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Abstract: Extracellular vesicles (EVs) are evolutionary well-conserved nano-sized membranous
vesicles that are secreted by both prokaryotic and eukaryotic cells. Recently, they have gained
great attention for their proposed roles in cell-to-cell communication, and as biomarkers for
human disease. In particular, small RNAs (sRNAs) contained within EVs have been considered as
candidate interspecies-communication molecules, due to their demonstrated capacity to modulate
gene expression in multiple cell types and species. While research into this field is in its infancy,
elucidating the mechanisms that underlie host–microbe interactions and communications promises
to impact many fields of biological research, including human health and medicine. Thus, this review
discussed the results of recent studies that have examined the ways in which EVs and sRNAs mediate
‘microbe–host’ and ‘host–microbe’ interspecies communication.

Keywords: microRNA (miRNA); outer membrane vesicle (OMV); small RNA (sRNA); extracellular
RNA (exRNA); extracellular vesicle (EV)

1. Introduction

Extracellular RNAs (exRNAs) encompass secreted RNAs that are thought to be mainly encased
within extracellular vesicles (EVs) or are otherwise tightly bound to cellular proteins and lipids [1].
EVs are a heterogeneous population of nano-sized membranous vesicles of various types, including
eukaryotic cell exosomes, microvesicles, and gram-negative bacterial outer-membrane vesicles
(OMVs) [2]. The majority of EV RNA content comprises small RNAs (sRNAs), such as microRNAs
(miRNAs), and miRNA-sized sRNAs (msRNAs) [3,4]. These have recently gained attention due to
their proposed gene-regulatory roles [2]; for example, miRNAs contained in EVs have been recently
suggested as biomarkers for cancer and other diseases [5,6]. miRNAs are initially processed from
precursor miRNAs (pre-miRNAs), before being processed to their final mature form by the RNase-III
enzyme, Dicer [7,8]. Once mature, they are typically 18–24 nt in length, which is similar to the size of
siRNAs, as well as that of most polymerase chain reaction (PCR) primers. The latter are designed to be
long enough to achieve adequate specificity, but also short enough to bind easily to target sequences
at standard annealing temperatures [9,10]. It may be that the common lengths of miRNAs have
functionally evolved as the minimum size required to facilitate target-gene specificity, while avoiding
cellular immune responses.

Exosomes have lipoprotein envelopes that are similar to cell membranes and are derived
from intracellular multivesicular bodies (MVBs). They carry and protect miRNAs from RNases
in the extracellular environment [11,12]. miRNA effector complexes, including Argonaute 2 (Ago2),
have been shown to be associated with MVBs and are thought to be required for miRNA loading

Int. J. Mol. Sci. 2019, 20, 1487; doi:10.3390/ijms20061487 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-1911-5014
http://www.mdpi.com/1422-0067/20/6/1487?type=check_update&version=1
http://dx.doi.org/10.3390/ijms20061487
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2019, 20, 1487 2 of 7

and/or sorting [13,14]. Notably, OMV biogenesis is species-specific, in that it varies with the
structure and characteristics of bacterial cell-wall components, including the peptidoglycan layer
and lipopolysaccharides (LPS) [15]. Microvesicles are shed from the surface of plasma membranes
of many cell types and are generally larger (~1000 nm) than other types of EVs [16]. In contrast to
exosomes, microvesicles bud directly from the plasma membrane, and thus, usually leave membrane
proteins intact [17]. Once shed, microvesicles can transport genetic material, including miRNAs and
cytosolic and membrane proteins, such as integrins, MHC (Major histocompatibility complex) class-I
molecules, and soluble proteins [18]. However, given that current techniques are limited in their ability
to discriminate between different EV types, this review will refer to all such vesicles as ‘EVs’.

Many unexpected and intriguing types of sRNA-mediated interspecies communication have been
demonstrated to date. For example, several papers have postulated that dietary miRNAs in cow milk
and chicken eggs may regulate human gene expression [19]. Similarly, interactions exist between plant
and fungi by sRNAs and RNA silencing machinery in broad hosts [20,21]. Moreover, a very recent
paper described host–pathogen interactions by which miRNAs present in the saliva of anopheline
mosquitoes may regulate host mRNAs involved in immune responses [22]. Finally, free exRNAs that
are not contained within EVs have also been shown to associate with EV membranes [23,24], which
suggests that microbial exRNAs may be incorporated into host EVs, or vice versa.

Of the many sRNA-mediated host–microbe interactions reported to date, this review focuses
on the recently identified role of exRNAs in facilitating mutual communication between microbes
and hosts.

