comp Physiol. 2007, 292, R1970–R1976. [CrossRef] [PubMed]

46. Shaban, N.; Kenno, K.A.; Milne, K.J. The effects of a 2 week modified high intensity interval training program
on the homeostatic model of insulin resistance (HOMA-IR) in adults with type 2 diabetes. J. Sports Med.
Phys. Fitness 2014, 54, 203–209. [PubMed]

47. Skleryk, J.R.; Karagounis, L.G.; Hawley, J.A.; Sharman, M.J.; Laursen, P.B.; Watson, G. Two weeks of
reduced-volume sprint interval or traditional exercise training does not improve metabolic functioning in
sedentary obese men. Diabetes Obes. Metab. 2013, 15, 1146–1153. [CrossRef] [PubMed]

48. Sogaard, D.; Lund, M.T.; Scheuer, C.M.; Dehlbaek, M.S.; Dideriksen, S.G.; Abildskov, C.V.; Christensen, K.K.;
Dohlmann, T.L.; Larsen, S.; Vigelso, A.H.; et al. High-intensity interval training improves insulin sensitivity
in older individuals. Acta Physiol. 2018, 222, e13009. [CrossRef] [PubMed]

49. Bergstrom, J. Muscle-biopsy needles. Lancet 1979, 1, 153. [CrossRef]
50. Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from

animal tissues. J. Biol. Chem. 1957, 226, 497–509.
51. Yano, M.; Kishida, E.; Muneyuki, Y.; Masusawa, Y. Quantitative analysis of ceramide molecular species by

high performance liquid chromatography. J. Lipid Res. 1998, 39, 2091–2098. [PubMed]
52. Nawrocki, A.; Gorski, J. Effect of plasma free fatty acid concentration on the content and composition of the

free fatty acid fraction in rat skeletal muscles. Horm. Metab. Res. 2004, 36, 601–606. [CrossRef] [PubMed]
53. Frayn, K.N.; Maycock, P.F. Skeletal muscle triacylglycerol in the rat: Methods for sampling and measurement,

and studies of biological variability. J. Lipid Res. 1980, 21, 139–144. [PubMed]
54. Kiens, B.; Richter, E.A. Types of carbohydrate in an ordinary diet affect insulin action and muscle substrates

in humans. Am. J. Clin. Nutr. 1996, 63, 47–53. [CrossRef] [PubMed]
55. Larsen, S.; Danielsen, J.H.; Sondergard, S.D.; Sogaard, D.; Vigelsoe, A.; Dybboe, R.; Skaaby, S.; Dela, F.;

Helge, J.W. The effect of high-intensity training on mitochondrial fat oxidation in skeletal muscle and
subcutaneous adipose tissue. Scand. J. Med. Sci. Sports 2015, 25, e59–e69. [CrossRef] [PubMed]

56. Sogaard, D.; Ostergard, T.; Blachnio-Zabielska, A.U.; Baranowski, M.; Vigelso, A.H.; Andersen, J.L.; Dela, F.;
Helge, J.W. Training Does Not Alter Muscle Ceramide and Diacylglycerol in Offsprings of Type 2 Diabetic
Patients Despite Improved Insulin Sensitivity. J. Diabetes Res. 2016, 2016, 2372741. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1152/ajpendo.00769.2007
http://dx.doi.org/10.1210/jc.2013-2058
http://dx.doi.org/10.1210/jc.2013-2044
http://www.ncbi.nlm.nih.gov/pubmed/24081737
http://dx.doi.org/10.2337/db15-0809
http://www.ncbi.nlm.nih.gov/pubmed/26293505
http://dx.doi.org/10.1249/MSS.0b013e3182199834
http://www.ncbi.nlm.nih.gov/pubmed/21448086
http://dx.doi.org/10.1139/H08-097
http://www.ncbi.nlm.nih.gov/pubmed/19088769
http://dx.doi.org/10.1152/ajpregu.00503.2006
http://www.ncbi.nlm.nih.gov/pubmed/17303684
http://www.ncbi.nlm.nih.gov/pubmed/24509992
http://dx.doi.org/10.1111/dom.12150
http://www.ncbi.nlm.nih.gov/pubmed/23802920
http://dx.doi.org/10.1111/apha.13009
http://www.ncbi.nlm.nih.gov/pubmed/29197155
http://dx.doi.org/10.1016/S0140-6736(79)90542-7
http://www.ncbi.nlm.nih.gov/pubmed/9788256
http://dx.doi.org/10.1055/s-2004-825922
http://www.ncbi.nlm.nih.gov/pubmed/15486810
http://www.ncbi.nlm.nih.gov/pubmed/7354251
http://dx.doi.org/10.1093/ajcn/63.1.47
http://www.ncbi.nlm.nih.gov/pubmed/8604670
http://dx.doi.org/10.1111/sms.12252
http://www.ncbi.nlm.nih.gov/pubmed/24845952
http://dx.doi.org/10.1155/2016/2372741
http://www.ncbi.nlm.nih.gov/pubmed/27777958
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Subject Characteristics 
	Muscle Lipids and Glycogen 
	Protein Expression 

	Discussion 
	Methods and Materials 
	Subjects 
	Study Design 
	High-Intensity Interval Training (HIIT) Protocol 
	Maximal Oxygen Uptake 
	Blood Analyses 
	Muscle Biopsies 
	Lipid Analyses 
	Intramyocellular Triglyceride and Glycogen 
	Citrate Synthase and -Hydroxyacyl-CoA Dehydrogenase 
	Western Blot 
	Statistical Analyses 

	Conclusions 
	References