2. EV Biogenesis, sRNA Sorting, and Host-Cell Entry

Perhaps due to their limited space and/or special selection mechanisms, transfer RNA (tRNA)
fragments and miRNAs have been found to occur more frequently in exosomes than other sRNAs, such
as messenger RNAs (mRNAs) and ribosomal RNAs (rRNAs) [25,26]. Exosomes are mainly produced
from MVBs, and the process involves endosomal-sorting complexes that regulate the selection or
‘sorting’ of cellular miRNAs for secretion from the endosomal membrane compartment after fusion with
MVBs. Notably, this sorting process often ensures that cellular and exosomal miRNA compositions are
different [2,12,27]. To date, several proteins, including the synaptotagmin binding cytoplasmic RNA
interacting protein (SYNCRIP) [28], major vault protein (MVP) [29], Kirsten rat sarcoma (KRAS) [30],
and heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1) [31], have been shown to mediate
miRNA sorting, and 3′ uridylation has been reported to be enriched amongst exosomal miRNAs [32].
A study has also suggested that particular miRNAs may be differentially sorted between the cytoplasm
and exosomes according to the levels of mRNA target transcripts that are present in each location [33],
in a manner similar to the target transcript-driven miRNA arm-selection mechanism that we previously
described [34].

Conversely, bacterial EV biogenesis mechanisms have been suggested to be species-specific,
and likely related to the physical structure the of the cell-wall peptidoglycan layer, and/or its LPS
or membrane transporter-protein composition (see [15,35] for more details). This is because in
gram-negative bacteria, the outer membrane must detach from beneath the peptidoglycan layer,
form a vesicular shape, and then undergo fission to form an EV. Notably, however, gram-positive
bacteria (which lack outer membranes) also produce EVs, suggesting that EV generation methods
may be evolutionary conserved [36]. To date, neither the mechanisms underlying sRNA sorting into
bacterial EVs nor relative bacterial-cell and EV sRNA profiles have been clarified.

It is well recognized that EVs can enter host cells via various endocytic routes, such as in a clathrin-
or caveolin-mediated manner, via a lipid raft, or via membrane fusion (see details in [37,38]). Once
inside target recipient (host) cells, EVs release their components, many of which (such as mRNAs
and miRNAs) begin to function in the host cell, for example, being translated, and modulating the
transcription of their target mRNAs in the host-cell, respectively [39] (Table 1).
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Table 1. Examples of host–microbe interspecies communication by extracellular RNAs.

Communication
Direction Communication Function Target Reference

Host to microbes Fecal miRNAs enter gut bacteria and regulate both
gene transcript levels and bacterial growth Gut [40]

Microbes to host

Periodontal pathogens-derived sRNAs regulate T-cell
cytokine production Mouth [41]

Pseudomonas aeruginosa-derived sRNAs (in OMVs)
reduce IL-8 production in human epithelial cells

Airway
epithelial cells [42]

Host cell-internalized Salmonella enterica sRNA
(namely ‘PinT’) regulate host-cell JAK-STAT signaling HeLa cells [43]

Host cell-internalized Mycobacterium marinum sRNAs
act like miRNAs, and bind to the host RISC

Macrophage-like
cells (THP-1) [44]

Fungal sRNAs repress host (plant) innate immunity Arabidopsis and
tomato cells [21]

sRNA, small RNA; T cells, thymus cells; OMV, outer membrane vesicle; IL, interleukin; JAK-STAT, Janus
kinase/signal transducers and activators of transcription; HeLa, Henrietta Lacks cell line; miRNA, micro-RNAs;
RISC, RNA-induced silencing complex; THP-1, human monocytic cell line.

3. Regulation of Host Genes by sRNAs Contained within Bacterial EVs

Typically, humans carry high levels of exogenous commensal bacteria-derived sRNAs in their
biofluids (e.g., saliva and plasma) [45]. This finding is not surprising given that there are estimated to
be up to 100 times more microbes than host cells in the human body [46].

Pathogen-derived RNAs are well established to induce innate immunity in host cells by
activating Toll-like receptors (TLRs) and other cytosolic pattern recognition receptors (PRRs),
such as retinoic acid-inducible gene-1 (RIG-1) [47,48]. For example, the murine TLR7 protein
(human orthologue, TLR7/8) is predominantly responsive to viral single-stranded RNAs (ssRNAs),
as well as to streptococcal bacterial RNAs in dendritic cells [47,49], supporting the hypothesis
that microbial exRNAs activate host signal cascades via PRRs. Furthermore, TLR systems can
be regulated by miRNAs [50], suggesting that RNA-PRR networks may be a common axis for
bacteria–host communication.

Internalized viruses and bacteria have been demonstrated to express sRNAs that act as miRNAs.
For example, many viruses encode miRNAs that are expressed in host cells, and these miRNAs
facilitate viral replication and survival, and suppress or regulate host immunity [51,52]. A previous
study showed that once internalized into host THP-1 macrophage cells, the bacteria, Mycobacterium
marinum, expresses sRNAs that are bound by the host RNA-induced silencing complex (RISC).
This observation supports the existence of bacterial miRNAs, which regulate (inhibit) host gene
expression [44]. Similarly, sRNAs produced by another intracellular bacterial pathogen, Salmonella
enterica, have been identified via dual RNA-seq. One of these, namely PinT, has been shown to both
regulate the expression of host genes, and to mediate the activity of invasion-associated bacterial
effectors and virulence genes required for intracellular survival [43].

Our group has also recently shown that periodontal pathogens produce miRNA-sized sRNAs
(msRNAs) that can be secreted in OMVs, and thereby spontaneously transferred into eukaryotic cells.
Moreover, we also demonstrated that the ectopic expression of highly expressed periodontal-pathogen
msRNAs in T lymphocytes induced the production of cytokines, such as interleukin (IL)-5, IL-13, and
IL-15 [41]. Similarly, another study showed that Pseudomonas aeruginosa-derived methionine tRNA
can be transferred in OMVs into human epithelial airway cells, and thereby reduce their secretion
of IL-8 [42]. Finally, an aggressive fungal pathogen, Botrytis cinereal, has been shown to harbor
virulent sRNAs that bind the RISC to inhibit host-immunity genes [21]. Together, these results suggest
that microbial msRNAs may act as communication molecules to mediate bacteria–host interactions.
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Similarly, animal parasites are also known to produce EV-contained circulating miRNAs and/or
sRNAs in their hosts [53], some of which have been shown to modulate hosts’ innate immunity [54].

Thus, these findings oppose the traditional view on immune system regulation by revealing the
mechanisms by which our body resists microbial attacks in an active manner.

4. Regulation of Bacterial Genes by sRNAs in Host EVs

Research exploring the mechanisms by which host miRNAs regulate bacterial gene expression
has only recently begun. Traditionally, the lack of RNA interference (RNAi) machinery in bacteria
led researchers to consider the possibility of host miRNA-mediated bacterial gene regulation
skeptically. However, this changed when Liu et al. showed that fecal miRNAs secreted by gut
epithelial cells can enter gut bacteria, and thereby regulate bacterial gene expression and growth [40],
suggesting that bacteria may employ unique sRNA-driven transcriptional regulatory mechanisms.
Supporting this hypothesis, Liu et al. also demonstrated that mice carrying miRNA-deficient gut
endothelial cells exhibited uncontrolled gut microbiota growth and colitis, which was ameliorated
upon transplantation of wild-type fecal miRNAs [40]. Gut microbiota have also been shown to
influence host miRNA expression via TLR-dependent innate immunity pathways [55]. Additionally,
miRNAs associated with several bacterial taxa have been shown to be differentially expressed in
patients with colorectal cancer [56], suggesting that the abundance of gut microbes may be modulated
by host miRNA-mediated communication. Given that all cells can produce and secrete miRNAs,
such inter-species gene regulation by host miRNAs may not be limited to the gut microbiota.
Indeed, the normal flora in the human body comprises an enormous number and range of bacteria,
and we speculate that many of these may be affected by host miRNA. It is also possible that
host-derived circulating miRNAs may indirectly influence the bacterial flora in ways that have not yet
been elucidated.

5. Concluding Remarks

There are many possible avenues for interspecies communication between microbes and human
cells; however, sRNAs represent particularly good candidates for a “common language” between
species (Figure 1), because they are produced by every living organism, and can be transported
throughout the human body by EVs. While traditional views of molecular biology have emphasized
the importance of protein-coding and mRNAs for cellular and organismal function, recent studies
demonstrate that understanding microbe–human interactions will likely be essential to elucidate the
underlying mechanisms, and thus effectively treat human pathogenic diseases.
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Figure 1. Vesicles as vehicles. Extracellular vesicles (EVs) secreted by both host and bacterial cells 
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up by bacteria, or by host cells (in biofluids), and thereby likely critically mediate microbe-host 
communication by releasing small exRNAs capable of regulating recipient-cell gene expression. 
OMV, outer-membrane vesicle; sRNA, small RNA; mRNA, messenger RNA. 
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communication by releasing small exRNAs capable of regulating recipient-cell gene expression. OMV,
outer-membrane vesicle; sRNA, small RNA; mRNA, messenger RNA.
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